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Abstract
Active Learning (AL) aims to reduce annotation
costs by strategically selecting the most infor-
mative samples for labeling. However, most ac-
tive learning methods struggle in the low-budget
regime where only a few labeled examples are
available. This issue becomes even more pro-
nounced when annotators provide noisy labels.
A common AL approach for the low- and mid-
budget regimes focuses on maximizing the cover-
age of the labeled set across the entire dataset.
We propose a novel framework called Noise-
Aware Active Sampling (NAS) that extends exist-
ing greedy, coverage-based active learning strate-
gies to handle noisy annotations. NAS identifies
regions that remain uncovered due to the selec-
tion of noisy representatives and enables resam-
pling from these areas. We introduce a simple
yet effective noise filtering approach suitable for
the low-budget regime, which leverages the in-
ner mechanism of NAS and can be applied for
noise filtering before model training. On multi-
ple computer vision benchmarks, including CI-
FAR100 and ImageNet subsets, NAS significantly
improves performance for standard active learn-
ing methods across different noise types and rates.

1. Introduction
Deep learning typically relies on large amounts of annotated
data. But while unlabeled data is often abundant, the anno-
tation process can be both time-consuming and expensive.
This challenge is particularly evident in fields like medical
imaging, where annotations demand expert knowledge and
are therefore costly. Active Learning (AL) offers a powerful
approach to reducing annotation costs by prioritizing the
most informative samples for model training.

In pool-based active learning, the challenge is formulated
as a "best-subset" problem: Given a large pool U of N
unlabeled samples and an annotation budget B ≪ N , the

Figure 1. Overall visualization of our framework for Noise Aware
Query Selection (NAS). NAS (illustrated with a dashed orange line)
takes as input a query selection strategy S and a noise-filtering al-
gorithm A. The framework alternates between selecting b samples
using S, sending these samples to the annotator, and filtering the
noisy samples with A before selecting the next set of samples.

objective is to identify a subset Q∗ ⊂ U, which is optimal
in the following sense: After annotators label Q∗, a model
M trained on Q∗ obtains the lowest generalization error
compared to any other subset Q of the same size B used
for trainingM. This problem is NP-hard, even if all labels
are available. Nevertheless, various heuristic strategies have
been proposed that consistently outperform the baseline
approach of random sampling.

Another important topic in this work is Learning with Noisy
Labels (LNL), which arises naturally due to errors in human
and AI-generated annotations (Song et al., 2024). Label
noise becomes more likely as the annotator pool expands,
such as in crowd-sourcing.

In this work, we focus on sample selection in AL and ask
whether it is possible to design query selection strategies
that account for noise when selecting samples for annota-
tion. We propose a novel framework that extends existing
query selection methods, particularly those based on sample
distances, enabling them to intelligently account for label
noise during sample selection.

Summary of Contributions

1. A query selection framework compatible with multiple
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state-of-the-art AL strategies, enhancing their perfor-
mance in the presence of label noise (see Fig. 1).

2. Introduction of a simple yet effective noise filtering
tool that performs well even with limited samples and
integrates with the query selection framework.

3. Addressing the challenge of instance-dependent noise.

2. Background and Related Work
2.1. Active Learning

In most approaches within the pool-based active learning
framework, the total annotation budget is allocated itera-
tively. In each iteration, a batch of B samples is selected
for annotation. Beginning with an unlabeled set U and a
labeled set L (which may or may not be initially empty), the
process follows these steps:

1. Query Selection - Select a query Q ⊆ U of size B
using a strategy S.

2. Annotation - Send Q to the annotator to obtain labels,
and update L = L ∪Q and U = U \Q.

3. Model Training - Train classifierM using the labeled
set L (or with {L,U} for semi-supervised learning).

Query selection strategies fall into two main categories:
uncertainty-based and typicality-based, with diversity as
another key consideration. Uncertainty-based strategies
select samples where the model is least confident, based on
its predictions for unlabeled data. This category includes
methods like Margin (Scheffer et al., 2001), Entropy (Wang
& Shang, 2014), and BADGE (Ash et al., 2019).

Typicality-based strategies aim to identify a subset of "typi-
cal" samples in U, under the rationale that a model trained on
such a subset would generalize well. This family includes
methods like k-medoids (Ghadiri et al., 2015), Typiclust
(Hacohen et al., 2022), ProbCover (Yehuda et al., 2022),
and MaxHerding (Bae et al., 2025). Typicality-based strate-
gies rely on effective data representations. Recent methods
like SimCLR (Chen et al., 2020a), MOCOv2 (Chen et al.,
2020b), and DINO (Caron et al., 2021) have developed pow-
erful self-supervised representations, enabling typicality-
based strategies to perform well in complex domains, like
natural images.

Previous works, such as (Hacohen et al., 2022; Hacohen &
Weinshall, 2023), have shown that the annotation budget is a
critical parameter in determining the most suitable strategy.
Uncertainty-based strategies are more effective when the
annotation budget is relatively high (hundreds of samples
per class), whereas the low-budget regime (a few examples
per class) is better suited for typicality-based strategies. A
query selection strategy applied in an unsuitable budget
regime may perform worse than random selection.

2.2. Learning with Noisy Labels

In settings with mislabeled data, approaches can be catego-
rized into four families: Robust Architecture, Robust Regu-
larization, Robust Loss Design, and Sample Selection (see
review by Song et al., 2022). Some have drawbacks, such as
assuming a specific noise distribution. For instance, meth-
ods in the Robust Architecture family (Sukhbaatar et al.,
2014; Chen & Gupta, 2015; Goldberger & Ben-Reuven,
2017; Gupta et al., 2019) use a denoising layer to learn
a noise transition matrix, later removed during inference.
However, this assumes a noisy channel model based on
class confusion and overlooks instance-dependent noise.
Likewise, a few methods based on robust loss also assume
such independence between label noise and input features
(Bekker & Goldberger, 2016; Yao et al., 2020).

