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Abstract. Speech is a measurable behavior that can be used as a
biomarker for various mental states including schizophrenia and depres-
sion. In this paper we show that simple temporal domain features, ex-
tracted from conversational speech, may highlight alterations in acoustic
characteristics that are manifested in changes in speech prosody - these
changes may, in turn, indicate an underlying mental condition. We have
developed automatic computational tools for the monitoring of patho-
logical mental states - including characterization, detection, and classi-
fication. We show that some features strongly correlate with perceptual
diagnostic evaluation scales of both schizophrenia and depression, sug-
gesting the contribution of such acoustic speech properties to the per-
ception of an apparent mental condition. We further show that one can
use these temporal domain features to correctly classify up to 87.5% and
up to 70% of the speakers in a two-way and in a three-way classification
tasks respectively.
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1 Introduction

Psychiatry is a medical discipline in search of objective and clinically applicable
assessment and monitoring tools. The acoustic characteristics of speech are a
measurable behavior, hence can be used in the assessment and monitoring of
disorders such as schizophrenia and depression. This observation has not gone
unnoticed in the psychiatric community and previous attempts to quantify this
acoustic effect in the psychiatric setting have been made. However, these at-
tempts have been limited, in part by technical and technological limitations.
Recent technological advancement has made the recording, storage and analysis
of speech an available option for both researchers and practitioners.

The use of acoustic characteristics of speech in the description of pathological
voice qualities has been studied in various contexts and with a variety of goals
including mental health evaluation [1]. Studies have correlated acoustic features
with perceptual qualities [2] and to a lesser extent with physiologic conditions at
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the glottis [3]. These studies looked at the use of syntactic structures, richness
of vocabulary, time to respond and many other qualities.

Speech prosody is the component of speech that refers to the way words are
spoken. It includes the rhythm, stress, and intonation of speech. Prosody may
reflect various features of the speaker or the utterance: the emotional state of
the speaker; the form of the utterance (statement, question, or command); the
presence of irony or sarcasm; emphasis, contrast, and focus; or other elements of
language that may not be encoded by grammar or choice of vocabulary. Changes
in the acoustic characteristics of speech prosody in the course of mental disorders,
notably depression and schizophrenia, are a well documented phenomenon [1, 4,
5, 2], and the evaluation of aspects of speech constitutes, today, a standard part
of the mental status examination.

The acoustic changes in schizophrenia patients’ speech are currently concep-
tualized as a component of the negative symptoms [6]. The most accepted scale
for negative symptoms is the Scale for the Assessment of Negative Symptoms
(SANS) [7]. Negative symptoms are divided into five domains including blunted
affect, alogia, asociality, anhedonia, and avolition [8], where speech acoustic
changes are especially reflected in two different domains - blunted affect (di-
minished expression of emotion) and alogia (poverty of speech).

Speech prosody is currently measured by subjective rating scales requiring
highly trained staff. Several attempts at using speech cues for the automatic
quantification of specific mental effects have been made in the past [9, 4, 10, 2].
These attempts have made an effort to first correlate specific acoustic measures
to their perceptual (clinical) counterparts, and second to quantify and asses
different aspects of subjects’ speech using different acoustic measures [5]. The
advantage of automatic quantification of effects apparent in different mental
states has been highlighted as early as 1938 [11] and is very well outlined in [12].

In [10] lexical analysis was proposed as a measure of mental deficits; but
while some success has been shown, it has been claimed and shown that signifi-
cant aspects of speech are missed when focusing on the lexical level [13]. In [4]
several acoustic features were extracted from both structured speech and semi
structured interview of depression subjects. A later study [5] showed high corre-
lations between basic prosody measures (mainly inflection) and clinical ratings
of negative symptoms of schizophrenia. In these and other studies results are
highly task specific. Lastly, in [2] Inflection and speech rate were identified as
discriminative features between schizophrenia patients and controls.

