
Int J Data Sci Anal
DOI 10.1007/s41060-016-0003-4

REGULAR PAPER

Topic modeling of behavioral modes using sensor data

Yehezkel S. Resheff1 · Shay Rotics2 · Ran Nathan2 · Daphna Weinshall3

Received: 30 November 2015 / Accepted: 7 January 2016
© Springer International Publishing Switzerland 2016

Abstract The field of movement ecology is experiencing
a period of rapid growth in availability of data. As the vol-
ume rises, traditional methods are giving way to machine
learning and data science, which are playing an increasingly
large part in turning these data into science-driving insights.
One rich and interesting source is the biologger. These small
electronic wearable devices are attached to animals free to
roam in their natural habitats and report back readings from
multiple sensors, including GPS and accelerometer bursts. A
common use of accelerometer data is for supervised learn-
ing of behavioral modes. However, we need unsupervised
analysis tools as well, in order to overcome the inherent
difficulties of obtaining a labeled dataset, which in some
cases either is infeasible or does not successfully encompass
the full repertoire of behavioral modes of interest. Here, we
present a matrix factorization-based topic model method for
accelerometer bursts, derived using a linear mixture property
of patch features. Our method is validated via comparison
with a labeled dataset and is further compared to standard
clustering algorithms.
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1 Introduction

Wearable devices with various sensors are becoming increas-
ingly popular, with ongoing research into applications to
health monitoring [22] and context detection [13]. Many
fields of animal behavior and conservation have also begun
to utilize similar devices in order to remotely monitor the
whereabouts and behavior of their research subjects [25],
and this has especially been the case in the field of move-
ment ecology.

The aim of movement ecology is to unify research of
movement of organisms and aid in the development of a
general theory of whole-organism movement [18]. Recent
technological advances in tracking tools and especially the
appearance of cheap and small GPS devices [9] have driven
the field into a period of rapid growth in knowledge and
insight [11,12] and have led to the emergence of various
methods of analyzing movement patterns [29].

Nevertheless, movement data, however accurate, are
unlikely to suffice for inference on the links between behav-
ioral, ecological, physiological, and evolutionary processes
driving the movement of individuals, and link these subjects
which have traditionally been researched separately in their
respective fields. Thus, understandingmovement phenomena
across species requires the development of additional data
sources: sensors and tools providing simultaneous informa-
tion about the movement, energy expenditure and behavior
of the focal organisms, together with the environmental con-
ditions they encounter en route [19].

One such tool, which has been introduced into the field
of movement ecology, is the accelerometer biologger (ACC).
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These sensors allow the determination of the tagged animal’s
body acceleration and are used as a means of identifying
moment-to-moment behavioral modes [35] and estimating
energy expenditure [34].

ACC loggers typically record in 1–3 dimensions, either
continuously or in short bouts in a constant window [25].
Their output is used to infer behavior, most commonly
through supervised machine learning techniques, and energy
expenditure using the overall dynamic body acceleration
(ODBA) or relatedmetrics [8,34].When combinedwithGPS
recordings, acceleration sensors add fine scale information
on the variation in animal behavior in space and time (see [2]
for a recent review).

ACC-based analysis has been used to compute manymea-
sures of interest in the field of movement ecology, including
behavior-specific body posture, movement and activity bud-
gets, measures of foraging effort, attempted food capture
events, mortality detection, classifying behavioralmodes [2].
These measures have facilitated research for a wide range of
topics in ecology, animal behavior [2,29–31], animal conser-
vation and welfare [3,31], and biomechanics [10,28].

In recent years, there has been considerable interest in
the analysis of behavioral modes using ACC data and super-
vised learning techniques. The protocol for using ACC data
for supervised learning of behavioral modes consists of
several steps. First, a sensor calibration procedure is pre-
formed in a controlled environment: Before deployment, the
response of each tag to ±1G acceleration on each axis is
recorded, in order to fit the tag-specific linear transforma-
tion from the recorded values (mV) to the desired units of
acceleration. Next, the calibrated tags are given a record-
ing schedule and mounted on the focal animals, after these
are captured. Finally, the data are retrieved using RF (radio)
methods, cellular transmission, or physically reacquiring the
device.