Sample Selection Methods LNL methods in the Sam-
ple Selection family aim to distinguish between mislabeled
(noisy) and correctly labeled (clean) samples, allowing mod-
els to train primarily on clean data. Some methods exploit
patterns in deep neural network (DNN) training dynamics.
For example, Arpit et al. (2017); Han et al. (2018) show
that DNNs learn clean samples earlier than noisy ones, re-
sulting in lower loss on clean samples during early training,
before overfitting occurs. One method that leverages this is
Area-Under-the-Margin (AUM) (Pleiss et al., 2020), which
measures the margin between the assigned label’s logit and
the highest other logit. The AUM score is computed by
summing these margins over early training epochs. With ap-
propriate early stopping, noisy samples tend to exhibit lower
AUM scores. To establish a threshold for noise filtering, the
method assigns a "fake" label C+1 (where C is the number
of classes) to a random subset of samples, treating them as
an additional noisy class. The threshold is then determined
based on the AUM scores of this fake class, and samples
with AUM scores above the threshold are classified as clean.

Semi-Supervised Methods The most effective LNL ap-
proaches are Semi-Supervised Learning (SSL) methods,
which fall within the Sample Selection family. These meth-
ods identify clean and noisy samples and train an SSL model
on all data, treating noisy samples as unlabeled. SSL meth-
ods have achieved state-of-the-art performance on standard
LNL benchmarks. Examples include DivideMix (Li et al.,
2020), UNICON (Karim et al., 2022), ProMix (Xiao et al.,
2022), and PGDF (Chen et al., 2023). However, in our ex-
periments, we found that these methods performed poorly
in the noisy low-budget setting, where most samples are
unlabeled, and the labeled set contains noise.

2.3. Active Learning in the Presence of Label Noise

As Nuggehalli et al. (2023) have already noted, the setting
of label noise in active learning has rarely been studied.
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Nevertheless, several papers address both topics of Active
Learning and Label Noise. Gupta et al. (2019) examines
the issue of noisy annotators in the active learning setting.
Unlike us, they tackle this challenge by adding a denoising
layer to the neural network rather than through an adjusted
query selection strategy. Other works, such as (Chakraborty,
2020), assume access to multiple noisy annotators and a
clean validation set, which simplifies the task of identifying
noisy labels. Similarly, Zhang & Chaudhuri (2015); Chen
et al. (2022) assume the availability of a perfect oracle that
always provides correct labels in addition to the noisy anno-
tators. Our work is orthogonal to these approaches and
can naturally integrate with improved architectures as well
as the presence of multiple annotators.

The study by Nuggehalli et al. (2023) proposes a query se-
lection method called DIRECT, which, like our approach,
is adapted to handle noisy scenarios. However, DIRECT is
specifically designed for cases involving noisy labels com-
bined with extremely imbalanced data. Moreover, while DI-
RECT is better suited for high-budget scenarios, our method
is tailored for low-budget settings.

Another category of work, such as (Lin et al., 2016; Youne-
sian et al., 2021), uses the term Active Learning in the
context of data cleaning, where all data labels are available,
and the goal is to identify suspicious samples for re-labeling
by an oracle. In a sense, this setting is the opposite of ours.
While this line of research can be viewed as a subset of
the Learning with Noisy Labels (LNL) field incorporating
active learning, our work is more appropriately described as
a branch of Active Learning (AL) that addresses label noise.

Low-Budget AL in the Presence of Label Noise Some
typicality-based active learning methods aim to maximize
the coverage of the labeled set, where a sample is consid-
ered to cover its neighbors in feature space. ProbCover
(Yehuda et al., 2022) formalized this objective as a greedy
approximation of the Maximum Coverage problem, which
is NP-hard. Typicality-based methods tend to excel in the
low-budget regime by avoiding excessive sampling from the
same regions of the data. However, label noise can be detri-
mental in this context. A noisy sample may be mistakenly
treated as representative of its neighborhood, undermining
the effectiveness of coverage.

3. Proposed Method
As summarized above, methods that are suitable for the
low-budget regime of active learning may be detrimentally
affected by label noise. Likewise, as DNN training requires
substantial data in order to generalize, DNN-based noise-
filtering methods are likely to fail in low-budget settings.
Our method addresses these two challenges.

3.1. Noise Filtering Algorithms for Low Budget

Naive Method for Noise Filtering Assuming we have
a good representation of our data, where the distances be-
tween embeddings reflect the semantic distances between
samples, a mislabeled sample would behave as an outlier and
thus be detectable. Accordingly, we propose the following
algorithm for noise filtering: Train a k-fold cross-validation
linear model on the labeled data, and classify as noisy any
sample for which fewer than half of the models agree with
its given label. We refer to this noise-filtering method as
CrossValidation.

DNN-based Noise Filtering As noted earlier, DNN-based
noise-filtering algorithms often fail in the low-budget regime
(as well as the SOTA Semi-Supervised methods, like ProMix
(Xiao et al., 2022)). To adapt such algorithms to this set-
ting, we propose the following modification: Instead of
training a DNN directly on the images, we extract repre-
sentations for the images using a self-supervised pretrained
model, and train a linear classifier on these embeddings. As
a case study, we examine this adaptation in the context of
the AUM method (Pleiss et al., 2020), that was mentioned
before. We introduce an adapted version of AUM for the
low-budget setting, which we refer to as LowBudgetAUM.
Most importantly, we compute the AUM score using a lin-
ear classifier on self-supervised representations instead of
training a DNN on the images directly. Additionally, we
determine an earlier stopping point and lower threshold, for
the hyperparameters in the original paper are suboptimal in
the low-budget regime (see Appendix C).

The empirical results presented in Fig. 2 demonstrate that
while the original AUM method performs poorly in low-
budget scenarios, LowBudgetAUM effectively predicts the
noise rate while maintaining high recall and precision (when
noise filtering is treated as a binary classification task).

