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Abstract
When given a small sample, we show that classi-
fication with SVM can be considerably enhanced
by using a kernel function learned from the train-
ing data prior to discrimination. This kernel is
also shown to enhance retrieval based on data
similarity. Specifically, we describe KernelBoost
- a boosting algorithm which computes a kernel
function as a combination of ’weak’ space parti-
tions. The kernel learning method naturally in-
corporates domain knowledge in the form of un-
labeled data (i.e. in a semi-supervised or trans-
ductive settings), and also in the form of labeled
samples from relevant related problems (i.e. in a
learning-to-learn scenario). The latter goal is ac-
complished by learning a single kernel function
for all classes. We show comparative evaluations
of our method on datasets from the UCI repos-
itory. We demonstrate performance enhance-
ment on two challenging tasks: digit classifica-
tion with kernel SVM, and facial image retrieval
based on image similarity as measured by the
learnt kernel.

1. Introduction
Learning from small samples is an important problem,
where machine learning tools can in general provide very
few guarantees. This problem has received considerable
attention recently in the context of object recognition and
classification (see for example (Li et al., 2004)). Successful
generalization from a very small number of training sam-
ples often requires the introduction of a certain ’hypotheses
space bias’ (Baxter, 1997) using additional available infor-
mation. One such source of information may be unlabeled
data, leading to semi-supervised or transductive learning
(Chapelle et al., 2006). Another possible source of infor-
mation is to use labeled samples from related problems, and
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try to achieve “inter-class transfer”, also known as “learn-
ing to learn”. “Learning to learn” may be expected when
there is some shared within-class structure between vari-
ous classes. The idea is to learn from very small samples
by making use of information provided from other related
classes, for which sufficient amounts of labeled data are
present. There are a number of different methods which
have been previously suggested for exploiting the shared
structure between related classes (Thrun & Pratt, 1998).
These include the selection of priors (Baxter, 1997), hier-
archical modeling, and learning transformations between
class instances (Sali & Ullman, 1998; Ferencz et al., 2005;
Miller et al., 2000).

In this paper, we suggest to learn distance functions, and
show that such functions can provide a plausible alter-
native for transferring inter-class structure. In particular,
we describe KernelBoost - an algorithm that learns non-
parametric kernel functions. These kernels can then be
used for classification with kernel SVM. They can also be
used directly for retrieval based on similarity (as measured
by the kernel). The algorithm is semi-supervised and can
naturally handle unlabeled data. The direct input of the
algorithm is actually equivalence constraints - relations de-
fined on pairs of data points that indicate whether the pair
belongs to the same class or not. When provided with la-
beled data, such constraints may be automatically extracted
from the labels.

The learning algorithm we suggest is based on boosting.
In each round, the weak learner computes a Gaussian Mix-
ture Model (GMM) of the data using some of the equiva-
lence constraints and weights on the labeled and unlabeled
data points. The mixture is optimized using EM to find
a partition which complies with the data density, as well
as with the equivalence constraints provided. A ’weak ker-
nel’ hypothesis, defined over pairs of points, is then formed
based on the probability that the two points originate from
the same cluster in the learnt model. The boosting process
accumulates a weighted linear combination of such ’weak
kernels’, which define the final kernel. Note that this fi-
nal kernel is a function, defined for any pair of data points.
Details are presented in Sec. 2.
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We test our proposed algorithm both on classification and
retrieval tasks. We first tested the algorithm without using
any additional domain knowledge on several UCI datasets
(see Sec. 3). We then present results on the task of classify-
ing digit images, and on facial image retrieval using addi-
tional domain knowledge (see Sec. 4). Both tasks were se-
lected because there are good reasons to expect some form
of “inter-class-transfer” between the different classes (dig-
its or faces). In the classification tasks, the kernel function
is used in a standard ’soft margin’ SVM algorithm. Multi-
class problems are addressed using the ’all-pairs’ Error-
Correcting Output Codes (ECOC) technique (Dietterich &
Bakiri, 1995), in which the full set of binary classifiers over
pairs are combined to form an m-class classifier. In order
to try and make use of the relatedness of these binary clas-
sification problems, a single kernel function is trained on
the entire m-class training set. This single kernel function
is used (up to truncation as described in Sec. 2.4), by all of
the pairwise binary classifiers trained.