Before supervised machine learning models can be used,
a labeled dataset is collected through field observations. This
time- and labor-intensive stage requires the researcher to
observe the animal, either in its natural habitat or in captivity
and relate the actual behavioral modes to the time stamp of
the ACC recordings. Since some behavioral modes tend to
be less common, or are performed predominantly at specific
times, recording a sufficient number of such behavior mea-
surement samples may be tricky. Furthermore, for aquatic
and nocturnal species, observations may not be feasible. In
the final stage, models are trained using the labeled data, and
the entire dataset is then classified.

Supervised machine learning methods have been applied
to ACC data from many species and for a diverse range
of behavioral modes. However, there are several drawbacks
to the supervised approach. Observations, even if perfectly
accurate, may not be adequately representative of the behav-
ioral pattern throughout the period of the research (which

is desirably the lifetime of the animal), for several reasons:
Field work is inherently confined to a specific time and place;
moreover, only some of the animals are observed, and the
presence of the observermay in some cases have an impact on
the behavior of the observed animals. Furthermore, the need
for observations limits the scope of such research projects
to observable species and to research laboratories with the
necessary resources (in money, manpower, and knowledge)
to carry out all the steps listed above.

In this paper, we present a framework for unsupervised
analysis of behavioral modes from ACC data. First, we sug-
gest a multi-scale bag of patches (MS-BoP) descriptor of
ACCsignals reminiscent of “bag of visualwords” descriptors
in computer vision (see [4,36]). Next, we present a sim-
ple topic model for behavioral modes incorporating a linear
mixture property of the MS-BoP features and demonstrate
how it can be used for unsupervised analysis of behavioral
modes.

The rest of the paper is organized as follows: The next
section describes relatedwork both inmovement ecology and
in matrix factorization for clustering and topic modeling. In
Sect. 3, we introduce the features and model. Finally, in Sect.
4 we present the results of an analysis on a large real-world
dataset and the comparison with other methods.

2 Previous work

Previous work on behavioral mode analysis using ACC data
in movement ecology focused predominantly on supervised
learning, with an emphasis on constructing useful features
and finding the right classifiers for a specific use, such as
monitoring dairy cows [6], or determining the flight type of
soaring birds [33].

While this line of work proved very successful, both in
terms of classifier performance and of scientific discovery
that it was able to drive, it still suffers from the inherent limi-
tations of supervised learning, compounded by the very high
cost of obtaining labeled data for behavioral observations of
wild animals. It remains the case that for some animals (noc-
turnal or sea species for instance), obtaining a labeled dataset
is currently infeasible. Thus, in order to use all availableACC
data for behavioral mode analysis in the field of movement
ecology, an unsupervised framework is essential.

To the best of our knowledge, there have been two attempts
at such an approach. In [27], K-means was applied to a
representation of the ACC data, to achieve behavior mode
clusters. In [7,16], a Gaussian mixture model (GMM) vari-
ant was used to cluster a low-dimensional representation of
ACC signals into a small number of useful behavioral modes.
Unsupervised techniques have also been used for discov-
ery of behavioral patterns in human subjects for logging and
medical purposes [17] and for detection of surprising events
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[20]. Our method goes one step further by allowing samples
to be a mixture (more precisely, a convex combination) of
behavioral modes, accounting for the observation that ACC
samples do indeed tend to be mixed this way (Fig. 1).

In wearable devices research on human behavioral analyt-
ics, topic models were often used to describe behavior on a
multiple-minute timescale, based on the moment-to-moment
behavioral annotation provided by sensor measurements
through supervised learning [21,24]. These methods enable
a long-range behavioral layer (such as going to work) which
is fundamental to understanding the context of the user.
While extremely relevant to the ecology community, these
methods cannot be transported to animal behavior since the
density of moment-to-moment behavior annotation (typi-
cally 1 per 5–10 minutes [25]) is insufficient for such an
analysis.

Nonnegative matrix factorization (NNMF) has exten-
sively been studied in the context of clustering [14,32] and
topic modeling [1]. Connections have been shown to various
popular clustering algorithms such as K-means and spec-
tral clustering [5]. Our proposed method is essentially topic
modeling with NNMF, based on theoretical justification that
incorporates the nature of our signals and the features under
consideration.