3.2. NAS: Noise-Aware Strategy for Query Selection

Most state-of-the-art (SOTA) typicality-based query selec-
tion methods are greedy algorithms: in each iteration, sam-
ples are scored by their contribution to some objective func-
tion, and the sample with the highest score is added to the
labeled set. Our goal is to design a query selection strat-
egy that greedily maximizes the same objective function
while accounting for label noise. We propose the following
framework: given a greedy, typicality-based query selection
strategy S, a noise-filtering algorithm for low-budget set-
tings A (e.g., LowBudgetAUM as discussed above), and an
annotation budget B, the following cycle is executed:

1. Apply A to the current labeled set L to obtain a parti-
tion into a clean subset Lclean and a noisy subset Lnoisy.

2. Select a set Q of size b≪ B from the current unlabeled
set U using the strategy S, considering only Lclean as
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Figure 2. Performance of the AUM method in identifying misla-
beled data selected by ProbCover in the low-budget regime on
CIFAR100 with symmetric noise. Each column represents a dif-
ferent expected number of clean samples per class (E[SPC]), with
the budget given by E[SPC]×C

1−%noise . Rows show noise precision, recall,
and predicted noise ratio. The orange line represents the original
AUM, while the blue line represents LowBudgetAUM. Unlike AUM,
which predicts most samples as noisy, LowBudgetAUM estimates
noise rates more accurately—even with as few as two clean sam-
ples per class—while maintaining high precision and recall. Each
point shows the mean and standard error across 10 repetitions.

the labeled set and ignoring Lnoisy.
3. Add Q to L and remove it from U.

The cycle continues until the annotation budget B is ex-
hausted. We refer to this method as Noise-aware Active
Sampling (NAS). If the strategy S seeks to cover areas
in the data, this meta-strategy needs to identify areas that
remain uncovered after S sampled from them, in the case
the representative S sampled turned out to be noisy. Psuedo-
code for this method is provided below in Alg. 1.

The Choice of b Determining the hyperparameter b (the
size of Q at each iteration) involves a tradeoff: As b → 1,
our framework becomes more precise in correcting S, but
the computational complexity increases since more calls to
A are needed. Conversely, as b→ B, the runtime decreases,
but the framework behaves more similarly to S. In all our
experiments, we set b = C, where C is the number of
classes in the dataset. In the special case of using an ideal
noise-filtering algorithm (one that makes no mistakes), we
set1 b = 1. The complexity of the algorithm is dominated

1In this discussion, we have not accounted for the annotator,
to whom we also send more separate queries as b becomes smaller.
For now, we assume that this is not a limiting factor in our setting.

by the run-time of S and A, and is given by TS + B
b · TA.

ProbCover as a Working Example ProbCover (Yehuda
et al., 2022) is a SOTA strategy for active learning in the
low-budget regime. Like other typicality-based strategies,
it aims to maximize the coverage of L. A sample x is con-
sidered to cover all samples in B(d,δ)(x), where B(d,δ)(x)
is a ball around x with radius δ > 0, defined with respect
to some metric d(·, ·). Both δ and metric d are hyperpa-
rameters of ProbCover. Initially, ProbCover constructs
a directed graph G, where each vertex represents a sam-
ple, and there is an edge between two vertices (x, x′) if
and only if x′ ∈ B(d,δ)(x). At each iteration, ProbCover
adds to Q the sample x ∈ U with the highest out-degree
in G, and then removes all incoming edges to the sam-
ples in B(d,δ)(x). This step is crucial for preventing ex-
cessive sampling from the same area, thereby maintaining
high coverage of L. The coverage of L, in this context, is
the union of all the balls B(d,δ)(x) for samples in L, i.e.,
coverage(L) ≜ B(d,δ)(L) ≜

⋃
x∈L B(d,δ)(x).

Given ProbCover as the selection strategy S , our framework
functions as follows: After every b query selections and ob-
taining a partition (Lclean,Lnoisy), we remove all edges in
B(d,δ)(Lclean) as well as the outgoing edges of the noisy sam-
ples. The latter step is essential to prevent re-selecting the
noisy samples themselves. This approach ensures that the
density of an area — and consequently the query selection
score — remains high until we confirm that a clean sample
has been selected from it. In Appendix A, we present the
pseudo-code for the case where NAS employs ProbCover as
S, which we refer to as Noise-Aware ProbCover (NPC).

Algorithm 1 NAS: Noise-aware Active Sampling

Input: unlabeled pool U, initial labeled pool Linit, query
budget B, query selection strategy S , noise filtering algo-
rithm A, a trained modelM (optional)
Output: a labeled set L
L← Linit

repeat
Get a partition (Lclean,Lnoisy) = A(L)
if use_noise_dropout then
q̂ =

|Lnoisy|
|L| # the predicted noise ratio

η = 100×max(min(q̂, 1− q̂), 0.1)
Randomly move η% from Lnoisy to Lclean

end if
b← number_of_classes
Q← S(Lclean,U,M, b) # select b samples with S
L← L ∪Q
U← U\Q

until |L| = B
return: L
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Figure 3. The maximal degree in
graphs Gδ of CIFAR100, after re-
moving 3200 samples picked by
ProbCover with δ = 0.22, as a
function of δ. On this range, this
function is generally concave, re-
gardlessly to the number of sam-
ples ProbCover picked.

Updating ProbCover’s radius δ δ is a crucial hyperparam-
eter of ProbCover, and Bae et al. (2025) have demonstrated
its high sensitivity to this parameter. The authors of Prob-
Cover proposed an automatic algorithm for determining
δ without requiring a validation set (as the existence of a
validation set is often unrealistic in low-budget scenarios).
However, this approach does not guarantee optimal results.

In our experiments, we observed an additional issue related
to the radius δ: during the selection process, the maximal
degree in the graph diminishes, until the graph eventually
becomes empty. When this occurs, we update δ using the
following policy: (i) Construct a series of graphs Gδ, each
corresponding to a different δ value. (ii) Remove from
these graphs the samples already selected by ProbCover
and their associated edges in B(d,δ) balls. (iii) Choose the δ
corresponding to the graph with the highest maximal degree.

The rationale behind this policy is as follows: The maxi-
mal degree, as a function of δ, is concave within the range
[0, δinit], where δinit represents the value of δ previously used
by ProbCover. As δ → 0, the graph’s maximal degree ap-
proaches zero, even before removing samples. Similarly, as
δ → δinit, the graph becomes empty by definition. Fig. 3
illustrates this behavior. The value of δ that maximizes
the graph’s maximal degree, while considering the already
sampled points, yields the most informative distribution for
subsequent query selections.

