
TEAL: New Selection Strategy for Small Buffers in Experience Replay
Class Incremental Learning

Shahar Shaul-Ariel†, Daphna Weinshall†
School of Computer Science & Engineering†

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

{shahar.ariel1,daphna}@mail.huji.ac.il

Abstract

Continual Learning is an unresolved challenge, whose rele-
vance increases when considering modern applications. Un-
like the human brain, trained deep neural networks suffer
from a phenomenon called catastrophic forgetting, wherein
they progressively lose previously acquired knowledge upon
learning new tasks. To mitigate this problem, numerous meth-
ods have been developed, many relying on the replay of past
exemplars during new task training. However, as the mem-
ory allocated for replay decreases, the effectiveness of these
approaches diminishes. On the other hand, maintaining a
large memory for the purpose of replay is inefficient and of-
ten impractical. Here we introduce TEAL, a novel approach
to populate the memory with exemplars, that can be inte-
grated with various experience-replay methods and signifi-
cantly enhance their performance with small memory buffers.
We show that TEAL enhances the average accuracy of exist-
ing class-incremental methods and outperforms other selec-
tion strategies, achieving state-of-the-art performance even
with small memory buffers of 1-3 exemplars per class in
the final task. This confirms our initial hypothesis that when
memory is scarce, it is best to prioritize the most typical data.
Code is available at this https URL.

1 Introduction
With the recent advances in deep neural networks, there has
been a growing research interest in incremental learning.
The need to integrate new task knowledge into an already
trained network has become increasingly important, espe-
cially considering the time-consuming nature of training on
large datasets. Retraining the network from scratch on both
the original and new task data is often impractical, and ac-
cess to the original training data may be limited or unavail-
able. In this context, catastrophic forgetting, as described by
McCloskey and Cohen (1989), can be particularly severe.

To address this challenge, various methods have been de-
veloped across different frameworks. Van de Ven, Tuyte-
laars, and Tolias (2022) categorizes these methods into three
types: task-incremental, domain-incremental, and class-
incremental learning. The fundamental idea behind incre-
mental learning is that a model must sequentially learn
tasks, one after the other. Among these approaches, Class-
Incremental Learning (CIL) is recognized as the most chal-
lenging. Here, each task introduces new classes, and the

model must accurately identify the class of each input with-
out access to the corresponding task ID, see Fig. 1.

Figure 1: Illustration of CIL with Experience Replay.

Incremental learning can be approached in various ways,
each with its own assumptions and configurations. In this pa-
per, we follow the constrained setup outlined by De Lange
et al. (2021), which does not depend on task boundaries dur-
ing either training or testing. This approach maintains a fixed
memory size throughout incremental training, ensuring it
stays within a predefined limit set from the beginning. At
each incremental step, new exemplars can be added to the
memory buffer only after sufficient space has been vacated.

We focus our attention on a prevalent and rather success-
ful framework called Experience Replay (ER), which in-
volves storing a set of exemplars in memory and reusing
them for rehearsal purposes while training on new tasks.
Within this framework, several strategies exist for selecting
which exemplars to retain in memory. Not surprisingly, the
smaller the memory buffer is, the less effective the strategy
is at mitigating catastrophic forgetting. This leads us to the
following question: Are these strategies necessarily optimal
for all memory sizes? In other words, can different strategies
be found suitable for different sizes of the memory buffer?

In active learning, it has been shown (empirically and for-
mally) that when the number of labeled examples is small, it
is best to choose the most typical examples for training (Ha-

ar
X

iv
:2

40
7.

00
67

3v
2 

 [
cs

.L
G

] 
 1

5 
Fe

b 
20

25

https://github.com/shahariel/TEAL


cohen, Dekel, and Weinshall 2022). In the context of CIL
and when the memory buffer is too small to truly represent
the distribution of each class, we propose to adopt this strat-
egy for the selection of points that are intended to populate
the replay memory buffer. In other words, when the buffer
is considerably small, it should contain representative exem-
plars and thus retain a more significant fraction of the previ-
ously acquired knowledge.

Our proposed method TEAL, Typicality Election Ap-
proach to continual Learning, is primarily targeted at sce-
narios with small buffers. While the use of small buffers
may seem too strict, there are situations where maintaining a
large memory for replay is simply not feasible. For example,
applications running on mobile devices face severe memory
constraints and could greatly benefit from methods specifi-
cally designed for small buffers.

Accordingly, TEAL aims to identify a set of representative
exemplars that also exhibit diversity. An exemplar is deemed
representative if its likelihood, when considered within the
distribution of all points, is high. To ensure diversity, data
clustering is leveraged. Central to the success of our ap-
proach is the ability to derive an appropriate latent space,
where data clustering and likelihood estimation can be re-
liably obtained. Ideally, any mechanism for memory popu-
lation can be combined with any competitive Experience-
Replay-Incremental-Learning (ER-IL) method in which this
mechanism is a separate module. In accordance, we evalu-
ate our approach in Section 4 by considering alternative ER-
IL methods, where we replace their native mechanism for
buffer population by TEAL. The method, methodology and
its experimental evaluation are described in the rest of this
paper, with emphasis on the enhancements TEAL offers to
various existing class-incremental methods.
Related work Several approaches exist for incremental
learning (see De Lange et al. 2021), including Experience
Replay (ER), Generative Replay (GR) (Shin et al. 2017),
Parameter Isolation, and Regularization. Similar to ER, GR
replays data from previous tasks during new task training,
but uses a generative model to create new samples instead
of retaining exemplars seen by the model (Choi, El-Khamy,
and Lee 2021; Gao and Liu 2023; Gautam et al. 2024). Pa-
rameter Isolation assigns distinct parameters to each task to
reduce forgetting (Mallya and Lazebnik 2018) by fixing pa-
rameters assigned to previous tasks, while Regularization-
based methods (Li and Hoiem 2017) incorporate additional
terms into the loss function to retain prior knowledge while
learning from new data.