Our approach is novel in themodeling of a short-timescale
behavior (4 seconds in our experiments) as a sequential mix-
ture of behavioral modes. The features we suggest allow this
problem tobenaturally cast into a linearmixturemodelwhich
is then solved using standard optimization techniques.

3 Methodology

3.1 Feature generation

In thefield of natural languageprocessing (NLP), textual doc-
uments are commonly described as word-count histograms.
These descriptors are generally known as bag-of-word rep-
resentations (BoW), since during their creation all the words
in a document are (figuratively speaking) thrown into a bag,
losing all proximity information, and then eachword in a pre-
defined dictionary is assigned the number of times it repeats
in the bag. The final representation of the document is a vec-
tor of these counts.

The BoW representation was adopted in recent years
into computer vision for the representation of images. Since
images are not naturally divided into discrete elements (like
words in a document), the first step is to transform the image
into a series of word analogues which can then be thrown into
a bag. This discretization process is often achieved by clus-
tering patches of images, then assigning each patch the index
of its cluster. The resulting feature vector for a given image

is the histogram of the cluster associations of its patches. The
cluster centroids are often referred to as the codebook, and
the method as bag of visual words (BoVW).

Here, we adapt the BoVW method to be used with the
ACC signal. We start by defining the notion of a patch of an
ACC signal.

3.1.1 Definition: patch in an ACC signal

Let

s = [s1, . . . , sN ]

be an ACC signal of length N . The patch of length l starting
at index i of s is the subvector:

[si , . . . , si+l−1]

thus, there are N − l + 1 distinct patches in s.

3.1.2 Codebook generation

As in theBoVWcase,ACCsignals and patches do not consist
of discrete elements. In order to count and histogram types of
patches,wemust first construct a patch codebook.Wesuggest
the following construction: Given a codebook size k and a
patch length l, for each ACC signal in the dataset, extract and
pool all of the l-length patches. Next, using K-means clusters
the patches into k clusters. The resulting k centroids will be
called the codebook. The intuition behind using patches to
describe an ACC signal is that behavioral modes should be
definable by the distribution of short-timescale movements
that they are comprised of. Since different behavioral modes
occur at various characteristic timescales, we would like to
repeat the process for more than one patch length, in order to
efficiently capture all ACC patterns of relevance. Thus, we
generate a separate codebook for several timescales in the
appropriate range, depending on the behavioral modes we
are interested in (Algorithm 1).

3.1.3 Feature transformation

Once we have constructed the codebook for all of the scales,
we are ready to transform our ACC signals into the final
multi-scale bag of patches (MS-BoP) descriptor. For each
ACC record in the dataset, and for each scale, we extract
all patches of the signal at that scale and assign each one the
index of the nearest centroid in the appropriate codebook. For
each scale, we then histogram the index values to produce a
(typically sparse) vector of the length of the codebook. The
final representation is the concatenation of histograms for the
various scales (Algorithm 2).
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Algorithm 1 Multi Scale Codebook Generation
input:

{si }pi=1 the set of raw acceleration measurements
l1, .., lm list of scales to use
k1, . . . , km list of corresponding sizes per codebook

output:

CB1, . . . ,CBl the generated codebooks. CBi [ j] is the j − th word in
the i − th codebook (i = 1, . . . , l; j = 1, . . . , ki )

1: for scale := 1,…,l do
2: patches := list of all patches of scale lscale in {si }pi=1
3: CBi := K_means(patches, kscale).centroids
4: end for
5: return CB1, . . . ,CBl

3.2 Mixture property of patch features

In order to motivate the proposed model (next section), we
present the mixture property of patch features. We assume
that our signals have the property that a large enough part of
a sample from a certain behavioral mode will have distribu-
tion of patches that is the same as the distribution in the entire
sample. The meaning of this assumption is that each behav-
ioral mode has a distribution of patches that characterizes it
at each scale.