In an image retrieval task, the system is presented with a
query image and is required to return the images in the
database that are most similar to the query image. Per-
formance therefore relies on the quality of the similarity
function used to retrieve images. The similarity measure
can be hand-defined, or learnt using a set of labeled train-
ing images. Ultimately a good similarity function could
be trained on a set of labeled images from a small set of
classes, and could then be used to measure similarity be-
tween images from novel classes. In general, this is a very
challenging and currently unsolved problem. However, as
we show, on the more specific task of facial image retrieval,
our proposed algorithm learns a similarity function which
also generalizes well to faces of subjects who were not pre-
sented during training at all.

1.1. Related Work

There is a growing literature on the learning of distance
functions and kernels, two problems that are typically
treated quite differently. For example, learning a Maha-
lanobis metric from equivalence constraints is discussed
in (Xing et al., 2002; Bar-Hillel et al., 2005), while Dist-
Boost (Hertz et al., 2004) uses boosting to learn generative
distance functions which are not necessarily metric. The
question of how to learn a new kernel from a set of exist-
ing kernels and a training set of labeled data is discussed in
a number of recent papers, for example, (Cristianini et al.,
2002; Zhang et al., 2006; Lanckriet et al., 2002; Crammer
et al., 2002; Ong et al., 2005). Finally, learning of kernel
functions in the context of learning-to-learn is discussed in
(Yu et al., 2005).

We note however, that most of these kernel learning meth-
ods learn a kernel matrix (rather than a function), and there-

fore typically use the transductive framework which makes
it possible to learn a kernel matrix over the set of all data,
train and test. Without making the transductive assump-
tion, most earlier methods have dealt with the estimation of
kernel parameters. Our method, on the other hand, learns
a non-parametric kernel function defined over all pairs of
data points. The proposed method is semi-supervised and
can also make use of unlabeled data (which may not neces-
sarily come from the test set).

2. KernelBoost: Kernel Learning by Product
Space Boosting

KernelBoost is a variant of the DistBoost algorithm (Hertz
et al., 2004) which is a semi-supervised distance learning
algorithm that learns distance functions using unlabeled
datapoints and equivalence constraints. While the Dist-
Boost algorithm has been shown to enhance clustering and
retrieval performance, it was never used in the context of
classification, mainly due to the fact that the learnt dis-
tance function is not a kernel (and is not necessarily met-
ric). Therefore it cannot be used by the large variety of ker-
nel based classifiers that have shown to be highly success-
ful in fully labeled classification scenarios. KernelBoost
alleviates this problem by modifying the weak learner of
DistBoost to produce a ’weak’ kernel function. The ’weak’
kernel has an intuitive probabilistic interpretation - the sim-
ilarity between two points is defined by the probability that
they both belong to the same Gaussian component within
the GMM learned by the weak learner. An additional im-
portant advantage of KernelBoost over DistBoost is that it
is not restricted to model each class at each round using a
single Gaussian model, therefore removing the assumption
that classes are convex. This restriction is dealt with by us-
ing an adaptive label dissolve mechanism, which splits the
labeled points from each class into several local subsets,
as described in Sec. 2.5. An important inherited feature of
KernelBoost is that it is semi-supervised, and can naturally
accommodate unlabeled data in the learning process. As
our empirical results show, the ability to use unlabeled data
in the training process proves to be very important when
learning from small samples.