Adapting NPC to Instance-Dependent Noise

The above adaptation is well-suited for scenarios where the
label noise is conditionally independent of the sample’s fea-
tures, such as the symmetric and asymmetric label noise
cases described in (Tanaka et al., 2018). However, in many
real-world scenarios, this independence assumption does
not hold. When the annotator is a human or even an AI
model, some samples may be inherently "harder" to label
than others, leading to a higher probability of these sam-
ples being mislabeled. Furthermore, such "harder" samples
tend to cluster in the feature space of a Self-Supervised
Learning (SSL) model, creating "noise clusters"—regions
where noisy samples are concentrated. An example of this
phenomenon is provided in Appendix B.

To address this scenario, we adapt NPC as follows: Prob-
Cover can be viewed as initializing a weighted graph where

all edges have an initial weight of 1. When a sample is
selected, the algorithm reduces the weights of edges in the
B(d,δ) ball around that sample to 0. The out-degree of a
sample is then computed as the sum of the weights of its
outgoing edges. In our adaptation for instance-dependent
noise, after obtaining predictions from the noise-filtering
algorithm, we reweigh the edges. Specifically, for sam-
ples in B(d,δ)(Lnoisy), we set the weights of their incoming
edges to 1 − q̂, where q̂ =

|Lnoisy|
|L| represents the estimated

noise rate. These modified weights reflect the motivation to
sample from noisy regions as a decreasing function of the
estimated noise rate. This reweighing step thus balances the
trade-off between achieving sufficient coverage of the data
and avoiding excessive sampling from noisy regions. We
refer to this version of the algorithm as Weighted NPC.

Using Noise Dropout Fig. 2 demonstrates that LowBud-
getAUM performs well in the low-budget regime. Never-
theless, its performance is influenced by the distribution
of samples in the labeled set. In some cases of high noise
rates combined with specific distributions of the labeled
data, we observed that LowBudgetAUM could predict noise
rates significantly higher than the actual noise rates.

To address these pathological cases, we utilized the follow-
ing solution: we define η = max(min(q̂, 1− q̂), 0.1), where
q̂ is the predicted noise rate. We then randomly select η%
of the samples that LowBudgetAUM predicts to be noisy
and treat them as if they were clean samples in the next
iteration2. This addition to NAS was shown to resolve these
pathological cases effectively. In Appendix F, we demon-
strate that noise dropout does not harm performance, even
when applied in scenarios with low predicted noise rates.

4. Empirical Evaluation
We evaluated two training frameworks:

1. A fully supervised framework, in which we trained a
ResNet-18 on the labeled samples.

2. A linear model trained using the labeled samples, on
features extracted from a self-supervised model, pre-
trained on the unlabeled dataset.

Both frameworks were evaluated with the symmetric noise
scenario. For the other scenarios — asymmetric noise,
real-world noise, and most of the ablation study — only
framework 2 was evaluated, for it easier to train and usually
outperforms framework 1 in the low-budget regime. The
implementation details are given in the Appendix C. In both
frameworks and across all active learning (AL) strategies,

2The noise dropout is only suggested as part of NAS, i.e.,
during the utilization of LowBudgetAUM for query selection, and
not when using LowBudgetAUM to filter noisy samples before
training.
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noisy samples were filtered prior to the supervised train-
ing step using either LowBudgetAUM or CrossValidation,
depending on the noise-filter that NAS used. The model
was then trained exclusively on the clean samples, a stan-
dard approach for learning with label noise (see 2.2). This
preprocessing step improved the performance of all query
selection methods. Nevertheless, as demonstrated in the
ablation study, this filtering process is not the sole factor
contributing to the advantage of using NAS.

4.1. Methodology

Synthetic Noise We used two benchmark datasets: (i) CI-
FAR100 (Krizhevsky et al., 2009), and (ii) ImageNet-50
(Van Gansbeke et al., 2020). ImageNet-50 is a subset of Im-
ageNet (Deng et al., 2009), containing 50 classes, 64K train
images, and 2,500 test images. Different levels of symmet-
ric and asymmetric label noise were explored. Symmetric
(or uniform) noise was introduced by randomly selecting a
subset of samples from the dataset and uniformly replacing
their labels with other labels at random. For the asymmetric
(or label-dependent) noise scenario, prior work (Patrini et al.,
2017; Yao et al., 2020; Song et al., 2022) modeled the noise
as a transition matrix T , where Tij = P (ỹ = j | y = i)
represents the probability of a sample having a noisy label
ỹ given that its true label is y. For a specified noise ratio,
T determines both the proportion of noisy samples in each
class and the assignment of incorrect labels. To simulate a
challenging transition matrix, we trained a ResNet-18 on
the full dataset for 10 epochs, generated a confusion matrix
based on the network’s predictions on the test set, and nor-
malized each row of the confusion matrix to produce the
transition matrix T .

Real-World Noisy Datasets We tested our method on
the real-world noisy dataset of CIFAR100N (Wei et al.,
2021), which contains the images of CIFAR100 with human-
annotated labels and includes 40.2% noise, and on the
dataset Clothing1M (Xiao et al., 2015) which contains cloth-
ing images with noisy labels collected from online shopping
websites. On these dataset, we compared ProbCover to
NPC — our method NAS when using ProbCover as S —
and to Weighted NPC.

Self-Supervised Representations For pretrained features,
we used SimCLR (Chen et al., 2020a) for CIFAR100 and
CIFAR100N and DINOv2 (Caron et al., 2021) for ImageNet-
50. These embeddings used us as feature spaces for the
coverage-based AL strategy S and the low-budget noise
filter algorithm A, as well as feature spaces in which we
trained the linear classifier in framework 2. In Appendix H,
we examine additional feature spaces, demonstrating the
robustness of our framework to different representations.