These methods differ in the ways they utilize mem-
ory: ER stores exemplars, GR stores a generative model,
and Parameter Isolation stores task-specific parameters.
Regularization-based methods do not rely on memory. This
diversity makes it challenging to compare methods directly.
In particular, we note that since generative models tend to
be very large, GR is hardly suitable to the domain of small
memory buffers addressed here. A similar concern can be
raised concerning Parameter Isolation methods. Hence, our
focus in this paper is on ER.

Note that while few-shot incremental learning (Tian et al.
2024) may appear similar to our work on CIL with a small

memory buffer, there is a significant difference. Specifically,
we assume that the data for new tasks is initially sufficient
for effective learning, whereas few-shot incremental learn-
ing inherently deals with a scarcity of labeled samples.

When comparing strategies for the population of the
memory buffer, Masana et al. (2022) demonstrate that the
most successful strategies are either random-sampling or
Herding as defined by Welling (2009). The latter strategy
involves retaining a set of exemplars whose mean is clos-
est to the class mean. Another successful strategy presented
by Bang et al. (2021) leverages classification uncertainty
and data augmentation to enhance the diversity of data in-
stances (Uncertainty). Other selection strategies, such as
GSS (Aljundi et al. 2019) and selecting the exemplars with
the highest entropy of the softmax outputs (Chaudhry et al.
2018a), have been shown in previous studies to be inferior to
random sampling and Herding (Masana et al. 2022; Prabhu
et al. 2023). Therefore, we do not include them in our com-
parative empirical evaluation.

Recently, Hacohen and Tuytelaars (2024) proposed a se-
lection strategy called Goldilocks, which retains exemplars
learned at an intermediate pace, accommodating various
buffer sizes. Since the results presented in this paper are pri-
marily within a task-incremental framework (which yields
higher average accuracy) and the paper does not provide
code, we do not include this method in our comparisons.
Summary of contribution We present TEAL, a novel
strategy designed to select effective exemplars for small
memory buffers. TEAL is seamlessly integrated with a
number of SOTA replay-based class-incremental learning
method, and significantly enhances their performance.

2 Problem formulation
A CIL problem T consists of a sequence of T tasks. Each
task t ∈ T contains a set of classes Ct = (c1, . . . , cnt) and
labeled samples from these classes Xt = (X1, . . . , Xnt),
where Xi = {(x1, i), . . . , (xmi , i)}. The tasks do not share
classes, i.e., Cti∩Ctj = ∅ ∀i ̸= j. We denote by N t the total
number of classes in all tasks up to task t: N t =

∑t
i=1 ni.

We consider the scenario where there is access to a mem-
ory buffer M, which has a fixed size throughout the learning
of T . An incremental learner is a learning model (we con-
sider only deep neural networks) that is trained sequentially
on the tasks. Accordingly, the training on task t is performed
on data Xt ∪M, where M contains stored exemplars from
tasks 1, . . . , t− 1. At test time, a CIL method is required to
classify a given example into its predicted class while con-
sidering all previously seen classes.

Our proposed method TEAL is described in Section 3. It
aims to address only one component of the general Incre-
mental Learning (IL) problem, namely, how to populate the
memory buffer at the end of each IL iteration. Accordingly,
after task t, TEAL should select for each seen class n = |M|

Nt

exemplars to populate memory buffer M.

3 Our method: TEAL
We begin with a definition of point typicality.



Figure 2: Illustration of TEAL’s iterative class selection pro-
cess, which establishes a priority order for the selected set.
Initially, an embedding space is generated separately for
each class (shown on the left). Samples are then selected
iteratively with s1 = 4, s2 = 7, and s3 = 9 (see text for
details). Each row on the right panel represents one itera-
tion: the left image displays the si clusters (obtained using
K-means) with the previously selected points Si−1 marked
with ’o’, while the right image shows the updated set Si,
with newly selected samples marked with ’X’. In the last it-
eration 3 clusters remain uncovered, but only 2 samples are
selected, leaving the red cluster uncovered by S3.

Definition 3.1 (Typicality). For each exemplar x, let

Typicality(x) =

 1

K

∑
xi∈K-NN(x)

∥x− xi∥2

−1

where K is a fixed number of nearest neighbors1.

The essence of TEAL is to populate the memory buffer with
points that are both typical (as captured by the definition
above) and diverse.

After training on task t, the incremental learner has to
update the memory buffer M with data from the new
classes {XNt−1+1, . . . , XNt}. Given the fixed size of M,
the learner must first reduce the number of exemplars al-
ready in the buffer to accommodate new ones from the new
classes. For each class, this involves repeatedly removing
examples from the buffer after each IL step.

To address this challenge, TEAL maintains a priority list
of selected exemplars from each class, which reflects the
order in which they should be removed from M. This ap-
proach allows the learner to remove the least typical points
from the buffer when new classes emerge. The list is struc-
tured so that the most typical and diverse exemplars, which
should be retained as long as possible, are positioned at the
top, while those slated for earlier removal are positioned at
the bottom.