Intuitively, if a signal s is constructed by taking the first
half of a signal sa and the second half of an equal length signal
sb, then the distribution of patches in s will be approximately
an equal parts mixture of those in sa and in sb. The reason
for this is that a patch in s either (a) is completely contained
in sa and will then be distributed like patches in sa , or (b)
is completely in sb and will then be distributed like patches
in sb, or (c) starts in sa and continues into sb, in which case

Algorithm 2MS-BoP feature transformation
input:

CB1, . . . ,CBl The l codebooks, output of Algorithm 1.
l1, .., lm list of the patch scales that were used in Algorithm 1.
s an ACC signal to transform

output:

f The MS-BoP representation of signal s

1: for scale := 1,…,l do
2: fscale := a zeros vector of the same length as CBscale
3: patches := list of all patches of scale lscale in s
4: for each p in patches do
5: idx := index of the closest word to p in the codebook CBscale
6: increment fscale[idx] by 1
7: end for
8: end for
9: f := stack_vectors( f1, . . . , fl )
10: return: f

we know little about the patch distribution and consider it as
noise. The key point is that the number of patches of type (c)
is at most twice the length of the patch and thus can be made
small in relation to the total number of patches which is in
the order of the length of the signal. More formally:

Let s be an ACC signal composed of a concatenation of t1
consecutive samples during behavioralmodea and t2 consec-
utive samples during behavioral mode b (see Fig. 1). Denote
pmode(v) the probability of a patch v of length l in behav-
ioral mode ∈ {a, b}. Let v be a patch drawn uniformly from
s, then:

p(v) = Pr(A)p(v|A) + Pr(B)p(v|B) + Pr(C)p(v|C)

≥ Pr(A)pa(v) + Pr(B)pb(v)

= t1 − l

t1 + t2
pa(v) + t2 − l

t1 + t2
pb(v)

Fig. 1 Pure and mixed triaxial
ACC signals. Pure ACC signals
(a) are measured during a single
behavioral mode. However, in
most cases a single
measurement contains a mixture
of more than one behavioral
mode (b) and may be viewed as
a concatenation of the
beginning/end of two pure
signals. The colors represent
each of the three acceleration
dimensions (color figure online)
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= t1
t1 + t2

pa(v) + t2
t1 + t2

pb(v) − ε

where events A, B,C denote the patch being all in s1, all in
s2, and starting in s1 and ending in s2, respectively, and:

ε = l

t1 + t2
[pa(v) + pb(v)]

ε can be made arbitrarily small by making t1 + t2 large and
keeping l constant, meaning that for patches small enough
in relation to the length of the entire signal, the distribution
of patches of the concatenated signal is a mixture (convex
combination) of the distributions of the parts, with mixing
coefficients proportional to the part lengths. We note that
this result can easily be extended to a concatenation of any
finite number of signals, as long as each one is sufficiently
long in comparison with the patch width.

Since behaviors of real-world animals may start and stop
abruptly, and a recorded ACC signal is likely to be a con-
catenation of signals representing different behavioral modes
(typically 1–3), the above property inspires a model that is
able to capture such mixtures in an explicit fashion. Fur-
thermore, the resulting mixture coefficients may provide
some insight into the nature of the underlying behaviors and
the relationships between them— for example, which often
appear alongside each other, and which are more temporally
separated.

3.3 The proposed model

Let k denote the number of behavioral modes under consid-
eration and p the dimension of the representation of ACC
observations. Following the mixture property presented in
the previous section, we assume that every sample is a con-
vex combination of the representation of a “pure” signal of
the various behavioral modes. Further, we assume the exis-
tence of a matrix F ∈ Rpk , the factor matrix, such that the
i th column of F is the representation of a pure signal of the
i th behavioral mode, which we will call the factor associated
with the i th behavioral mode. Let s be an ACC sample, then:

s = Fα + ε (1)

where ε ∈ Rp is some random vector. In other words, we say
that the sample s is a linear combination of the factors associ-
ated with each of the behavioral modes with some remainder
term. For the full dataset, we then have:

S = FA + ε (2)

where F is the same matrix, A′s columns are the factor
loadings for each of the samples denoted α in (1), and