(a) CIFAR100, 20% Noise (b) ImageNet-50, 20% Noise

(c) CIFAR100, 50% Noise (d) ImageNet-50, 50% Noise

(e) CIFAR100, 80% Noise (f) ImageNet-50, 80% Noise

Figure 4. Framework 1, results on CIFAR100 and ImageNet-50
with varying symmetric noise levels. The y-axis shows the mean
accuracy difference from random query selection. A ResNet-18
model is trained in a fully supervised manner.

4.2. Results

Figures 4 and 5 show the results for the symmetric noise
scenario under training frameworks 1 and 2, respectively.
The y-axis in all the plots presents the difference between
the mean accuracy achieved by each query selection method
and the mean accuracy obtained by training a similar model
using random query selection, along with the Standard Er-
ror (STE) for 5 repetitions (all experiments in this paper
repeated 5 times). The x-axis counts the annotation bud-
get, in units of expected clean samples per class (E[SPC]),
where the budget in each point equals E[SPC]×C

1−%noise . Fig. 6
shows the results for asymmetric noise, and Fig. 7 presents
the results for CIFAR100N. Results for Clothing1M can
be found in Appendix E. To demonstrate robustness to the
noise-filtering algorithm A, in figures 4 and 5 under the
symmetric noise scenario, we vary A between subplots. In
Framework 1, CrossValidation is employed when training
with CIFAR100, while LowBudgetAUM is employed when
training with ImageNet-50. In Framework 2, the selection
of the noise-filtering method is reversed. In Appendix G,
we introduce additional noise-filtering algorithms tailored
to the low-budget regime and show that NPC outperforms
ProbCover regardless of the noise-filtering algorithm used.
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(a) CIFAR100, 20% Noise (b) ImageNet-50, 20% Noise

(c) CIFAR100, 50% Noise (d) ImageNet-50, 50% Noise

(e) CIFAR100, 80% Noise (f) ImageNet-50, 80% Noise

Figure 5. Framework 2, see caption of Fig. 4. Here we evaluate a
linear model trained on self-supervised pretrained features.

Comparison to Other AL Methods As mentioned in
the Introduction, Nuggehalli et al. (2023) propose a query
selection method called DIRECT, designed to handle noisy
scenarios. However, its focus on imbalanced data and high-
budget settings makes it less directly comparable to our
NAS. Nonetheless, we provide a comparison with DIRECT
in Appendix I.

Different Greedy AL Strategies NAS enhances any
greedy, coverage-oriented AL strategy S , with the key com-
parison being between S and its NAS-adjusted version. Our
evaluations primarily used ProbCover as S for its simplicity
and effectiveness. Here, we assess NAS with other strate-
gies, specifically Coreset (Sener & Savarese, 2017) and
MaxHerding (Bae et al., 2025), which are also greedy and
structure-based. Tested on CIFAR100 with 50% symmetric
noise, our framework consistently improved performance,
demonstrating its generality (Fig. 8). Additional MaxHerd-
ing results appear in Appendix D. Figure 8(b) examines
initially using MaxHerding and switching to MaxHerding +
NAS after an initial budget has been reached. This approach
makes sense because LowBudgetAUM may not perform op-
timally when the budget is extremely low. Thus, one might
consider incorporating NAS only after a few iterations of
query selection.

(a) CIFAR100, 40% Noise (b) ImageNet-50, 20% Noise

Figure 6. Results given different levels of asymmetric noise.

(a) CIFAR100N (AUM) (b) CIFAR100N (CV)

Figure 7. Results on CIFAR100N, where noise filtering is done
with LowBudgetAUM in (a) and CrossValidation in (b). Note that
generally the Weighted NPC outperforms the naive ProbCover,
and also the regular NPC, with a small margin.

(a) MaxHerding (b) MaxHerding

(c) MaxHerding (d) Coreset

Figure 8. Results of enhancing two additional AL strategies with
NAS, on CIFAR100 with 50% symmetric noise. (a)-(c) Compare
MaxHering with Maxherding + NAS when (a) use training frame-
work 1, (b) uses framework 2 and (c) use framework 2 with ideal
noise filter. (d) compares Coreset with Coreset + NAS using frame-
work 2. In (a)-(c) a noise filtering was applied before training, and
in (d) the training was conducted using all labeled samples without
filtering out noisy ones. The dark orange line in (b) is MaxHerding
until budget equals 4 E[SPC], followed by MaxHerding + NAS.
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4.3. Ablation Study

Contribution of the Noise Filter To isolate the depen-
dence of the improved performance of NAS on the quality
of the noise filtering method, we replaced the filtering mod-
ule with an ideal Noise Filter capable of perfectly detecting
noisy samples. This ideal filter was used both as an input
to NAS and to remove noisy labels prior to model training
across all strategies. The results in Fig. 9 demonstrate that
NAS continues to enhance the performance of ProbCover,
confirming that the observed improvement is not an artifact
of the CrossValidation or LowBudgetAUM algorithms.

(a) (b)

(c) (d)

Figure 9. Results when using an ideal noise filter. (a-c) CIFAR100
with 20%, 50% and 80% symmetric noise; (d) ImageNet-50 with
50% symmetric noise, when using framework 2 for training.

Fixing the Number of Samples As previously mentioned,
training involved cleaning the noisy samples beforehand.
However, this approach can lead to small variations in the
exact number of training samples between methods, even
when the labeled sets have equal noise rates (e.g., in the sym-
metric noise setting) and the same noise-filtering algorithm
is used. To isolate the dependence of the improved perfor-
mance of NAS on this component, we fixed an equal number
of training samples across all AL strategies. This was ac-
complished in one of two ways: (i) All labeled samples were
used for training. (ii) LowBudgetAUM was applied before
training and the top p% most confident samples based on
the AUM score were selected. Here, p was determined by
the LowBudgetAUM prediction of the noise level after ap-
plying the NAS strategy. The absolute test accuracies were
lower in this settings, especially when training using all
the samples. Not surprisingly, since NAS allowed a more
accurate selection of fraction p, the gap between ProbCover
and NPC narrowed. Still, NPC improved performance over
ProbCover with fixed p in most cases, see Fig. 10.