More specifically, consider a fixed class, and let n de-
note the number of exemplars assigned to that class. TEAL

1We use K = 20, but other options yield similar results.

repeatedly selects a small fraction of n, generating a se-
quence of subsets S1 ⊆ S2 ⊆ · · · ⊆ Sk, where si = |Si|
and s1 ≤ · · · ≤ sk = n. The sizes si define the selec-
tion pace, indicating the rate at which exemplars are accu-
mulated. The inclusion relation induces the priority order:
points in Sk \Sk−1 are removed first, while points in S1 are
removed last. This process is illustrated in Fig. 2.

To initialize the selection process, we need a suitable em-
bedding space for the class exemplars. To this end we train
a deep model on all the available training data, and use ac-
tivations in its penultimate layer as a representation for the
new classes. Subsequently, the selection process in the ith

iteration involves 2 steps (see pseudocode in Alg. 1):
Step 1: Clustering. In order to ensure diversity, we seek

typical exemplars from different regions of the embed-
ding space. When constructing set Si, we achieve this
by dividing the set of labeled points into si clusters
using K-Means (Lloyd 1982).

Step 2: Typicality. We then select the most typical point
from each of the si − si−1 largest uncovered clusters,
where an uncovered cluster is a cluster from which no
point has already been selected.

Algorithm 1: ConstructExemplarSet
Input: a set of exemplars from class c Xc, number of examples to
choose n
Require: current feature function ϕ : X → Rd, iterations pace
s1, . . . , sk = n
Output: a set of n exemplarsMc ⊆ Xc

1: Xc
emb ← ϕ(Xc)

2: Mc ← ∅
3: for all i = 1, . . . , k do
4: C1, . . . , Csi ← clustering algorithm(Xc

emb, si)
▷ |C1| ≥ · · · ≥ |Csi |

5: for all j = 1, . . . , si − si−1 do
6: if Cj is uncovered then
7: add argmaxx∈Cj

{Typicality(x)} toMc

8: end if
9: end for

10: end for
11: returnMc

The integration of TEAL into a general class-incremental
algorithm is described in Alg. 2.

Algorithm 2: IncrementalTraining
Input: training examples Xt

Require: current exemplar setsM = (M1, . . . ,MNt−1), current
model parameters θt−1

1: θt ← training model(Xt,M; θt−1)

2: n← |M|
Nt

3: for c ∈ {1, . . . , N t−1} do
4: Mc ← first n exemplars inMc

5: end for
6: for c ∈ {N t−1 + 1, . . . , N t} do
7: Mc ← ConstructExemplarSet(Xc, n, θt)
8: end for
9: M← (M1, . . . ,MNt)



4 Empirical evaluation
We report two settings: (i) Integrated: we evaluate the ben-
eficial contribution of TEAL to competitive ER-IL methods,
by replacing their native selection strategy (vanilla version)
with TEAL (Section 4.2); (ii) Alternative selection strate-
gies: we evaluate the beneficial contribution of TEAL as
compared to other selection strategies (Section 4.2). In both
cases, we incrementally train a deep model with a fixed-size
replay buffer and monitor the average accuracy defined be-
low upon completion of each task t.

4.1 Methodology
The majority of the experiments are conducted using
the open-source Continual Learning library Avalanche
(Lomonaco et al. 2021), with the exception of those involv-
ing XDER (Boschini et al. 2022), which is not integrated into
Avalanche. For XDER, we utilize the code provided by the
authors. In order to guarantee a fair comparison and in all
experiments, we employ identical network architectures and
maintain consistent experimental conditions.

We make certain in both settings that the buffer remains
class-balanced, namely, each update maintains an equal rep-
resentation of exemplars across all classes2. To maintain bal-
ance, we follow this procedure: Prior to adding new exem-
plars we calculate n = |M|

Nt , where N t is the total number of
existing and new classes. Subsequently, we adjust the num-
ber of exemplars from existing classes to accommodate n
by removing redundant points, followed by the addition of
n exemplars from each new class.

In the second setting, we employ a simple baseline ER-IL
model. This model updates a fixed-size buffer of exemplars
after training each task t and replays it while training on
task t + 1. Additionally, we utilize a weighted data loader
to ensure a balanced mix of data from both the new classes
and the exemplars stored in the buffer in each batch. Across
experiments, the only variation lies in the selection strat-
egy employed: some experiments utilize one of the selec-
tion strategies baselines described below, and the remaining
experiments employ TEAL.

Other than this change in the method’s buffer population
mechanism, everything else remains the same.
ER-IL baselines The following ER-IL methods are used:
XDER (Boschini et al. 2022), which updates the memory
buffer by integrating current and past information; ER-ACE
(Caccia et al. 2021), which applies separate losses for new
and past tasks; ER (Chaudhry et al. 2019a), which explores
selection strategies in a simple ER framework; BiC (Wu
et al. 2019); iCaRL (Rebuffi et al. 2017); GEM (Lopez-Paz
and Ranzato 2017); and GDumb (Prabhu, Torr, and Dokania
2020).

To assess the suitability of these methods under the CIL
conditions studied here, we used Split CIFAR-100 and set
the buffer size to 300, 500, and 2000. Figure 3 presents the
results for a buffer size of 300 (see Suppl B for results with
larger buffer sizes). As clearly illustrated in Fig. 3, GEM

2When the buffer size is not evenly divisible by the number of
classes, there may classes with an additional exemplar.

and GDumb perform poorly in this scenario, likely due to
their unsuitability for a very small memory buffer. Similarly,
BiC remains competitive only when the buffer size is 2000.
While iCarl remains competitive across all buffer sizes, it is
inherently non-modular, relying heavily on its native Herd-
ing selection strategy and a K-Means classifier. Hence we
cannot integrate it with TEAL.