2.1. The KernelBoost Algorithm

Let us denote by {xi}ni=1 the set of input data points which
belong to some vector space X , and by X × X the “prod-
uct space” of all pairs of points in X . An equivalence con-
straint is denoted by (xi1 , xi2 , yi), where yi = 1 if points
(xi1 , xi2 ) belong to the same class (positive constraint) and
yi = −1 if these points belong to different classes (negative
constraint). (xi1 , xi2 , ∗) denotes an unlabeled pair.

The algorithm makes use of the observation that equiva-
lence constraints on points in X are binary labels in the
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Algorithm 1 The KernelBoost algorithm.
Input:

Data points: (x1, ..., xn), xk ∈ X

A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}

Unlabeled pairs of points: (xi1 , xi2 , yi = ∗), implicitly defined by all unconstrained pairs of points

• Initialize W 1
i1i2

= 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)
wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using the equivalence constraints.
2. Generate a weak kernel function Kt : X × X → [0, 1] and define a weak hypothesis as

K̃t(xi, xj) = 2Kt(xi, xj)− 1 ∈ [−1, 1]

3. Compute rt =
�

(xi1
,xi2

,yi=±1)

W t
i1i2

yiK̃t(xi1 , xi2), only over labeled pairs. Accept the current hypothesis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2

ln( 1+rt

1−rt
).

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=

�
W t

i1i2
exp(−αtyiK̃t(xi1 , xi2)) yi ∈ {−1, 1}

W t
i1i2

exp(−λ ∗ αt) yi = ∗

where λ is a tradeoff parameter that determines the decay rate of the unlabeled points in the boosting process.

6. Normalize: W t+1
i1i2

=
W

t+1

i1i2
n�

i1,i2=1

W
t+1

i1i2

7. Translate the weights from X × X to X : wt+1
k =

�
j
W t+1

kj

Output: A final Kernel function of the form K(xi, xj) =
� T

t=1 αtKt(xi, xj).

product space, X × X . Thus, by posing the problem in
product space the problem is transformed into a classical
binary classification problem, for which an optimal classi-
fier should assign +1 to all pairs of points that come from
the same class, and−1 to all pairs of points that come from
different classes 1. The weak learner itself is trained in the
original space X , which allows it to make use of unlabeled
data points in a semi-supervised manner. The weak learner
is then used to generate a “weak kernel function” on the
product space.

The KernelBoost algorithm (described in Alg. 1 above)
learns a Kernel function of the following form:

K(x1, x2) =

T
∑

t=1

αtKt(x1, x2) (1)

which is a linear combination of “weak kernel functions”
Kt with coefficients αt. The algorithm uses an augmen-
tation of the ’Adaboost with confidence intervals’ algo-
rithm (Schapire & Singer, 1999) to incorporate unlabeled
data into the boosting process. More specifically, given
a partially labeled dataset {(xi1 , xi2 , yi)}Ni=1 where yi ∈

1Also referred to as the ideal kernel (Cristianini et al., 2002).

{1,−1, ∗}, the algorithm searches for a hypothesis which
minimizes the following loss function:

∑

{i|yi=1,−1}

exp(−yiK(xi1 , xi2)) (2)

Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but up-
dates the weights over all pairs of points. The unlabeled
points serve as a prior on the data’s density, which effec-
tively constrains the parameter space of the weak learner
in the first boosting rounds, giving priority to hypotheses
which both comply with the pairwise constraints and with
the data’s density. In order to allow the algorithm to fo-
cus on the labeled points as the boosting process advances,
the weights of the unlabeled points decay in a rate which is
controlled by a tradeoff parameter λ and by the weight of
each boosting round αt (see Alg. 1 step 5). Throughout all
experiments reported in this paper, λ was set to 10.

2.2. KernelBoost’s Weak Learner

KernelBoost’s weak learner is based on the constrained Ex-
pectation Maximization (cEM) algorithm (Shental et al.,
2003). The algorithm uses unlabeled data points and a
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set of equivalence constraints to find a Gaussian Mixture
Model (GMM) that complies with these constraints.