Our goal to develop automatic computational tools for the evaluation of
mental state required two corresponding efforts. First, study the physical sig-
nal properties specific to schizophrenia and depression. We chose to focus on
temporal domain features (see Section 3.1); these features, while not easy to
extract or measure, provide a meaningful interpretation and may be referenced
in the context of existing clinical evaluation scales.1 Second, develop an auto-

1 While it is possible to use existing automatic systems to produce a high dimensional
non-specific description of the voice signal, we focus on a small set of meaning-
ful features for two reasons: (i) These features appear to be ecologically relevant
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matic, real-time, reliable and objective assessment of the signal. We adopted a
discriminative approach and trained a Support Vector Machine (SVM) classifier
over the data (see Section 3.3).

2 Materials and Methods:

Subjects 62 subjects participated in the study, giving written consent ap-
proved by the McLean Hospital Institutional review board. The study subjects
comprised of three groups, including schizophrenia patients (n=22, 13 male,
9 female), patients with clinical depression (n=20, 9 male, 11 female), and
healthy participants (n=20, 10 male, 10 female). The subjects were matched
by age (mean = 39.98, std = 11.37, p = 0.8489), years of education (mean =
14.8, std = 2.3, p = 0.063), and gender (χ2 test of Independence, q = 0.86,
dof = 3, p = 0.65).

Clinically rated symptom measures The subjects completed a clinical in-
terview which included Semi structured Clinical Interview for DSM-IV (SCID
IV) [14] , Positive and negative Syndrome Scale for Schizophrenia (PANSS) [15],
Scale for the Assessment of Negative Symptoms (SANS) [7], and the Montgomery
and Absberg Depression Rating Scale (MADRS) [16] as well as the Hamilton
Depression Scale (Ham-D) [17].

Acoustic Recordings The recordings were made by a headset without sound
isolation or calibration. To prepare the recordings for acoustic analysis, the audio
tapes were digitized at a 44.1 kHz sampling rate. Acoustic analysis was conducted
using MATLAB [18] (details are given in Section 2.1). Average length of a clinical
interview was: schizophrenia - 57m 13s, depression - 30m 31s, healthy - 48m 46s.
Silence was automatically removed at the beginning and end of each recording,
while the remaining data was normalized to have 0 mean and variance 1, thus
avoiding effects caused by the constellation of the headset. To enable efficient
handling of the data each interview was divided into 2 minutes segments, which
were subsequently analyzed independently. All results from a single person’s 2
minutes segments were later used together for classification.

2.1 Speech Prosody and Feature Extraction

Two minutes segments of interview were used to measure nine diagnostic fea-
tures. In this paper we focus on a very small and simple set of features extracted

and correspond with psychiatrists’ intuition about the characteristic features of the
speech of Schizophrenia patients. (ii) Our application domain suffers from the prob-
lem of small sample, which necessitates the use of low dimensional representations
to enable effective learning; this is accomplished by choosing a small set of relevant
features. The alternative, which is to use a high dimensional representation followed
by dimensionality reduction (like PCA), typically leads to the unfortunate outcome
that the final result is hard to interpret in terms of the underlying features.
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in the temporal domain. This choice was motivated by the fact that tempo-
ral domain features are, in general, easier to relate to perceptual properties of
speech and thus provide better infrastructure for further use in the psychiatric
community.

Alterations of the speech signal in abnormal conditions can occur at differ-
ent time-scale levels, including the macro-scale level (above 1 sec) which refers
to variables such as speaking rate, the meso-scale (25 ms to 1 sec), in which
variables like pitch and its statistics are measured, and finally, the micro-scale
(10 ms or less) level in which cycle to cycle measures are taken (this level ap-
pears to contribute to the naturalness of the speech sound). While macro and
meso scales are influenced by voluntary aspects of speech, the micro-scale is
involuntary in nature and, thus, can better serve as a reliable biomarker. All
scales contribute to the prosodic structure of the speech signal, and thus using
them as an ensemble may provide insight into the possible role of prosody in the
characterization of pathological mental states. The focus on prosodic features
follows reports showing the relevance of meso-scale and micro-scale levels to the
tasks of mental evaluation and emotion detection [1, 2, 3].

Macro scale measures: Mean utterance duration, Mean gap duration,
Mean spoken ratio An utterance is any segment identified as speech that
exceeds 0.5 seconds. A ”gap” is any segment of recording with no subjects’
speech. Spoken ratio is calculated as the ratio between the total volume of speech
occupied by the speaker, that is the sum of the length of all utterances divided
by the total conversation length.