We are therefore left with the methods XDER, ER-ACE,
and ER, which are both suitable and competitive for further
examination with and without TEAL as the selection mech-
anism. For ER-ACE, which requires populating the buffer
with exemplars at the start of the task before training on new
classes, we cannot rely on the representation provided by a
trained model. To address this, we adjust the integration of
TEAL by filling the buffer in two stages. First, at the begin-
ning of task t, we populate the buffer with exemplars from
the new classes using a random-sampling selection strategy.
Second, after completing the training for task t, we replace
the exemplars from the new classes in the buffer with those
selected using TEAL. It’s important to note that throughout
this process, the buffer maintains a fixed size, ensuring com-
pliance with the class-incremental framework.

Figure 3: Baseline CIL using Split CIFAR-100 with a small
buffer size |M| = 300. 7 baseline methods are shown, re-
porting the average accuracy At as new tasks are learned.

Selection Strategies baselines We compare with the fol-
lowing selection strategies (see discussion of related work in
the introduction): Random sampling, Herding, Uncertainty,
and Centered (closest-to-center) - another common strategy
that selects the exemplars closest to the center of all elements
in feature space. Centered focuses on individual exemplars,
unlike Herding, which keeps the mean of the whole con-
structed set close to the center.
Metrics As customary, we employ a score that reflects the
accuracy during each stage of the incremental training. Let
T denote the total number of tasks, and at,i denote the accu-
racy of task i at the end of task t ( i ≤ t ≤ T ). For every task
t = 1, . . . , T , define its average accuracy At =

1
t

∑t
i=1 at,i.

This metric provides a single value for each incremental
step, enabling us to directly compare different methods at
each step. Since by construction each task has the same
number of classes, there is no need for additional weight-
ing terms. We do not include the metric of forgetting, which
estimates how much the model has forgotten about previ-
ous tasks, since it is less suitable for the class-incremental



setting: with the addition of new classes, performance in-
evitably drops across all classes (Masana et al. 2022).
Datasets We use several well known Continual Learn-
ing benchmarks. (i) Split CIFAR-100 (Rebuffi et al. 2017;
Chaudhry et al. 2019b), a dataset created by splitting
CIFAR-100 (Krizhevsky, Hinton et al. 2009) into 10 tasks,
each containing 10 different classes of 32X32 images, with
500 images per class for training and 100 for testing. We
also use a variation of this dataset by splitting CIFAR-100
into 20 tasks instead of 10, as reported in Suppl B. (ii) Split
tinyImageNet, a dataset created by splitting tinyImageNet
(Le and Yang 2015) into 10 tasks, each containing 20 differ-
ent classes of 64X64 images, with 500 images per class for
training and 50 for testing. (iii) Split CUB-200 (Chaudhry
et al. 2018b), a dataset created by splitting into 20 tasks the
CUB-200 (Wah et al. 2011) high-resolution image classi-
fication dataset, consisting of 200 categories of birds, with
around 30 images per class for training and 30 for testing.
Architectures In the first setting, except for one experi-
ment, we employ a ResNet-18 model in all our experiments.
The exception is the experiment involving the training of
XDER on the Split CUB-200 dataset. Due to computational
limitations, we used instead a pre-trained ResNet-50 model
(He et al. 2016), and this was maintained under all the rel-
evant conditions. Additionally, we run some experiments
with another architecture called ArchCraft, a ResNet variant
designed for improved performance in CL (Lu et al. 2024).
In the second setting, we use a smaller version of ResNet-
18 (He et al. 2016) as a simple baseline ER-IL model (see
Lopez-Paz and Ranzato 2017).

4.2 Main results
TEAL integrated with SOTA ER-IL methods As men-
tioned above, we investigate the baseline methods XDER,
ER-ACE, and ER, comparing their performance using ei-
ther their native selection strategies or TEAL. We conducted
experiments on Split CIFAR-100 with buffer sizes ranging
from 100 to 4000, Split tinyImageNet with buffer sizes from
200 to 6000, and Split CUB-200 with buffer sizes of 2003

and 400. The results for final average accuracy At and the
differences between ’improved’ and ’vanilla’ are presented
in Table 1. First row of Fig. 4 shows the average accuracy At

after each task t, while the second row illustrates the corre-
sponding improvement from TEAL in selected experiments.

As demonstrated in Fig. 4, in most cases, the improve-
ment achieved by TEAL increases as incremental training
progresses, resulting in a more significant improvement by
the final task. Indeed, we do not expect significant differ-
ences immediately after the first task, as catastrophic forget-
ting hasn’t occurred yet. Reassuringly, for the majority of
the experiments, the improvement becomes apparent start-
ing from the second task.

Table 1 shows that the difference (indicated in the ’im-
provement’ row) is consistently positive, demonstrating that
TEAL always enhances performance. However, it is impor-
tant to note that when catastrophic forgetting in the vanilla

3Due to computational limitations of the relevant package, we
did not run XDER with a buffer size of 200.

version is too severe, the integration of TEAL can no longer
mend the damage. Consequently, the enhancements to ER
and ER-ACE on the Split tinyImageNet dataset are mostly
notable with larger buffer sizes.

Note that the improvement provided by TEAL tends to in-
crease as the buffer size decreases. To further explore the
relationship between buffer size and relative improvement,
we present a graph showing the final average accuracy im-
provement across various buffer sizes. The results for Split
CIFAR-100 and Split tinyImageNet using XDER are illus-
trated in Fig. 5 (see results with ER-ACE and ER in Suppl B).
Clearly, while improvements do occur across all buffer sizes,
larger improvements are seen for smaller buffers.

