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a b s t r a c t

Category learning can be achieved by identifying common features among category mem-
bers, distinctive features among non-members, or both. These processes are psychologi-
cally and computationally distinct, and may have implications for the acquisition of
categories at different hierarchical levels. The present study examines an account of chil-
dren’s difficulty in acquiring categories at the subordinate level grounded on these distinct
comparison processes. Adults and children performed category learning tasks in which
they were exposed either to pairs of objects from the same novel category or pairs of
objects from different categories. The objects were designed so that for each category
learning task, two features determined category membership whereas two other features
were task irrelevant. In the learning stage participants compared pairs of objects noted to
be either from the same category or from different categories. Object pairs were chosen so
that the objective amount of information provided to the participants was identical in the
two learning conditions. We found that when presented only with object pairs noted to be
from the same category, young children (6 6 YO 6 9.5) learned the novel categories just as
well as older children (10 6 YO 6 14) and adults. However, when presented only with
object pairs known to be from different categories, unlike older children and adults, young
children failed to learn the novel categories. We discuss cognitive and computational fac-
tors that may give rise to this comparison bias, as well as its expected outcomes.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Categorization enables generalization from a few expe-
riences to novel conditions while reducing dramatically
the computational complexity of perceived objects or
events. For categories to have this capability, objects within
the same category must share some attributes, and at the
same time they need to differ on other attributes from ob-
jects belonging to different categories. Thus, logically, cate-
gory learning can be achieved either by identifying the

attributes shared by some exemplars1 known to be from
the same category, by identifying the attributes discriminat-
ing some exemplars known to be from different categories,
or – perhaps most probably – by both identifications.

Crucially, however, a number of researchers have ar-
gued that psychologically, the processing and computation
of similarities and differences are not necessarily equally
usable. For instance, Tversky (1977) noted that the weight
of exemplars’ common features (i.e., similarities) vs. dis-
tinctive features (differences) varies across tasks, and Med-
in, Goldstone, and Gentner (1990) concluded that the type
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of features on which adults focus varies between tasks
which require attention to similarities vs. differences. More
recently, a number of researchers suggested domain differ-
ences due to the processing of correlated vs. distinctive
features. For instance, Randall and colleagues showed that
while adults’ capacity to process correlated features (i.e.,
similarities) among category exemplars does not depend
on category domain (e.g., living vs. non-living), the capac-
ity to process distinctive features does (Randall, Moss,
Rodd, Greer, & Tyler, 2004). Specifically, the semantic rep-
resentations of living compared to non-living exemplars,
are more slowly activated by their respective distinctive
properties. Similarly, Cree and McRae (2003) suggested
that while correlated features are at the core of all concept
representations, the usability of distinctive features differs
dramatically across domains. These accounts imply that
‘‘domain-specific deficits” do not necessarily derive from
poor representation of a specific category domain, but
rather from a more general computational malfunction;
namely, an inability to process distinctive features, exacer-
bated in the case of living things due to their typical great-
er visual complexity (Randall et al., 2004).

An additional central aspect of human categorical
knowledge that may also be susceptible to the differential
processing of similarities and differences, is the hierarchical
organization of categories. Objects or events are not only
grouped into categories, but categories are also organized
in an inclusive structure, with different levels of abstraction
(Murphy, 2002; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). In particular, highly abstract – superordinate
– categories (e.g., ‘‘furniture”, ‘‘animals”), comprise more
specific – basic-level – categories (e.g., ‘‘chair”, ‘‘dog”),
which in turn include even more specific – subordinate –
categories (e.g., ‘‘rocking chair”, ‘‘poodle”).

It has been suggested that the hierarchical representa-
tion of concepts results from the ‘‘objective” structure of
object categories. Specifically, it is argued that basic-level
categories can be easily learned because, on the one hand,
they are quite homogenous, while on the other, they are
fairly distinct from each other (Malt, 1995; Rosch et al.,
1976). The representation of superordinate-level categories
might be relatively more complex since they are poorly
homogenous. Finally, more specific, subordinate-level cate-
gories may be more difficult to acquire since, despite their
being even more homogenous than basic-level categories,
they are not as distinct from other subordinate-level cate-
gories associated with the same basic-level category (Mark-
man & Wisniewski, 1997; Murphy & Brownell, 1985).

The above description implies differences in the modal
computations of similarities and differences typically re-
quired for acquiring categories from the different hierar-
chical levels (see for instance, Markman & Wisniewski,
1997). Specifically, basic-level categories may require a
learner to identify both within-category similarities and
between-category differences. In fact, one may argue that
in many cases, the former kind of computation will suffice
to give rise to basic-level categories, because of the high-
degree of between category distinctiveness, together with
only fairly good within category cohesiveness at this level.
Categories at the superordinate-level, in turn, demand that
the learner ignore somewhat striking within-category

exemplar differences, focusing instead on relatively ab-
stract similarities correlated with a few perceptual similar-
ities. Finally, subordinate-level categories, in which there is
high similarity both within-category and between-catego-
ries, place the heaviest weight on detecting subtle yet
important differences between exemplars from different
categories.

The above analysis suggests that when deciding
whether two items belong to the same category, the kinds
of computations that learners have to undertake vary
according to the level of abstraction at which the learner
is categorizing. Thus, the computations regarding be-
tween-objects similarities and differences that are avail-
able to or favored by a learner, should impact the level of
abstraction at which the learner is proficient at categoriz-
ing items. Or putting it differently, the level of abstraction
at which learners are proficient at categorizing, may be
indicative of, or result from, the kinds of computations
they are capable of performing.