The contribution of δ Updating As shown in Fig. 11,

(a) (b)

Figure 10. Framework 2, results when fixing an equal number of
samples, on CIFAR100 with 50% symmetric noise. (a) Training
on all samples. (b) Training on the p% most confident samples
w.r.t the AUM score; p was determined using the noise estimation
of the LowBudgetAUM when using NPC.

the δ update policy described above significantly improved
performance in the fully supervised setting (Framework 1),
while its impact in the linear model setting (Framework 2)
was mostly negligible, with a slight negative effect observed
for the largest budget. This component of NPC is not di-
rectly related to the noisy label scenario but rather addresses
a limitation in the ProbCover algorithm, which serves as
our test-bed AL method for evaluating NAS. Selecting an
appropriate δ value and dynamically updating it during the
execution of ProbCover remains an open question for future
work.

(a) (b)

Figure 11. Accuracy improvement results for CIFAR100 with 50%
symmetric noise are presented, where (a) corresponds to the fully
supervised model (Framework 1) and (b) represents a linear model
trained on pretrained self-supervised features (Framework 2).

5. Summary and Discussion
We investigated the problem of active learning in the pres-
ence of label noise and proposed a framework that extends
query selection strategies, particularly greedy coverage-
oriented approaches, by incorporating noise-awareness
through a low-budget noise-filtering algorithm. Our frame-
work identifies regions in the data that remain uncovered due
to noisy representatives being selected by the underlying
strategy, and resamples from these regions.

Two key assumptions suggest that noisy samples should not
be sent back to the annotator: (i) the pool of unlabeled data
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contains enough similar samples to serve as alternatives,
and (ii) the same annotator is likely to repeat a labeling
error on a sample they previously mislabeled. In terms
of the exploration-exploitation tradeoff, this approach
prioritizes exploration of new samples over exploitation
of existing data.

However, in scenarios involving multiple annotators (Kałuża
et al., 2023), or that we have a strong prior about the proba-
bility of the annotator to change her mind (Du & Ling, 2010;
Schubert et al., 2023), the second assumption becomes less
compelling, and resampling previously mislabeled samples
could prove beneficial . This opens up new directions for
future research, particularly in settings where annotator di-
versity can be utilized to mitigate label noise effectively.
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Appendix

A. Pseudo Code for NPC (ProbCover + NAS)
In this paper, we propose the NAS algorithm that derives a strategy S for query selection, though most of our results present
NAS using ProbCover as S . Algorithm 2 presents the pseudo-code for this ProbCover + NAS combination, which we refer
to as Noise-Aware ProbCover (NPC).

Algorithm 2 NPC: Noise-Aware ProbCover

Input: unlabeled pool U, initial labeled pool Linit (typically ∅), query budget B, noise filtering algorithm A, distance
metric d(·, ·), ball radius δinit
Output: a labeled set L
L← Linit

δ ← δinit
repeat
Gδ ← (V = U ∪ L, E = {(x, x′) : x′ ∈ B(d,δ)(x)},W = 1|E|)
Get a partition (Lclean,Lnoisy) = A(L)
if use_noise_dropout then
q̂ =

|Lnoisy|
|L| # q̂ is the predicted noise ratio

η = 100×max(min(q̂, 1− q̂), 0.1)
Randomly move η% from Lnoisy to Lclean

end if
for z ∈ Lclean do

Set W (e)← 0 for all e ∈ {(x′, x) ∈ E : (z, x) ∈ E} # Zero the weights of all incoming edges to covered samples
end for
for z ∈ Lnoisy do

Set W (e)← 0 for all e ∈ {(z, x) ∈ E}
Set W (e)← 1 for all e ∈ {(x′, x) ∈ E : (z, x) ∈ E} # Or W (e)← (1− |Lnoisy|

|L| ) as in Weighted NPC (see 3.2)
end for
Q← ∅
b← number_of_classes
for i ∈ [1, . . . , b] do

Set ODR(x)←
∑

e=(x,x′) W (e) for all x ∈ U # The Out-Degree rank is the sum of outgoing edges’ weights
xmax ← argmaxx∈UODR(x)
Q← Q ∪ {xmax}
Set W (e)← 0 for all e ∈ {(x′, x) ∈ E : (xmax, x) ∈ E}

end for
L← L ∪Q
U← U\Q
if maxx ODR(x) ≤ 1 then # So Gδ is empty from edges which are not loops

for a given δ
′

do
Define Gδ′ = (V = U ∪ L, E = {(x, x′) : x′ ∈ B(d,δ′ )(x)})
Remove from Gδ′ the edges {(x′, x) ∈ E : (z, x) ∈ E} for all z ∈ L
Define ODRδ′ (x) as the Out-Degree rank of x in Gδ′

end for
Update δ ← argmaxδ′ [maxx ODRδ′ (x)]

end if
until |L| = B
return: L
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B. Noise Clusters in CIFAR100N
In Section 3.2, we describe the phenomenon of noise clusters in datasets with instance-dependent noise. To investigate this
phenomenon, we conducted the following experiment: Using SimCLR representations of CIFAR100, we imported the labels
from CIFAR100N (Wei et al., 2021), which contain human annotations for CIFAR100 with a label noise rate of 40.2%. We
assigned pseudo-label 1 to correctly labeled samples and pseudo-label 0 to noisy samples in CIFAR100N. We then trained
a 20-NN classifier on the SimCLR features and the pseudo-labels. The classifier achieved a training accuracy of ≈ 0.65,
significantly higher than the expected accuracy of ≈ 0.5 if the noise were uniformly distributed across samples.

To visualize the noise clusters in CIFAR100N, we present a t-SNE visualization in Figure 12 (based on the SimCLR features
of CIFAR100), where noisy samples are colored red, and clean samples are colored black. For comparison, we include
a similar visualization for CIFAR100 with a symmetric noise rate of 40.2%. The stark difference between the two plots
highlights the presence of areas in CIFAR100N where noisy samples are concentrated, forming distinct noise clusters.

(a) CIFAR100N (b) CIFAR100 with 40.2% symmetric noise

Figure 12. A t-SNE visualization of noisy and clean samples in (a) CIFAR100N and (b) CIFAR100 with a comparable symmetric noise
rate. Noisy samples are shown in red, while clean samples are shown in black.