Figure 5: Performance improvement of TEAL when inte-
grated with XDER over various buffer sizes.

Comparison of selection strategy We begin with a sim-
ple ER-IL model on Split CIFAR-1004 with various buffer
sizes, and 5 different selection strategies: random, Herding,
Uncertainty, Centered and TEAL. As depicted in Fig. 7, our
method enhances performance as compared to Uncertainty
by 3-4%, and random selection by almost 3% for smaller
buffers (300, 400, 500) and about 2.5% for larger buffers
(1000, 2000). When compared to Herding, our method is
more effective with smaller buffer sizes, enhancing perfor-
mance by up to 1.2% for a buffer size of 300, but less effec-
tive with large buffers. It is possible that the mechanism of
retaining a set of the nearest neighbors around the average
sample in each class becomes less effective when the buffer
is too small. Additionally, Herding lacks a component for
selecting a diverse set, which may lead to the retention of
similar exemplars, an issue that becomes more pronounced
with smaller buffer sizes. Interestingly, despite its similarity
to Herding, Centered performs worse on larger buffer sizes,
resulting in a 1.5-2.5% improvement by TEAL. Similar re-
sults, using different class ordering, are shown in Suppl A.2.

Given the results shown in Fig. 7, we repeat this compar-
ison while integrating both methods - TEAL and Herding -
into competitive ER-IL methods. Fig. 6 shows the difference
between the improvement obtained by TEAL and the one ob-
tained by Herding. Since in almost all cases this difference

4The order of the classes and the partition to tasks is randomly
selected and fixed in all conditions.



(a) Split CIFAR-100, |M| = 300 (b) Split tinyImageNet, |M| = 400 (c) Split CUB-200

Figure 4: The performance of ER-IL methods with and without TEAL. First row displays the average accuracy after training
incrementally on a different number of classes. Each color corresponds to a different ER-IL method, where the continuous
line represents the vanilla method, while the dashed line represents the method with TEAL as its selection strategy. The error
bars correspond to standard error based on 4-10 repetitions. Second row depicts the difference in accuracy between TEAL and
another method (XDER, ER-ACE, and ER) across all tasks.

Table 1: Final average accuracy for method with and without TEAL.

XDER ER-ACE ER

Dataset |M| Vanilla +TEAL Improvement Vanilla +TEAL Improvement Vanilla +TEAL Improvement

Split
CIFAR-100

100 27.98±0.18 31.08±0.29 3.1 24.37±0.42 31.06±0.27 6.9 10.31±0.03 10.24±0.03 -0.07
300 41.97±0.25 45.05±0.24 3.08 35.37±0.29 41.28±0.2 5.92 14.82±0.21 17.97±0.25 3.15
500 47.97±0.22 50.29±0.2 2.32 40.7±0.25 45.99±0.33 5.29 18.21±0.29 22.39±0.31 4.18
1000 53.69±0.32 55.02±0.34 1.33 48.16±0.14 51.85±0.22 3.69 26.66±0.81 28.58±0.65 1.92
2000 57.69±0.21 58.79±0.17 1.1 55.99±0.1 58.7±0.17 2.71 36.54±0.31 38.17±0.37 1.62
3000 58.96±0.25 60.09±0.25 1.13 59.75±0.25 62.3±0.19 2.55 43.72±1.63 46.03±1.49 2.32
4000 59.89±0.16 60.42±0.28 0.54 62.6±0.22 64.81±0.2 2.22 49.03±0.89 52.86±0.62 3.82

Split
tinyImageNet

200 14.6±0.16 16.76±0.3 2.16 11.3±0.08 12.47±0.22 1.17 7.95±0.02 8.01±0.03 0.07
400 20.42±0.12 23.58±0.18 3.16 13.02±0.2 14.43±0.29 1.41 7.75±0.06 7.86±0.05 0.11
600 25.74±0.09 28.71±0.23 2.97 14.48±0.13 15.7±0.14 1.22 7.54±0.02 7.8±0.07 0.26
1000 32.68±0.24 34.28±0.24 1.59 17.37±0.34 18.88±0.21 1.51 7.7±0.06 7.99±0.06 0.29
2000 39.76±0.31 40.76±0.23 1.0 21.71±0.17 24.12±0.24 2.4 8.27±0.08 8.82±0.09 0.56
4000 43.91±0.14 44.42±0.26 0.51 27.15±0.13 29.62±0.18 2.47 11.61±0.1 13.59±0.21 1.99
6000 44.71±0.15 45.44±0.39 0.73 30.3±0.23 33.3±0.23 3 16.53±0.15 19.07±0.18 2.54

Split
CUB-200

200 – – – 8.56±0.15 10.41±0.16 1.85 8.98±0.18 10.37±0.23 1.39
400 43.63±1.78 49.55±0.47 5.96 11.25±0.99 12.33±0.26 1.08 12.01±0.52 14.13±0.3 2.12

is positive, we may conclude that TEAL is significantly more
beneficial than Herding.

Results of Task-IL The incorporation of TEAL into exist-
ing ER-IL method is also beneficial in the task incremental
scenario, although the advantage is less pronounced, likely
because the scenario is easier. Results are shown in Table 2.

4.3 Ablation study
Iterative process of TEAL We explore an alternative
variant of TEAL, which selects the set of exemplars in a

single pass instead of by iterations. We call this variant
TEAL OneTime. While still selecting exemplars for each
class separately, this variant first partitions the exemplars of
each class into n = |M|

Nt clusters, and then selects the most
typical exemplar from each cluster in descending order of
cluster size, preserving the order of selections.