Meso scale measures: Pitch Range, Pitch standard deviation, Power
standard deviation Pitch range was calculated as the difference between max-
imum estimated pitch and minimum estimated pitch normalized by the mean
pitch over the entire 2 minutes segments. No significant between-group differ-
ences were observed for mean pitch, which was (Males: 112.3Hz, 18.99Hz; Fe-
males: 176.39Hz, 18.53Hz) (F = 0.18, df = 2, 56, p = 0.83) nor for interaction
with gender (F = 0.75, df = 2, 56, p = 0.47). Between gender differences were
strong as expected (F = 182.9, df = 1, 56, p << 0.01). Standard deviation (STD)
of pitch was calculated for each utterance and was then averaged for each speaker.
STD of pitch was again normalized by the mean pitch in each utterance. Mean
active power and its variance were measured in decibels (dB) in reference to a
calibration level and were 64 dB, with a standard deviation of 8.6 dB. Standard
deviation of power within an utterance was measured, normalized by the mean
power in the entire segment in order to avoid effects caused by noise in the
location of the microphone.

Micro scale measures: Mean waveform correlation, Mean jitter, Mean
shimmer The mean of all correlation coefficients evaluated for every pair of
consecutive periods was used as the acoustic measure termed Mean Waveform
Correlation (MWC). It indicates the overall similarity between the cycles of the
time signal. When applied to pitched segments it measures the level at which
the speaker sustained its constant pitch.
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Following [1] jitter and shimmer were calculated as the period perturbation
quotient PPQ and the energy perturbation quotient EPQ respectively, where
the locality parameter was chosen to be 5. Perturbation Quotient (PQ) measures
the local deviation from stationarity of a given measure and is defined in (1).
It measures the ratio of deviation of a given measure in a local neighborhood
defined by the locality parameter K. Put in simple terms, the jitter measures the
stability of the period in a 5-local cycles environment and the shimmer measures
the stability of the energy in a given 5-local cycles environment.
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We chose to use the energy shimmer since it is expected to be considerably less
susceptible to noise than the amplitude shimmer often used in acoustic analysis.

Discussion: We have previously observed that both macro-scale and meso-
scale measures seem to incorporate a larger variability component due to the
specific task: between task-variability Sb as compared to the within speaking-
task variability (Sw). This task dependency is significantly reduced for micro-
scale measures. This observation does not disqualify the larger scale measures
from being useful in a classification task (as the task is known in advance);
however, it highlights micro-scale features as candidates to be used by a robust
general-purpose classifier.

2.2 Classification and Statistical Analysis

We used the extracted acoustic features and a basic linear classifier [19] to classify
the different conditions: Healthy (HL), Schizophrenia (SZ) and Depression (DP)
in a two-way classification task. For each classification scenario (e.g. HL vs. SZ),
one subject was left out for testing and the rest were used to train a classifier.
In a single classification setting all 2 minutes segments of a given speaker were
left out and later used for testing. The final decision was taken using a majority
vote over all left out segments.

To check the statistical significance of the results over each of the individual
features, we used 1-way ANOVA when the distribution was roughly normal,
otherwise we used the nonparametric version of the 1-way ANOVA called the
Kruskal-Wallis test. It is actually a more general test, in that it is comparing
distributions rather than medians. Checking the statistical significance of the
effects brings up the problem of multiplicity (multiple comparisons). We consider
the problem of testing simultaneously 9 null hypotheses where within each 3
pair comparisons are nested. We therefore used a sequential Bonferroni type
procedure, which is very conservative and assures the statistical soundness of the
results. Specifically, the results were first tested for significance of main effect
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using a Bonferroni correction, and later multiple comparison was done using a
second Bonferroni correction2.

3 Results

In the following section we describe first an analysis of the individual features
that were extracted as indicated above. We start by describing the distributions
of the different features according to the different groups in Section 3.1. In Sec-
tion 3.2 we describe the correlations between these features and standard clinical
ratings, while in Section 3.3 we describe our efforts to train a an SVM classifier
to predict the speaker’s condition.