At each iteration t, the cEM algorithm’s uses a set of un-
labeled points X = {xi}ni=1, and a set of pairwise con-
straints (Ω) over these points, in order to learn a Gaussian
mixture model with parameters Θt = {πtk, µtk,Σtk}

Mt

k=1 .
We denote positive constraints by {(p1j , p2j )}

Np

j=1 and nega-
tive constraints by {(n1k, n2k)}Nn

k=1. Let L = {li}ni=1 denote
the hidden assignment of each data point xi to one of the
Gaussian sources (li ∈ {1, . . . ,M}). The constrained EM
algorithm assumes the following joint distribution of the
observables X and the hiddens L:

p(X,L|Θ,Ω) = (3)
1

Z

n

Π
i=1

πlip(xi|θli)
Np

Π
j=1

δl
p1

j
l
p2

j

Nn

Π
k=1

(1− δl
n1

k
l
n2

k

)

where Z is the normalizing factor and δij is Kronecker’s
delta. The algorithm seeks to maximize the data likelihood,
which is the marginal distribution of (3) with respect to L.
For a more detailed description of this weak learner see
(Shental et al., 2003).

2.3. Generating a Weak Kernel from a GMM

Given the mixture Θt at round t, we construct a ’weak
kernel’ which essentially measures the probability that two
points belong to the same Gaussian component. Denoting
the hidden label of a point according to the mixture by l(x),
the kernel is given by

Kt(x1, x2) = p[l(x1) = l(x2)|Θ] (4)

=

Mt

∑

j=1

p(l(x1) = j|Θ)p(l(x2) = j|Θ)

where p[l(x) = j|Θ] = πjG(x|µk,Σk)
Mt�
k=1

πkG(x|µk,Σk)

, and G(x|µ,Σ)

denotes the Gaussian probability with parameters µ and Σ.

This “weak kernel” is bounded in the range [0, 1]. The
weak hypothesis required for updating the sample weights
in the boosting process is created by applying the linear
transformation 2K(x1, x2)− 1 ∈ [−1, 1] to the ’weak ker-
nel’. Note that the final combined kernel is a linear combi-
nation of the “weak kernels” (and not the weak hypotheses)
in order to ensure positive definiteness.

2.4. Adapting the Learned Kernel Function

As noted above, KernelBoost can learn a single kernel func-
tion over a multi-class dataset, which can then be used to
train both binary classifiers and an m-class classifier. When
training a binary classifier between any subset of labels

from the data, we adapt the learned kernel function. More
specifically, we consider all ’truncated’ kernel combina-
tions, i.e kernels that are a truncation of the full learned
kernel up to some t′ ≤ T . In order to select the optimal
truncated kernel for a given binary classification problem,
we use the empirical kernel alignment score suggested by
(Cristianini et al., 2002) between the learned kernel and the
’ideal’ kernel (Kideal = yy′) which is given by

Alignment(K,S) =
〈K,Kideal〉F

√

〈K,K〉F 〈Kideal,Kideal〉F
where S = (xi, yi) is the training sample, y denotes the
vector of point labels and 〈.〉F denotes the Frobenius prod-
uct . This score is computed for t = 1 . . . T and the kernel
with the highest score on the training data is selected.

2.5. The Label Dissolving Mechanism

The weak learner of the KernelBoost algorithm treats all
constraints as hard constraints; in particular, since all pos-
itive constraints are always satisfied in the cEM algorithm,
its only option is to attempt to place all of the points from
the same label in a single Gaussian at every iteration. This
is very problematic for non-convex classes generated by
non-Gaussian distributions (see Fig. 1). Therefore, in order
to enrich the expressive power of KernelBoost and to al-
low it to model classes of these types, the algorithm is aug-
mented by a label-dissolving mechanism, which relies on
the boosting weights. This mechanism splits sets of points
with the same label into several local subsets, which allows
the algorithm to model each of these subsets separately, us-
ing a different Gaussian model.

Figure 1. A 2-d synthetic
example of a non-convex
and non-Gaussian dataset.