The experiments on the two variants are conducted us-
ing Split CIFAR-100 with the smaller version of ResNet-18
mentioned in Section 4.1 and buffer sizes of 300, 500 and
2000. We investigate the performance enhancement of each



(a) |M| = 300 (b) |M| = 500 (c) |M| = 2000

Figure 6: The difference between the improvement obtained by TEAL and the one obtained by Herding, showing 2 ER-IL
methods and 3 buffer sizes while training on the Split CIFAR-100 dataset.

Figure 7: Split CIFAR-100: TEAL performance gain com-
pared to 4 baselines: random-sampling, Herding, Centered,
and Uncertainty, each bar corresponds to a fixed buffer size.
The error bars correspond to standard error based on 10-20
repetitions.

Table 2: Task-IL, accuracy with and without TEAL

Dataset |M| XDER XDER+TEAL Improvement

Split
CIFAR-100

100 73.75±0.59 76.56±0.27 2.81
300 83.5±0.06 84.46±0.26 0.96
500 85.96±0.14 86.1±0.2 0.14

Split
tinyImageNet

200 42.48±0.38 46.55±0.37 4.07
400 55.03±0.15 59.2±0.47 4.17
600 63.69±0.21 65.26±0.28 1.57

1000 69.72±0.31 70.61±0.23 0.89

variant when integrated with XDER, ER-ACE, and ER. The
results are shown in Table 3. Clearly, whenever there is a sig-
nificant difference in performance, the iterative variant out-
performs the other one in 4 out of 5 cases.

Different architecture Some experiments were replicated
using ArchCraft instead of the ResNet-18 architecture, ob-
taining similar results (see Table 4).

Table 3: The improvement of 2 variants of TEAL when in-
tegrated with different CIL methods: XDER, ER-ACE, and
ER. In almost all cases, the original TEAL matches or out-
performs the OneTime variant.

|M| Selection Strategy XDER ER-ACE ER

300 TEAL OneTime 44.13±0.26 35.81±0.42 17.64±0.12

TEAL 45.05±0.24 36.4±0.12 18.1±0.1

500 TEAL OneTime 49.87±0.22 40.16±0.3 22.01±0.18

TEAL 50.29±0.2 40.26±0.23 22.07±0.13

2000 TEAL OneTime 59.05±0.14 51.52±0.24 40.65±0.32

TEAL 58.79±0.17 51.68±0.35 39.96±0.23

Table 4: Final average accuracy for method with and without
TEAL using the ArchCraft architecture. Top 3 rows corre-
spond to Split CIFAR-100, bottom 3 to Split tinyImageNet.

ER-ACE ER

|M| Vanilla +TEAL Imp. Vanilla +TEAL Imp.

300 36.75±0.28 42.47±0.08 5.72 14.59±0.08 18.01±0.35 3.42
500 41.98±0.24 47.53±0.35 5.56 18.54±0.4 22.3±0.4 3.76

2000 57.33±0.18 60.18±0.17 2.85 41.03±0.37 43.44±0.28 2.41

400 12.24±0.11 13.2±0.38 0.96 7.67±0.13 7.84±0.19 0.17
1000 15.64±0.37 16.7±0.2 1.07 8.12±0.05 8.36±0.18 0.24
2000 19.08±0.36 20.43±0.37 1.35 9.65±0.11 10.66±0.03 1.01

5 Summary and discussion
We proposed a new mechanism to select exemplars for the
memory buffer in replay-based CIL methods. This method is
based on the principles of diversity and representativeness.
When the memory buffer is relatively small, our method
TEAL is shown to outperform both the native mechanism of
each ER-IL method (usually random selection) and alterna-
tive selection mechanisms, including Herding, Uncertainty
and Centered. Even when the buffer is large, our method is
beneficial in almost all cases.

In future work we will investigate ways to determine at
which point, if any, the added value of our method dimin-
ishes or possibly becomes harmful. We will also integrate
TEAL with other replay-based CIL methods that utilize dif-
ferent selection strategies.



References
Aljundi, R.; Lin, M.; Goujaud, B.; and Bengio, Y. 2019. Gra-
dient based sample selection for online continual learning.
Advances in neural information processing systems, 32.

Bang, J.; Kim, H.; Yoo, Y.; Ha, J.-W.; and Choi, J. 2021.
Rainbow memory: Continual learning with a memory of di-
verse samples. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 8218–8227.

Boschini, M.; Bonicelli, L.; Buzzega, P.; Porrello, A.; and
Calderara, S. 2022. Class-incremental continual learning
into the extended der-verse. IEEE transactions on pattern
analysis and machine intelligence, 45(5): 5497–5512.

Caccia, L.; Aljundi, R.; Asadi, N.; Tuytelaars, T.; Pineau, J.;
and Belilovsky, E. 2021. New insights on reducing abrupt
representation change in online continual learning. arXiv
preprint arXiv:2104.05025.

Chaudhry, A.; Dokania, P. K.; Ajanthan, T.; and Torr, P. H.
2018a. Riemannian walk for incremental learning: Under-
standing forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), 532–547.

Chaudhry, A.; Ranzato, M.; Rohrbach, M.; and Elhoseiny,
M. 2018b. Efficient Lifelong Learning with A-GEM. CoRR,
abs/1812.00420.

Chaudhry, A.; Rohrbach, M.; Elhoseiny, M.; Ajanthan, T.;
Dokania, P.; Torr, P.; and Ranzato, M. 2019a. Continual
learning with tiny episodic memories. In Workshop on
Multi-Task and Lifelong Reinforcement Learning.