3.1 Isolated Features - between group analysis

Fig. 1 shows the mean and standard error of isolated features extracted from semi
structured interview. Statistically significant deviations between any two groups
are indicated with a horizontal bar. The analysis was performed while taking
into consideration the issue of multiple comparisons as explained in Section 2.2,
and is thus very conservative in nature.

Spoken ratio As seen in Fig. 1a, the ratio of spoken volume for healthy subjects
(47.19%,1.98%) is larger than that of Schizophrenia subjects (37.16%,2.4%) and
Depressed subjects (29.52%, 2.4%). The difference between the groups is indeed
significant (χ2 = 21.63; df = 2, 59; p < 0.001) and possibly reflects the subject’s
initiative and willingness to engage in conversation.

Utterance Duration Healthy subjects appear to speak in longer utterances
(∼1.35s, 0.07s) as compared to Schizophrenia subjects (1.26s, 0.05s) and de-
pressed subjects (1.03s,0.05s). Significant (χ2 = 16.06; df = 2, 59; p < 0.001) dif-
ferences were observed between the depressed group and both the group of
healthy subjects and schizophrenia subjects. Only a trend was observed between
normal controls and schizophrenia subjects. In depressed recordings an average
utterance length that exceeds 3 seconds (as averaged over a two minutes seg-
ment) never occurred, which is reflective of the reported difficulty of engaging
in conversation. These results tend to agree with previous reports [20].

Gap Duration Normal subjects tend to pause less and for less time (1.73s,
0.1s) as compared to schizophrenia subjects (2.44s,0.22s) and depressed subjects
(2.87s,0.29s) (χ2 = 14.63; df = 2, 59; p < 0.001). Also, the pauses of healthy
subjects are of more regular pattern as reflected by the small error bar.

2 Note that with only three treatment groups, it’s overly conservative to adjust the
alpha levels with a Bonferroni method as with only 3 treatment groups, there is
little risk in an increasing Type I error rate.
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Fig. 1: Individual features: 9 features are analyzed showing mean and stan-
dard error (STE) bar for each feature in each group of patients. Significant dif-
ferences are indicated with a horizontal bar. Significance was established using a
Kruskal-Wallis procedure and a Bonferonni correction for multiple comparisons.

Pitch Range Healthy subjects evidently displayed larger pitch range of (∼ 0.88,
∼ 0.04) (mean, ste) of an octave, which is in agreement with reported literature
[9, 21, 5]. Pitch range is significantly reduced for schizophrenia (0.75, ∼0.04)
with an even lower pitch range of (0.67,∼0.05) for depressed patients (χ2 = 7.49;
df = 2, 59; p < 0.05).

Standard Deviation of Pitch Our measure of standard deviation of pitch
within an utterance represents a temporally local perception of inflection. healthy
subjects display a wider dynamics of pitch (0.0992,0.0024) within an utterance
as compared to schizophrenia subjects (0.0924, 0.0044) and depressed subjects
are significantly different (0.0629,0.0023) (χ2 = 21.28; df = 2, 59; p < 0.001).
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Power standard deviation Differences in power standard deviation were
evident between Schizophrenia subjects (∼0.77, ∼0.01) and Healthy subjects
(0.74,∼0.01) on the one hand, and Depressed subjects (0.7244,0.01) on the other
hand (χ2 = 6; df = 2, 59; p < 0.05). Only differences between schizophrenia and
depression remained significant after correction for multiple comparisons.

Mean Waveform Correlation The results show a significant deviation of the
depressed subjects (χ2 = 10.42; df = 2, 59; p < 0.01).

Mean Jitter We see significant differences between healthy subjects (0.1722,
∼ 0.01) and both schizophrenia subjects (∼0.22, 0.01) and depressed subjects
(∼0.27, 0.0212). The way jitter was calculated puts a focus on the physiological
ability to maintain a constant period, and suggests a deficiency in this ability in
both schizophrenia and depression subjects.