The intuition leading to the
proposed mechanism is the
following: We would like to
model each non-convex class,
using several local Gaussians.
The attempt to model a highly
non-Gaussian, or non-convex
class using a single Gaussian,
will fail, and cause some of
the pairwise constraints to be unsatisfied. The boosting pro-
cess focuses each new weak learner on those harder pairs
still inconsistent with the current hypothesis. The adaptive
dissolve mechanism uses these pairwise weights to elimi-
nate edges already consistent with the current hypothesis
from a local neighborhood graph. Classes are therefore
split into small local subsets. The dissolve mechanism pro-
posed is presented below in Alg. 2.

This mechanism has one tunable parameter Nmutual,
which determines the pre-computed neighborhood graph
for each of the labels2. This parameter implicitly affects

2Neighbors are defined as “mutual” iff i is within the first N
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Algorithm 2 The adaptive label-dissolve mechanism.
Preprocess: For each label l, compute a local neighborhood

graph where each labeled datapoint is connected to all of
its mutual neighbors from the first Nmutual neighbors.

For t = 1 . . . T do

For each label l do

1. Define the edge weights on the graph to be the pairwise
weights W t

i1,i2
computed by the boosting process.

2. Threshold edges by removing all edges whose weight
is smaller then the average edge weight given by
1
|l|

�
(i1,i2)∈l

W t
i1,i2

.

3. Compute the connected components of the graph and
use them to define a partition of the labels from the
current class into small and local subsets.

the number of subsets obtained at each boosting round.

2.6. The Kernel’s Implicit Representation

The substitution of Equation (4) into (1) yields the structure
of the learnt kernel:

K(x1, x2) = (5)
T

∑

t=1

Mt

∑

k=1

√
αtp[l(x1) = k|Θt] · √αtp[l(x2) = k|Θt]

If we think of each element in the sum in Equation (5) as a
feature in a feature-space of dimension

∑T

t=1M
t, then the

coordinate corresponding to the pair (t, k) holds a feature
of the form

Φt,k(x) =
√
αt

πkG(x|µtk,Σtk)
Mt
∑

j=1

πjG(x|µtj ,Σtj)
(6)

These features can be interpreted as soft Voronoi cell indi-
cators: a high value for feature Φt,k indicates that the point
lies in cell k of the partition induced by mixture t. These
features are rather different from the prototype-like RBF
features. Specifically, their response does not necessarily
decay rapidly with the distance from the Gaussian’s center.
Decay only happens in regions where other Gaussians from
the same mixture are more likely.

3. Experiments: Learning from Small
Samples

3.1. Visualization using 2D Synthetic Datasets

We begin by returning to the non-convex, and non-
Gaussian dataset presented in Fig. 1. Each class in this

neighbors of j and vice-versa.

dataset was created using two Gaussians. We compared the
performance of KernelBoost to several standard kernels.
More specifically, we compared the following kernels: (1)
KB - KernelBoost, (2) KB-dis - KernelBoost which in-
cludes the label dissolving mechanism described above, (3)
the linear kernel, (4) the polynomial kernel of degree 2, (5)
the RBF kernel (with σ chosen using cross-validation)

The dataset contains 500 datapoints. In our experiment we
randomly selected Ntrain datapoints for training (where
Ntrain = 20 or 100) and used the remaining datapoints for
testing. We uniformly set the SVM tradeoff parameter C to
5 in all these experiments. Each of the two experiments was
repeated for 10 random train-test data splits. KernelBoost
was run for 10 boosting iterations.

Table 1. A comparison of classification accuracy on the non-
convex and non-Gaussian dataset shown in Fig. 1. Best Results
are highlighted in bold.