ε ∈ RpN is a random matrix. Since our features are non-
negative histograms, and we would like the factor loadings
to be nonnegative, we constrain the matrices F, A to have
nonnegative values. We solve for F, A using a least squares
criterion:

argmin
F,A

‖FA − S‖2F
subject to Fi, j , Ai, j ≥ 0 ∀i, j

(3)

This is by now a standard problem, which can be solved, for
instance, using alternating nonnegative least squares [32].
The idea behind the algorithm (Algorithm 3) is that while
the complete problem is not convex, and not easily solved,
for a set A it becomes a simple convex problem in F , and
vice versa. This inspires the simple block coordinate descent
algorithmwhichminimizes alternatelyw.r.t eachof thematri-
ces. Since this procedure generates a (weakly)monotonically
decreasing series of values of the objective (3), it is guaran-
teed to converge to a local minimum1.

Algorithm 3 Alternating Non-Negative Least Squares
input:

S the complete matrix S ∈ RpN

k factorization rank

output:

F, A matrices F ∈ Rpk , A ∈ RkN

1: F := random initialization
2: A := random initialization
3: while not converged do
4: F := argmin

F
‖FA − S‖2F s.t. Fi, j ≥ 0 ∀i, j

5: A := argmin
A

‖FA − S‖2F s.t. Ai, j ≥ 0 ∀i, j
6: end while
7: return F, A

3.4 Speedup via sampling

Since thismethodmay potentially be applied to large datasets
(containing at least hundreds of millions of records andmany
billions of patches), it is worthmentioning that all parameter-
learning steps of the algorithm can be processed (identically
to the original method) on a sample of the dataset. During
codebook generation, records in the dataset and/or patches
in each used record could be sampled to reduce the number
of resulting patches we have to cluster. Next, fitting F and A
on a sample of the records gives us the factor matrix, but not
the factor loadings per record of the dataset. However, once

1 The objective is bounded from below by 0.

123



Int J Data Sci Anal

we have F the optimization problem (3) turns into:

argmin
A

‖FA − S‖2F
subject to Ai, j ≥ 0 ∀i, j

(4)

a simple convex problem in which the factor loadings per
record (columns of A) can be minimized independently for
each record s in the dataset, as follows:

argmin
α

‖Fα − s‖2

subject to αi ≥ 0 ∀i
(5)

3.5 Extension to the multi-sensor case

Thus far, we have constructed a topic model applicable
for data derived from a single (albeit possibly multi-
dimensional) sensor. Themulti-sensor (or sensor integration)
case is of particular interest in this case becausemany devices
containing accelerometers also include other sensors such as
gyroscopes and magnometers. Since each of these is record-
ing at different frequencies, we cannot simply consider them
to be extra dimensions in the same time series produced by
the 3D accelerometer. The integrative framework we suggest
assumes that the same behavioral modes are manifested in
distinct patterns for each of the sensors. Thus, we will have
separate factor matrices:

F1, . . . , Fl

for the l sensor types, and a single shared factor loading
matrix A. Denoting the features matrices of the MS-BoP
features for each of the l sensor types:

S1, . . . , Sl

we now look for matrices:

A, F1, . . . , Fl

such that:

∀i : Si ≈ Fi A

which we encode in the following optimization problem:

argmin
F1,...,Fl ,A

1

l

l∑

i=1

‖Fi A − Si‖2F

subject to Fk
i, j , Ai, j ≥ 0 ∀i, j, k

(6)

This problem is solvable using the same type of method.
Specifically, we will now show that this new problem can be

rewritten in the same form as (3), with both the sample and
factor matrices stacked. Denote:

F =
⎡

⎢⎣
[F1]

...

[Fl ]

⎤

⎥⎦

and:

S =
⎡

⎢⎣
[S1]

...

[Sl ]

⎤

⎥⎦

and then (6) becomes:

argmin
F,A

‖FA − S‖2F
subject to Fi, j , Ai, j ≥ 0 ∀i, j

since the 1
l scaling factor makes no difference to the argmin.

In summary, the multi-sensor case where a separate factor
matrix is allocated to each sensor, with a joint factor loading
matrix, is identical to the single-sensor case when the MS-
BoP features for each sensor are stacked vertically.