Mean Shimmer Healthy subjects displayed the lowest shimmer (2.73%, 0.12%)
whereas depressed subjects displayed an elevated shimmer (4%, 0.18%) with
an intermediate level (3.22%, 0.12%) for schizophrenia subjects. Again these
results may suggest some problem in spontaneous control of the glottal pro-
duction mechanism. All post-hoc between-group comparisons were significant
(χ2 = 26.41; df = 2, 59; p << 0.01).

3.2 Correlation

In order to compensate for excessive skew in the clinical measures we followed [2]
and employed non-parametric statistics (Spearman’s ρ correlation coefficient).
Rank order correlations (Spearman) were computed between the acoustic and
clinical based symptoms of the subjects (this data is omitted). More interest-
ingly, we correlated the acoustic measures with the diagnostic rating as seen
in Table 1. Here the correlation scores were only calculated within the relevant
group, that is, Schizophrenia clinical ratings were correlated with acoustic mea-
sures of subjects diagnosed with schizophrenia, while depression clinical ratings
were correlated with acoustic measures of depressed subjects only.

Some findings in Table 1 are worth special mention. Spoken ratio was defined
to agree with the description of Alogia as a reduction in quantity of speech; we
find it reassuring that it is highly correlated with the SANS-alogia clinical rating
(0.64, p << 0.01). Contrary to reported results in [2], high correlations between
STD of pitch and spoken ratio were observed.

3.3 Classification

The linear support vector machines (SVM) classifier [22] was employed to train
discriminative models using the extracted measures. The task consists of either
binary classification, where a model was trained to discriminate between two
distinct mental states, or multi-class classification, where a set of models was
trained to identify the mental state of a specific speaker in a 1-vs.-all approach.
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Schizophrenia Scales Depression Scales

SANS
PANSS (total) (affect) (alogia) MADRAS HAM-D

1. Spoken Ratio −0.11 −0.5∗∗ −0.58∗∗ −0.64∗∗ −0.11∗ 0.11
2. Utterance Duration −0.19 −0.44∗∗ −0.55∗∗ −0.49∗∗ −0.27∗ 0.05
3. Gap Duration 0.09 0.45∗∗ 0.45∗∗ 0.54∗∗ −0.01∗ −0.14
4. Pitch Range −0.16 0.04 0.13 0 −0.35∗ −0.33∗

5. STD Pitch 0 −0.07 −0.17 −0.17 −0.18 −0.15
6. STD Power −0.14 −0.27 −0.39 −0.31∗ −0.01 0.1
7. 1 −MWC 0.03 0.24 0.4 0.32∗ 0.19 0.19
8. Jitter 0.34 0.38∗ 0.21 0.45∗ −0.1 −0.3
9. Shimmer 0.41∗ 0.4∗ 0.18 0.31∗ −0.01 0.2

Table 1: Acoustic Features- Psychiatric Scales Correlations: * indicates
p < 0.05, ** indicates p << 0.01.

Our classifier obtained the following pair-wise classification success rates (chance
at 50%): control vs. Schizophrenia - 76.19%, control vs. depression - 87.5%, and
Schizophrenia vs depression - 71.43%. Multi-class classification success rate was
at 69.77 (chance at 33.3%).

4 Summary and Discussion

Speech acoustics is a measurable behavior that could be utilized as a biomarker
in the clinical setting. The change in the acoustics of speech is not the only aspect
of speech that changes in the course of various disorders [21], but these changes
are a well documented phenomenon in both schizophrenia and depression. In
both disorders speech acoustics often changes over time.

Our study was motivated by the desire to contribute to the search for a
possible biomarker for schizophrenia and major depressive disorder. Clearly the
development of reliable, objective, low-priced, and readily applicable assessment
tools would enhance the accuracy of the clinical evaluation for diagnosis and
monitoring. We focused on a relatively simple set of features extracted from
the speech signal in the temporal domain. We divided the set of features into
three groups of features, according to the time scale required for their extraction.
We showed that while macro-scale features correlate with distinct components
of the SANS rating scale, meso-scale features show poor correlations. Micro-
scale features showed the highest promise as diagnostic measures both in terms
of reliability and validity. Our findings that the acoustic features can separate
schizophrenia from depression subjects, without reference to the content of the
speech, provides converging evidence for the promise of this approach.
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