Ntrain KB KB-dis Linear Poly. RBF

20 17.5 4.5 12.0 13.1 6.3
100 17.9 0.9 10.4 10.5 1.9

The results are reported in Table 1. As may be seen, Kernel-
Boost with the dissolve mechanism outperforms all other
kernels on this dataset for both small and large samples.
Using the label dissolving mechanism suggested above,
KernelBoost can generate general non-convex separators,
as can be seen from the results in Table 1. Fig. 2 shows the
learnt Gaussians and the separating hyper-plane induced by
the learnt kernel in a typical experiment on this dataset.

Figure 2. Left: The Gaussians learnt by KernelBoost-dissolve
(presented in Sec. 2.5). The Ellipses mark 1-std contours. Darker
ellipses show Gaussians obtained at later boosting rounds. Right:
The separator induced by the Gaussians for this example. Support
vectors are marked by black dots.

3.2. Results on UCI Datasets

We now turn to evaluate the performance of our algorithm
on several real datasets from the UCI repository, and also
compare its performance to some standard ’off the shelf’
kernels.
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Experimental setup We used 4 datasets from the UCI
data repository (Blake & Merz, 1998): wine, ionosphere
breast cancer and balance. These experiments were con-
ducted in a transductive setting, i.e. the test data was pre-
sented to the KernelBoost algorithm as unlabeled data. We
used 10% of the data as training sample. For each of these
conditions we compare our method with some standard
’off-the-shelf’ kernels, and report the best results of (Zhang
et al., 2006) on the same experimental setup. The results
reported are averages over 10 random train/test splits. In
all of these experiments the SVM tradeoff parameter was
set to 300. The dissolve neighborhood parameter Nmutual

was set to 12, and we used T = 30 boosting rounds. The
results may be seen in Table 2. KernelBoost outperforms
other methods on 3 of the 4 datasets.

Table 2. A comparison of classification accuracy of various ker-
nels on 4 UCI datasets. In this experiment 10% of the data was
used both for learning the kernel and training the SVM classifier.
Results were averaged over 10 different realizations of train and
test data. Best results are highlighted in bold.

Data KB KB-dis Lin. Poly. RBF Zhang

wine 95.1 95.4 91.9 78.3 90.8 94.6
ionos. 85.9 90.4 79.7 72.3 84.5 87.6
breast 94.2 92.6 94.8 93.9 95.7 94.6
balance 83.5 86.4 84.4 77.4 85.0 —

4. Experiments: Learning to Learn
4.1. MNIST Digit Classification

Various different classification methods have been used on
the MNIST dataset, some of which providing almost per-
fect results (LeCun et al., 1998). However, these methods
were all trained and tested on very large samples of train-
ing data (usually on the entire training set which consists
of 60, 000 datapoints). Since we are interested in testing
inter-class transfer, we conducted a set of experiments in
which a very limited amount of training data was used.

Experimental setup: In these experiments, we randomly
selected 1000 sets of 4 digits from the dataset, and used 5
different train/test splits for each set. For each set of 4 dig-
its, we further split the classes into 2 pairs: one pair was
designated to provide large amounts of data for training,
while the other pair was designated to provide a very small
amount of training data. For each 4-tuple, we considered
all 6 possible splits into pairs. For the designated ’large’
classes we randomly selected 100 datapoints as train data.
For the designated ’small’ classes, we randomly selected k
labeled points from each class, where k = 3, 4, 5, 6, 10 and
20. Additionally, for each of the 4 digits we randomly se-
lected 200 datapoints which were supplied to the learning
algorithm as unlabeled data . KernelBoost used the train-

ing data from all 4 classes to learn a single kernel func-
tion. Predictions were evaluated on a test set of 200 points
from each class, which were not presented during the train-
ing stage. Images were represented using the first 30 PCA
coefficients of the original vectorized images. The SVM
tradeoff parameter C was set to 300, T was set to 10 and
the Nmutual parameter was uniformly set to 12.