3.6 Extension to the supervised and semi-supervised
cases

Suppose that observation (or any other mechanism) allowed
us to obtain “pure” ACC signals for some (or all) of the
behavioral modes. Using the mean MS-BoP representation
of the signals in each of these modes for the corresponding
column of F , we are left with a convex problem similar to
(3), where the optimization is over the remaining elements
of F only.

In the extreme case, when we have labeled samples for
a pure ACC signal for all the behavioral modes under con-
sideration, and thus all of F is predetermined, the resulting
problem is equivalent to (4). Namely, we are left with the task
of obtaining the factor loadings for the remaining (unlabeled)
data.

3.7 Limitations

Consider a solution, matrices F, A that minimize objective
(3), so that:

S ≈ FA

Clearly, for any orthogonal matrix Q (of the appropriate
dimensions):

FA = FQQT A = (FQ)(AT Q)T
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thus, the solution:

F ′ = FQ

A′ = (AT Q)T

is also a minimizer of objective (3), iff the matrices F ′, A′
obey the constraints:

F ′
i, j , A

′
i, j ≥ 0 ∀i, j (7)

While this clearly holds if Q is a permutation matrix,
there are (always) orthogonal matrices Q which contain neg-
ative elements for which the constraints in (7) hold. From the
construction of F ′ and A′, we can interpret them as an entan-
glement of our factors and loadings (technically,whatwefind
is the span of the correct factors, but not the factors them-
selves). We note that while this property limits the ability to
recover factors that generate the data, in practice the factors
themselves are useful for analysis of behavioral topics, as
demonstrated in the section below.

We leave to future research the issue of the disentan-
glement, which should be achieved via regularization with
respect to A in the original optimization problem (3).

4 Results

In this section, we present experiments designed to compare
our method to alternatives and derive insights about the data.
Results are then discussed in the next section.

Data for these experiments consist of 3D acceleration
measurements from biologgers which were recorded during
2012. Each measurement consists of 4 seconds at 10Hz per
axis, giving a total of 120 values.

A ground truth partitioning of the data was obtained using
standard machine learning techniques (see [19,25] for more
details regarding the methodology), based on 3815 field
observations each of which was assigned one of 5 distinct
behavioral modes (walking, standing, sitting, flapping, glid-
ing). Experiments were conducted using stratified sampling
of 100,000 measurements (20,000 per behavioral mode).

Matrix factorization was preformed using the scikit-learn
[23] python software library (see [15] for method details).
In all experiments, the results were stable across repetitions,
leading to essentially zero standard deviation, and therefore
the reported results correspond to single repetitions.

The purpose of these experiments is to assess to what
extent the soft partitioning via our topicmodelmethod relates
to the hard, ground truth partitions. Our method is compared
to the following:

Random partitioning: each sample is assigned a value
drawn uniformly from the set of possible partitions
{1, 2, .., k}
Uniform partition: each sample is assigned the same
distribution of 1

k per partition, over the k partitions.
K-means: the sample are partitioned using K-means.
Gaussian mixture model (GMM): GMM is used to
assign samples k partition coefficients.

where (a) and (b) are used as controls, (c) and (d) are used as
representative hard and soft clusteringmethods, respectively.

The data are then divided randomly into two equal parts
designated train and test. Using the training set, we learn
the partitioning of the data for each of the methods (ran-
dom, uniform, K-means, GMM, and NNMF). Next, for each
method separately, we assign each of the partitions one of
the semantic labels (flapping, gliding, walking, standing, sit-
ting). In order to do this, we group the data in the training set
according to the semantic label it received (the supervised
annotation) and compute the average loading for each label
in the partition. The final assignment for the partition is the
label with the highest mean loading in it (see schematic in
Fig. 2).

The evaluation stage is performed on the test set only.
Resemblance to the ground truth is measured using log-loss
(Fig. 3) and 0−1 loss (Fig. 4), after partition values are con-
verted to soft label assignments using the mapping derived
from the training set (see schematic in Fig. 2). For an assign-
ment l1, . . . , l5 for the 5 behavior labels, where the ground
truth label is i , we use the 0 − 1 loss:

l0−1 =
{
0 i = argmax{l1, . . . , l5}
1 otherwise

(8)

and the log-loss:

llog = −log(li ) (9)

Table 1 shows the average distribution of supervised
(ground truth) behavioral modes for partitions assigned each
of the labels, in the form of a confusion matrix. Parti-
tions were obtained using nonnegative matrix factorization
(NNMF) with k = 30, and associations between partitions
and labels as described above. Data are presented after row
normalization to facilitate between-row comparison.