In the context of active learning, the presence of noise clusters creates a tension between two conflicting goals: (i) achieving
sufficient coverage of the data and (ii) The risk of "getting bogged down in the noise mud" by repeatedly sampling from noisy
areas while seeking clean samples, thus wasting a significant portion of the annotation budget. To address this challenge, in
cases where there is a strong dependence between a sample’s features and its probability of being mislabeled, we propose
Weighted NPC, as described in Section 3.2.

C. Implementation Details

Active Learning methods Our experimental setup is based on the codebase of (Munjal et al., 2020), after adjusting it
to the noise scenario. The implementation of the Coreset (Sener & Savarese, 2017) was taken from that codebase. The
implementation of ProbCover algorithm was sourced from the official repository https://github.com/avihu111/TypiClust. As
for MaxHerding (Bae et al., 2025), we used an implementation that was sent to us by the paper’s authors.

For the hyperparameter δ in ProbCover, we used the values specified in the original paper.

Noise-Filtering methods For CrossValidation, we used three folds and trained a multi-class logistic regression model for
each fold pair. As for LowBudgetAUM, in the original AUM paper, the early stopping point is fixed at 150 epochs, and the
threshold is set at the 99th percentile AUM score of the fake class. However, in the low-budget regime, these hyperparameters
are suboptimal: overfitting occurs earlier, requiring an earlier stopping point, and the 99th percentile threshold is often a
single sample, which might achieve a high AUM score by chance. Therefore, for LowBudgetAUM, we set the early stopping
to 40 epochs, and determined the threshold above which samples are considered clean to be the 80th percentile of the
fake-class AUM score.
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In addition, the samples from the fake-class are randomly sampled from the unlabeled dataset, in contrast to the original
AUM method that set aside some of the labeled dataset for this purpose, and consequently the original AUM must be executed
multiple times for all samples in the dataset will receive predictions.

Supervised Learning Training (Framework 1) For CIFAR100 and all noise levels, we utilized a ResNet-18 architecture
trained for 200 epochs. Our optimization strategy involved using an SGD optimizer with a Nesterov momentum of 0.9,
weight decay set to 0.0003, and cosine learning rate scheduling starting at a base rate of 0.025. Training was performed with
a batch size of 100 examples, and horizontal flips were applied for data augmentation.

For ImageNet-50, the only changes were that the training batch size was 50, and the base learning rate was 0.01.

As for the linear model in Framework 2, the hyperparameters were the same, except for the number of training epochs,
which was set to 500.

D. Additional Results for MaxHerding

MaxHerding (Bae et al., 2025) is a state-of-the-art (SOTA) algorithm for active learning in the low-budget regime. The
paper introduces a generalized definition of coverage that depends on a kernel function, with certain choices of this function
recovering the ProbCover algorithm. Like ProbCover, MaxHerding also has a hyperparameter σ (the lengthscale of the
kernel function), but the authors show that MaxHerding with a Gaussian kernel is significantly less sensitive to σ than
ProbCover is sensitive to δ3. Since MaxHerding is both greedy and coverage-based, it can also serve as the query selection
strategy S in the NAS framework.

Here, we present additional results for MaxHerding on CIFAR100 under different levels of symmetric noise, comparing it
with MaxHerding + NAS. Figures 14 and 15 show the results using training frameworks 2 and 1, respectively.

Figure 14(b) explores the strategy of initially using MaxHerding and later switching to MaxHerding + NAS after an initial
budget has been reached. This approach makes sense because LowBudgetAUM may not perform optimally when the budget
is extremely low. Thus, one might consider incorporating NAS only after a few iterations of query selection.

Fig. 13 show results when using an ideal noise filter, both for query selection in NAS and for noise filtering before training.
Fig 14 shows results when the noise filtering algorithm is LowBudgetAUM.

(a) CIFAR100 20% noise (ideal filtering) (b) CIFAR100 50% noise (ideal filtering) (c) CIFAR100 80% noise (ideal filtering)

Figure 13. Results of MaxHerding compared to MaxHerding+ NAS when using Ideal noise filter . The training is done by framework 2.

3As in the MaxHerding paper, our experiments involving MaxHerding also used a Gaussian kernel with σ = 1.
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(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 14. Results of MaxHerding compared to MaxHerding+ NAS when using training framework 2.

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 15. Results of MaxHerding compared to MaxHerding + NAS when using training framework 1.

E. Clothing1M dataset
Clothing1M (Xiao et al., 2015) is a real-world large-scale dataset designed for studying learning with noisy labels. It consists
of approximately 1 million clothing images collected from online shopping websites, annotated with noisy labels derived
from surrounding text. The dataset contains 14 classes and is known to have about 38% estimated label noise. In addition to
the noisy set, Clothing1M provides 10k test samples with manually verified labels.

In this experiment, the following modifications were made:

1. Since the LowBudgetAUM algorithm did not predict the noise ratio accurately in preliminary experiments on Cloth-
ing1M, we injected the known noise level (38%) as a prior. Concretely, we directly selected the 38% of samples with
the lowest AUM scores as noisy, instead of relying solely on the estimated threshold from LowBudgetAUM. This
adjustment improved the stability of the noise filtering step.

2. We found that training on the entire set of labeled samples, including the noisy ones, yielded better performance.
Therefore, we trained the model on all labeled samples selected by the active learning procedure without discarding the
samples predicted to be noisy.

3. For the NPC-based methods, samples were selected using the regular ProbCover method until the budget reached 4
E[SPC], and afterward the selection switched to the NPC variant. This approach makes sense because LowBudgetAUM
may not perform optimally when the budget is extremely low, and it’s also held in Figure 8b of the main paper.

For feature extraction, We used DINOv2 pretrained on the LVD-142M dataset. The results obtained under this setup are
shown in Fig. 16.
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Figure 16. Results on Clothing1M dataset, under the setting described in E, when using training framework 2.

F. Applying Noise Dropout When the Predicted Noise Is Low
We suggested incorporating the noise dropout practice into NAS in cases where the predicted noise is particularly high.
Nevertheless, we observed that when the predicted noise ratios are low, this practice does not affect the results.