After learning the kernel function, we trained SVM bi-
nary classifiers for all 6 digit pairs. As a baseline com-
parison, we also trained SVM binary classifiers using stan-
dard ’off-the-shelf’ kernels for all the pairs. We compared
our algorithm to the following standard kernels: linear,
RBF and a polynomial kernel of degree 5 (which has been
shown to perform well on the MNIST dataset (LeCun et al.,
1998)). The binary SVM’s were also used to create a multi-
class classifier using the ’all-pairs’ Error Correcting Output
Codes (ECOC) scheme (Dietterich & Bakiri, 1995).

These 6 binary classification problems (for each 4 digits)
can be divided into 3 subgroups, to allow a more detailed
analysis of the effects of “inter-class-transfer”:

1. ’small vs. small’ - the single binary classifier trained
on the two classes for which a very small amounts of
labeled points was present (k).

2. ’small vs. large’ - the 4 binary classifiers which were
trained on two classes, where one had a large amount
of labeled points (100) and the other had a very small
amount of labeled points (k).

3. ’large vs. large’ - the single binary classifier trained
on the two classes for which large amounts (100) of
labeled data was present.

From these three types, the first two may benefit from
inter-class transfer. Clearly the hardest binary classifica-
tion problem is the ’small vs. small’ one in which the total
amount of datapoints is only 2k. However, the 4 ’small vs.
large’ binary problems are also very challenging.

Classification results: The results on the MNIST classi-
fication tasks when using k = 3 labeled points for the small
classes are presented in Table 3. These results demonstrate
a clear advantage of KernelBoost over all other standard
kernels in this difficult classification task. Specifically, in
the challenging ’small vs. small’ condition, both Kernel-
Boost variants obtain significantly better accuracy scores
over all other kernels. Note that the performance of the
KB-dis variant is always superior to that of the original KB
method. In the ’small vs. large’ condition, both Kernel-
Boost variants achieve excellent performance with an im-
provement of roughly 15% in test accuracy over all other
kernels. Finally, as expected, in the ’large vs. large’ con-
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Table 3. A comparison of median classification accuracy of KernelBoost with various other standard kernels on randomly selected
subsets of 4 digits from the MNIST dataset. In this experiment the amount of labeled points for the ’small’ classes k was 3. Best Result
are highlighted in bold.

Type Kboost KboostDis Lin. Poly(5) RBF

’small vs. small’ 84.80(±0.40) 85.01(±0.46) 81.7(±0.31) 56.45(±0.37) 79.20(±0.33)
’small vs. large’ 92.90(±0.13) 89.60(±0.21) 72.70(±0.17) 51.10(±0.13) 77.60(±0.19)
’large vs. large’ 96.70(±0.15) 96.40(±0.23) 96.50(±0.10) 97.90(±0.08) 97.70(±0.08)
’ECOC’ (multi-class) 79.30(±0.23) 72.33(±0.27) 64.90(±0.22) 50.35(±0.17) 67.83(±0.23)
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Figure 3. Median classification accuracy on the MNIST dataset as a function of the number of labeled points. Methods compared are:
KB - KernelBoost, KB-dis - KernelBoost with the label dissolve mechanism, Lin. - linear kernel, Poly. - polynomial kernel of degree
5, and RBF - RBF kernel with σ chosen using cross-validation. Left: Results on the ’small vs. small’ classes. Middle: Results on the
’small vs. large’ classes. Right: multi-class classification results. When the Polynomial kernel is not shown its accuracy ≤ 60%.

dition all of the algorithms obtain almost perfect classi-
fication accuracy, and the polynomial kernel of degree 5
achieves the best performance. Note however, that on all
other tasks the polynomial kernel performs poorly, which
implies serious overfitting. Another clear advantage of the
KernelBoost algorithm is shown in the multi-class classi-
fication task, where its performance is significantly better
than all other methods.

It is interesting to analyze the results on these 4 classifi-
cation tasks as the number of labeled points k increases,
as shown in Fig. 3. Clearly, as the amount of labeled
data increases, the performance of all kernels improves, but
KernelBoost still maintains a significant advantage over its
competitors.