5 Discussion

As expected, both 0−1 and log-loss error plots are monoton-
ically decreasing in the number of clusters (we use the
term clusters here for cluster/partition/topic depending on
the method under consideration). The most striking result is
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Fig. 2 Schematic flow of partition evaluation

Fig. 3 Log-loss of soft
assignment to each of the ground
truth classes using each of the
methods under consideration.
(NNMF nonnegative matrix
factorization, GMM Gaussian
mixture model)

that while the matrix factorization topic model method per-
forms well compared to the other methods with respect to the
log-loss metric (Fig. 3), it is not quite as good with respect
to the 0–1 loss (Fig. 4).

In order to better understand these phenomena, we take
a closer look at the data. Consider an observation where the
animal takes a single step during the 4-s acceleration mea-
surement window and stands still for the rest of it. In order
not to dramatically underestimate the amount of walking,
an observer will label this sample as walking (in fact, most
samples are probably mixtures).

From the mixture property of the MS-BoP features (see
Sect. 3), when using the matrix factorization topic model
approach, we would expect to get a walking factor pro-
portional to the time spent doing so in the measurement
windows.Thus, for a samplewith somewalking (say,<50%)
we get a miss in the 0–1 loss metric, but a better score in the
log-loss which is more sensitive to assignment of low prob-
abilities to the correct class.

Table 1 sheds more light on the aforementioned result
by showing average assignment of factors for each of the
ground truth classes, in the form a confusion matrix. Flap-
ping samples indeed received the highest weight, on average,
onflapping factors (51.25%), but the gliding andwalking fac-
tors get over 13%each. Thismaybe due to the fact that Storks
indeed glide between wing flaps, and may have walked prior
to taking off during the observations which are inherently
biased to behavior close to the ground (where the observer
is). Conversely, none of the other behavioral modes include
a significant amount of flapping factors.

This result may also point to the tendency (or strategy) of
field observers to assign the more active behavior to mixed
samples (in which case a sample where the bird flaps for a
part of the duration of the measurement would be assigned to
flapping, in the same sense that a step or two would qualify
an otherwise stationary sample as walking).

We note that the sitting factors received factor weights
higher than expected in all other behavioral modes. It might
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Fig. 4 0–1 loss of hard
assignment to each of the ground
truth classes using each of the
methods under consideration.
For the soft assignment
partitioning methods, hard
assignment is achieved using
argmax. (NNMF nonnegative
matrix factorization, GMM
Gaussian mixture model)

Table 1 Mean label association per ground truth behavioral mode

Ground truth/assignment Flapping (%) Gliding (%) Walking (%) Standing (%) Sitting (%)

Flapping 51.25 13.66 13.37 4.33 17.39

Gliding 0.75 49.98 8.49 3.95 36.84

Walking 2.41 19.71 43.92 20.56 13.41

Standing 0.86 13.30 1.04 74.93 9.88

Sitting 0.01 30.88 0.15 10.46 58.50

NNMF with 30 factors. Normalized rows

be interesting to try and overcome this sort of systematic
error using a column normalization. We defer this to future
research.

6 Conclusions

In this paper, we describe a matrix factorization-based
topic model approach to behavioral mode analysis from
accelerometer data and demonstrate its qualities using a
large movement ecology dataset. While clustering and topic
modeling with matrix factorization is by no means a new
idea, the novelty here is in the integration with patch fea-
tures (MS-BoP) that theoretically motivate the method in the
context of time series sensor readings for behavioral mode
analysis.

The main contribution of this paper is in presenting a
framework that will allow for a widespread use of behav-
ioral mode analysis in movement ecology and related fields
where determining movement patterns from remote sensor
readings is necessary. Further, we introduce theMS-BoP fea-
tures, which may be applicable for many continuous sensor
readings, and show that a linear mixture model is justified
when using such features.
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