In Fig. 17, the performance of NAS is compared to the performance of NAS with noise dropout added, across different levels
of symmetric noise. It is evident that while noise dropout resolves the failure of NAS when utilizing LowBudgetAUM in the
high noise scenario, it has no effect on performance in the low noise scenario.

The numbers above and below the orange and brown lines indicate the predicted noise ratios of LowBudgetAUM prior to
training. Note that noise dropout is not applied during training but is only used when utilizing LowBudgetAUM during NAS
query selection.

Examining the predicted noise rates in the 80% symmetric noise scenario, it becomes clear from the plot that while
LowBudgetAUM predicts nearly all samples to be noisy without noise dropout (orange line), applying noise dropout during
query selection (brown line) significantly improves noise prediction before the training. However, the use of noise dropout
can be determined automatically during runtime, based on extremely high predicted noise rates. Additionally, this method
can be applied when using any noise-filtering algorithms, such as CrossValidation.

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 17. Results of accuracy differece from random strategy, when applying noise dropout as part of NAS given different levels of
symmetric noise. The numbers above and under the results of NAS versions presented the predicted noise ratio by LowBudgetAUM, when
utilizing for noise-filtering before training.

G. Comparison Between Different Noise Filtering Methods
In the main body of the paper, we presented results using two noise filtering algorithms: a naive algorithm, CrossValidation,
and a DNN-based algorithm, LowBudgetAUM, adapted to the low-budget regime. Here, we compare the performance of
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various noise filtering algorithms, including CrossValidation, LowBudgetAUM, and four additional methods—two naive and
two DNN-based methods adapted for this setting.

1. Train a kNN classifier on the labeled set and classify as noisy any sample whose majority label among its neighbors
differs from its own label. For k, we use |L|

C , where C is the number of classes. This simple method shares similarities
with the TopoFilter (Wu et al., 2020) method. We refer to this noise-filtering method as kNN.

2. Compute a centroid for each class and classify as noisy any sample whose closest centroid differs from the centroid of
its given class. To reduce the influence of noisy samples on the centroids, we use the RANSAC algorithm: For each
class, we compute multiple centroids using random subsets of the class and select the one whose subset produces the
covariance matrix with the smallest determinant. We refer to this method as Centroids.

3. An adapted version of the DisagreeNet (Shwartz et al., 2022) method, which uses the consensus between different
ensemble checkpoints to classify samples as noisy. We refer to this method as LowBudgetDisagreeNet.

4. An adapted version of the FINE (Kim et al., 2021) method, which classifies samples as noisy based on their low
alignment with the first eigenvector of the Gram matrix for their given class. The adaptation involves using SSL
representations instead of DNN-based features. We refer to this method as LowBudgetFINE.

All these methods use a self-supervised learning (SSL) representation of the dataset. Similar to LowBudgetAUM, LowBud-
getDisagreeNet trains an ensemble of linear models on SSL representations instead of training a DNN on the raw images.
Likewise, LowBudgetFINE utilizes SSL representations rather than DNN-generated features4.

Figure 18 compares the performance of NPC variants with different noise filtering algorithms at varying levels of symmetric
noise on CIFAR100. Each noise filtering algorithm is used both during query selection (within the inner mechanism of
NPC) and for noise filtering before training. Additionally, each NPC variant is compared with ProbCover, which uses the
same noise filtering algorithm only prior to training. The different colors in the plots represent the various noise filtering
algorithms. Solid lines correspond to NPC versions, while dashed lines represent ProbCover versions.

The results demonstrate that NPC outperforms ProbCover for most noise filtering algorithms and budget levels. Furthermore,
LowBudgetAUM achieves the best results beyond a certain budget, with results for 80% noise further improvable using noise
dropout, as shown in Figures 4 and 17(c).

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 18. Comparison of different noise filtering methods for CIFAR100 at varying levels of symmetric noise. We used training
framework 2 with SimCLR features. The results of NPC in this figure are without the δ updating.

H. Using Different Feature Spaces
As discussed in this paper, the functionality of NAS relies on the existence of a strong Self-Supervised Learning (SSL)
representation of the data. This representation is essential for both the query selection strategy S, which NAS extends, and

4In detail, the original FINE method states: "after warmup training, at every epoch, FINE selects the clean data with the eigenvectors
generated from the gram matrices of data predicted to be clean in the previous round, and then the neural networks are trained with them."
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the noise filtering algorithm A that it utilizes.

Figure 19 demonstrates that NPC (the NAS framework when using ProbCover as S) outperforms ProbCover on the
CIFAR100 dataset with 50% symmetric noise across different feature spaces learned by common SSL algorithms.

(a) BYOL (b) MoCo v2+ (c) DINO

Figure 19. Comparison between NPC and ProbCover for CIFAR100 with 50% symmetric noise, given different representation spaces.
We used training framework 2. The results of NPC in this figure are without the δ updating.

I. Comparison with the DIRECT Method
As described in the introduction, the DIRECT (Nuggehalli et al., 2023) method is a query selection strategy that takes into
account the presence of noisy labels. Nevertheless, a major part of the DIRECT method is intended to address scenarios of
extremely imbalanced data (their results present datasets with an imbalance ratio γ of ≈ 0.1, where γ is the ratio between
the number of samples in the smallest class and the number of samples in the largest class).

The issue of imbalanced data is indeed very important but is orthogonal to our research, as NAS can integrate strategies like
MaxHerding (Bae et al., 2025), which are designed to handle such scenarios. Additionally, the scoring criterion used by
DIRECT is more suitable for the high-budget scenario, whereas the strategies NAS is most suited to are more tailored to the
low-budget regime.

Therefore, we did not consider DIRECT as a fair baseline for NAS and did not include its performance in our main results.
In Figure 20, the results of DIRECT in the low-budget regime are compared to ProbCover and NPC. The dataset used is
CIFAR100, under varying levels of symmetric noise when training in framework 2. We utilized the implementation of
DIRECT from the LabelBench framework (Zhang et al., 2024) and integrated it into our codebase with minimal necessary
changes.

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 20. Comparison with the DIRECT method.
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