4.2. Facial Image Retrieval Results

In the previous section we have shown that KernelBoost
makes use of interclass transfer on digits from the MNIST
dataset. We now turn to another relevant application of fa-
cial image retrieval.

Experimental setup: We used a subset of the YaleB fa-
cial image dataset (Georghiades et al., 2000). The dataset
contains a total of 1920 images, including 64 frontal pose
images of 30 different subjects. In this database the vari-
ability between images of the same person is mainly due
to different lighting conditions. The images were automat-
ically centered using optical flow. Images were then con-

verted to vectors, and each image was represented using its
first 9 Fisher Linear Discriminant coefficients, which were
computed over the first 150 PCA coefficients. KernelBoost
was run for 10 boosting iterations, with a Gaussian Mix-
ture model with a single (shared) covariance matrix. On
this dataset, we conducted three experiments:

1. ’Fully supervised’ - in which we randomly selected
images from 20 of the subjects. We used 50% of their
data as training data and tested on the remaining 50%.

2. ’Semi-supervised’ setting in which we augmented the
train data of experiment 1 with an additional 50% of
the data from the remaining 10 classes as unlabeled
data, and tested performance on the remaining 50% of
the unlabeled classes.

3. ’Unsupervised’ setting in which we trained the algo-
rithm using the exact same data of exp. 1 and tested it
on images from the remaining 10 classes which were
not present during the training stage at all.

In the test stage of each of the experiments, the retrieval
database contained images of all 30 subjects, part (or all of
which) was used by the learning algorithms. For each im-
age we compute the ROC (Receiver Operating Characteris-
tic) curve and these ROCs are averaged to produce a single
ROC curve. The fraction of the area under the curve (AUC
score) is indicative of the distinguishing power of the algo-
rithm and is used as its prediction accuracy. We compare
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Figure 4. ROC retrieval curves on the YaleB dataset. The graphs
compare the performance of KernelBoost to RCA and to the Eu-
clidean distance metric in a “Learning to learn” scenario. Left:
Results for classes for which unlabeled data was presented during
the training stage. Right: Results on novel classes for which no
data at all was present during training.

the performance of our method to the RCA algorithm (Bar-
Hillel et al., 2005), which is a Mahalanobis metric learning
algorithm that has been shown to work well on image and
video retrieval (Bar-Hillel et al., 2005). As a baseline mea-
sure we also used the Euclidean metric.

Retrieval results: The results of the 3 experiments de-
scribed above are presented in Fig 4, and summarized in
Table 4. In the ’Fully-supervised’ experiment, the Kernel-
Boost method obtains almost perfect performance, with a
clear advantage over the simpler RCA algorithm. In the
’Semi-supervised’ experiment, both methods’ performance
degrades, but KernelBoost still performs significantly bet-
ter than all other methods. In the ’Unsupervised’ setting,
where the test set consists of faces of individuals not seen
during training, the performance degrades some more, but
both algorithms still perform significantly better that the
Euclidean distance metric.

Table 4. AUC scores (and ste’s) for the three image retrieval ex-
periments conducted on the YaleB dataset. See text for details.

Exp No. KernelBoost RCA Euclidean

(1) 98.94(±0.01) 93.88(±0.01) 60.84(±0.01)
(2) 84.57(±0.04) 77.37(±0.03) 59.00(±0.00)
(3) 79.74(±0.06) 76.62(±0.04) 58.92(±0.01)

5. Discussion
The main contribution of this paper lies in the description
of a method for learning non-parametric kernel functions.
The algorithm presented is semi-supervised (i.e., it bene-
fits from unlabeled data), and can learn from very small
samples. When used with kernel SVM, classification per-
formance was shown to be significantly better than various
standard kernels. The benefit of learning the kernel func-
tion was most evident in the context of “learning to learn”,
in which information is transferred to classes for which
only a few examples are available for training. In future
work we hope to explore the benefit of such learned ker-
nels when combined with other kernel-based techniques.
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