Chaudhry, A.; Rohrbach, M.; Elhoseiny, M.; Ajanthan, T.;
Dokania, P. K.; Torr, P. H. S.; and Ranzato, M. 2019b.
Continual Learning with Tiny Episodic Memories. CoRR,
abs/1902.10486.

Choi, Y.; El-Khamy, M.; and Lee, J. 2021. Dual-teacher
class-incremental learning with data-free generative replay.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 3543–3552.

De Lange, M.; Aljundi, R.; Masana, M.; Parisot, S.; Jia, X.;
Leonardis, A.; Slabaugh, G.; and Tuytelaars, T. 2021. A con-
tinual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine
intelligence, 44(7): 3366–3385.

Gao, R.; and Liu, W. 2023. Ddgr: Continual learning with
deep diffusion-based generative replay. In International
Conference on Machine Learning, 10744–10763. PMLR.

Gautam, C.; Parameswaran, S.; Mishra, A.; and Sundaram,
S. 2024. Generative replay-based continual zero-shot learn-
ing. In Towards Human Brain Inspired Lifelong Learning,
73–100. World Scientific.

Hacohen, G.; Dekel, A.; and Weinshall, D. 2022. Active
Learning on a Budget: Opposite Strategies Suit High and
Low Budgets. In International Conference on Machine
Learning. PMLR.

Hacohen, G.; and Tuytelaars, T. 2024. Forgetting Order of
Continual Learning: Examples That are Learned First are
Forgotten Last. arXiv preprint arXiv:2406.09935.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, 770–778.
IEEE Computer Society.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Online.
Le, Y.; and Yang, X. S. 2015. Tiny ImageNet Visual Recog-
nition Challenge.
Li, Z.; and Hoiem, D. 2017. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12): 2935–2947.
Lloyd, S. 1982. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2): 129–137.
Lomonaco, V.; Pellegrini, L.; Cossu, A.; Carta, A.; Graf-
fieti, G.; Hayes, T. L.; De Lange, M.; Masana, M.; Pom-
poni, J.; Van de Ven, G. M.; et al. 2021. Avalanche: an
end-to-end library for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3600–3610.
Lopez-Paz, D.; and Ranzato, M. 2017. Gradient episodic
memory for continual learning. Advances in neural infor-
mation processing systems, 30.
Lu, A.; Feng, T.; Yuan, H.; Song, X.; and Sun, Y. 2024. Re-
visiting Neural Networks for Continual Learning: An Archi-
tectural Perspective. arXiv preprint arXiv:2404.14829.
Mallya, A.; and Lazebnik, S. 2018. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 7765–7773.
Masana, M.; Liu, X.; Twardowski, B.; Menta, M.; Bag-
danov, A. D.; and Van De Weijer, J. 2022. Class-incremental
learning: survey and performance evaluation on image clas-
sification. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(5): 5513–5533.
McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, 109–165. Elsevier.
Prabhu, A.; Al Kader Hammoud, H. A.; Dokania, P. K.; Torr,
P. H.; Lim, S.-N.; Ghanem, B.; and Bibi, A. 2023. Compu-
tationally budgeted continual learning: What does matter?
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 3698–3707.
Prabhu, A.; Torr, P. H.; and Dokania, P. K. 2020. Gdumb:
A simple approach that questions our progress in continual
learning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part II 16, 524–540. Springer.
Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. icarl: Incremental classifier and representation learn-
ing. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2001–2010.
Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual
learning with deep generative replay. Advances in neural
information processing systems, 30.



Tian, S.; Li, L.; Li, W.; Ran, H.; Ning, X.; and Tiwari, P.
2024. A survey on few-shot class-incremental learning.
Neural Networks, 169: 307–324.
Van de Ven, G. M.; Tuytelaars, T.; and Tolias, A. S. 2022.
Three types of incremental learning. Nature Machine Intel-
ligence, 4(12): 1185–1197.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset.
Welling, M. 2009. Herding dynamical weights to learn. In
Proceedings of the 26th annual international conference on
machine learning, 1121–1128.
Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; and Fu,
Y. 2019. Large scale incremental learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 374–382.



Supplementary Material

A Implementation details
The source code for this study can be found in the zip file in-
cluded in the supplementary material. This zip file contains
a README.md file that provides instructions on how to run
the experiments. The code would be uploaded to our GitHub
repository and will be made public upon acceptance.

A.1 TEAL implementation
Clustering algorithm We used scikit-learn KMeans im-
plementation.

Iterations pace TEAL, as described in Alg. 1, requires an
iterations pace s1 ≤ · · · ≤ sk = n which indicates the pace
of selecting exemplars from new class data. In both settings
we use a logarithmic pace. We set a base b = 1.4, and define
s1 = ⌊b4⌋, s2 = ⌊b5⌋, . . . , sk = ⌊blogbn⌋.

A.2 Stand-alone setting
For all selection strategies, we use a smaller ResNet-18, as
mentioned above, trained for 200 epochs. Optimization is
performed with an SGD optimizer using Nesterov momen-
tum of 0.9, a weight decay of 0.0002, and a learning rate that
starts at 0.1 and decays by a factor of 0.3 every 66 epochs.
Training is conducted with a batch size of 128 examples, and
data augmentation is applied through random cropping and
horizontal flips.

We run this setting on Split CIFAR-100 with three differ-
ent random orders of classes:

1. The order we display on Fig. 7 is: [44, 19, 93, 90, 71,
69, 37, 95, 53, 91, 81, 42, 80, 85, 74, 56, 76, 63, 82,
40, 26, 92, 57, 10, 16, 66, 89, 41, 97, 8, 31, 24, 35, 30,
65, 7, 98, 23, 20, 29, 78, 61, 94, 15, 4, 52, 59, 5, 54,
46, 3, 28, 2, 70, 6, 60, 49, 68, 55, 72, 79, 77, 45, 1, 32,
34, 11, 0, 22, 12, 87, 50, 25, 47, 36, 96, 9, 83, 62, 84,
18, 17, 75, 67, 13, 48, 39, 21, 64, 88, 38, 27, 14, 73,
33, 58, 86, 43, 99, 51]

2. The order in Fig. 8a is: [45, 15, 90, 32, 35, 63, 17, 72,
79, 96, 48, 36, 16, 11, 23, 80, 22, 58, 3, 62, 50, 33,
66, 99, 43, 76, 7, 57, 81, 82, 6, 10, 24, 52, 95, 73, 91,
21, 38, 31, 85, 59, 13, 69, 75, 70, 64, 8, 77, 34, 46,
39, 92, 0, 44, 98, 49, 9, 4, 61, 12, 83, 28, 78, 40, 88,
54, 5, 26, 41, 89, 20, 84, 2, 1, 55, 19, 74, 25, 37, 42,
14, 30, 18, 67, 71, 68, 27, 60, 51, 29, 56, 93, 47, 97,
94, 86, 87, 65, 53]

3. The order in Fig. 8b is: [48, 97, 1, 81, 90, 49, 10, 8, 7,
20, 70, 73, 75, 14, 91, 38, 47, 21, 74, 52, 80, 98, 59,
12, 71, 85, 6, 34, 55, 82, 95, 63, 78, 15, 94, 60, 99, 76,
25, 40, 88, 0, 62, 96, 87, 51, 16, 18, 9, 19, 29, 45, 86,
53, 56, 31, 28, 61, 30, 33, 4, 67, 64, 58, 50, 54, 3, 13,
37, 27, 66, 77, 84, 69, 2, 41, 22, 92, 42, 44, 11, 36, 46,
79, 65, 72, 23, 17, 39, 5, 89, 35, 24, 83, 43, 57, 93, 32,
68, 26]

(a) Order 2 (b) Order 3

Figure 8: Split CIFAR-100: TEAL Enhanced accuracy of
TEAL compared to 4 baselines: random-sampling, Herding,
Centered, and Uncertainty, in two different classes order.

A.3 Integrated setting

Here we train a ResNet-18 model for 100 epochs using the
same optimizer as in A.2, with the same batch size and data
augmentations, with some exceptions. ER-ACE starts with a
learning rate of 0.01 and train on batch size of 10 examples
as in the original paper, and all experiments on Split CUB-
200 are conducted for 30 epochs with a batch size of 16 due
to the dataset size and the resolution of its images. In exper-
iments using the ArchCraft model, we used the ResAC-A
model as implemented in the official paper’s code.

A.4 Baselines setting

The setting for the experiments of the baseline methods is
the same as in A.3 with some exceptions. For BiC, the num-
ber of training epochs is 250, and the learning rate scheduler
decays the learning rate by a factor of 0.1 on epochs 100,
150 and 200. For GEM, the batch size is 32 and the learning
rate starts from 0.03.For GDumb, the batch size is 32. For
iCaRL the learning rate starts from 2, the weight decay is
0.00001 and the learning rate scheduler decays the learning
rate by a factor of 0.2 on epochs 49 and 63.

A.5 Compute resources

All experiments involved training deep learning models, ne-
cessitating the use of GPUs. For the Split CIFAR-100 ex-
periments, 10 GB of GPU memory was used. The Split
tinyImageNet experiments required 22 GB of GPU mem-
ory, while the Split CUB-200 experiments utilized 45 GB
of GPU memory. Any other experiments conducted for the
full research and not reported in the paper required the same
compute resources.



(a) Split CIFAR-100 (b) Split tinyImageNet

Figure 9: Performance improvement of TEAL when inte-
grated with ER and with ER-ACE over various buffer sizes.

B Additional Results

(a) |M| = 500 (b) |M| = 2000

Figure 12: Baseline CIL methods comparison on Split
CIFAR-100 with different fixed buffer sizes. For each
method, each point represents the average accuracy achieved
on the corresponding task t, At.



(a) Split CIFAR-100, |M| = 500 (b) Split CIFAR-100, |M| = 2000 (c) Split tinyImageNet, |M| = 1000

(d) Split tinyImageNet, |M| = 2000 (e) Split CUB-200, |M| = 400

Figure 10: The performance of ER-IL methods with and without TEAL. First row displays the average accuracy after training
incrementally on a different number of classes. Each color corresponds to a different ER-IL method, where the continuous
line represents the vanilla method, while the dashed line represents the method with TEAL as its selection strategy. The error
bars correspond to standard error based on 4-10 repetitions. Second row depicts the difference in accuracy between TEAL and
another method (XDER, ER-ACE, and ER) across all tasks.



(a) |M| = 300 (b) |M| = 500 (c) |M| = 2000

Figure 11: Split CIFAR-100: The performance of ER-IL methods with and without TEAL with splitting CIFAR-100 into 20
tasks instead of 10. Each color corresponds to a different ER-IL method, where the continuous line represents the vanilla
method, while the dashed line represents the method with TEAL as its selection strategy. The error bars correspond to standard
error based on 6 repetitions.


	Introduction
	Problem formulation
	Our method: TEAL
	Empirical evaluation
	Methodology
	Main results
	Ablation study

	Summary and discussion
	Implementation details
	TEAL implementation
	Stand-alone setting
	Integrated setting
	Baselines setting
	Compute resources

	Additional Results