Developmental psychologists have for a long time been
interested in children’s acquisition of a hierarchical organi-
zation of categories. One view argues that the first catego-
ries acquired by children are at the basic-level (Brown,
1958; Malt, 1995; Rosch et al., 1976) – e.g., children prefer
labeling an animal as a ‘‘dog”, rather than referring to it
with a superordinate (‘‘animal”) or subordinate (‘‘poodle”)
label. Lately, a number of researchers have suggested that
both perceptually (Quinn, 2004; Younger & Fearing,
2000) and conceptually (Keil, 2008; Mandler, 2008), chil-
dren start off with broad categories, and gradually move
down to more specific levels of abstraction. For example,
Quinn and Johnson (2000) showed that 2-month-old in-
fants are capable of discriminating between mixtures of
different mammals and furniture, but not between cats
and a mixture of other basic-level categories of mammals
including elephants, rabbits, and dogs. While these ac-
counts seem to disagree about the developmental starting
point, they concur that subordinate-level categories are the
last to be acquired (see also Furrer & Younger, 2005; Hor-
ton & Markman, 1980; Mervis & Crisafi, 1982; Waxman,
Lynch, Casey, & Baer, 1997, for supportive findings).

The goal of the present study is to test an account of this
developmental phenomenon, grounded on processes of
computing similarities and differences in the context of
exemplar comparison. The hypothesis guiding the present
study is that if category learning at the various hierarchical
levels is related to the differences noted above in the com-
putation of similarities and differences, then the late emer-
gence of subordinate level categories in children may be
indicative of a difficulty in the computational processes re-
quired for learning subordinate categories – namely, iden-
tifying or computing between-category differences.

For the last two decades, scholars have emphasized the
importance of comparison processes for category learning
(e.g., Gentner & Markman, 1994; Gentner & Namy, 2006;
Kurtz & Boukrina, 2004; Markman & Gentner, 1993; Namy
& Gentner, 2002; Spalding & Ross, 1994). One important
conclusion deriving from these studies is that comparison
may differentially stress similarities and differences be-
tween compared items. For instance, in their studies on
the role of structural alignment and comparison, Markman
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and Gentner (1993) showed that when comparing pairs of
similar words (i.e., words representing similar concepts),
adults were capable of listing more similarities than when
comparing pairs of dissimilar words. Curiously, the reverse
was not true – when asked to list differences, subjects
listed more differences for the compared similar pairs than
for the dissimilar pairs. Furthermore, differences were
specified mostly when they could be aligned (e.g., having
two legs vs. having four legs). When differences could
not be aligned (e.g., having wings vs. having horns), they
were more likely to be ignored (Gentner & Markman,
1994). Consistent with these ideas, Boroditsky (2007)
found that comparison of two objects highlighted to adults
the similarities between the objects, even when partici-
pants were encouraged to address the differences between
them. This comparison bias increased the perceived simi-
larity between objects. In their review of this literature,
Doumas, Hummel, and Sandhofer (2008) suggested that
when two objects are compared, similar properties are rep-
resented twice, and as a result similarities receive twice
the input as do differences. They concluded that this may
give rise to the reported ‘‘attention bias”, in which similar-
ities overshadow differences.

Shifting to developmental studies, this comparison bias
seems to be even more evident: Gentner and Namy (1999)
found that comparing two perceptually similar category
members increased 4-year-olds’ tendency to categorize
the objects taxonomically (rather than thematically, for in-
stance). Furthermore, they showed that providing children
with a common label for objects encouraged comparison,
whereas providing conflicting labels deterred it (Namy &
Gentner, 2002). Findings with 12-month-olds suggest that
this comparison bias is present already at the earliest stages
of word learning (Waxman & Braun, 2005). As a number of
developmental researchers have concluded, a common la-
bel seems to foster children’s acquisition of a category be-
cause it implies that commonalities among the referents
of the label must exist (Gentner & Namy, 2006; Waxman
& Lidz, 2006).

The findings described above with adults, and especially
with children, intimate that in the process of comparing ob-
jects, similarities among category members eclipse differ-
ences. The goal of the present study is to test the inverse
implication, namely, how this comparison bias favoring
the processing of similarities may affect category learning.
To recap, for global categories, category learning by compar-
ing objects that share the same label or function (i.e., objects
from the same category) can be appropriate and perhaps
even sufficient, since the main challenge here is to identify
the few features that are common to category members
(within-category similarities). In contrast, for learning
highly specific categories, comparing objects with different
labels or functions (i.e., objects from different categories)
may have greater value, since there are not only many com-
mon features within each subordinate-level category,
rather there is also high between-category similarity. Since
this is the case, the challenge is to identify the few features
that distinguish between members of different categories.

The implication of the above analysis of the processing
of similarities and differences is that, while superficially,
same-class exemplars comparison (i.e., comparing objects

from the same category) and different-class exemplars com-
parison (i.e., comparing objects from different categories)
seem to be equally useful for category learning, these two
comparison processes differ fundamentally. In particular,
comparing same-class exemplars is useful for highlighting
possibly informative within-category similarities, and infor-
mative within-category differences. In turn, comparing dif-
ferent-class exemplars is useful for highlighting possibly
informative between-category differences, and uninforma-
tive between-category similarities. That is, same-class and
different-class comparisons may both involve the process-
ing of similarities and differences, but for each comparison
type, similarities and differences have different meanings
in category learning. If as intimated by the literature, the
processing of similarities is cognitively favored and avail-
able developmentally earlier than the processing of differ-
ences, then children might have an easier time acquiring
categories via comparison of same-class exemplars, than
via comparison of different-class exemplars. Given the
analyses described earlier about the differences in the kinds
of computations involved in categorization at different
hierarchical levels, support for this hypothesis would partly
explain why categories at hierarchical levels whose acquisi-
tion rests heavily on the processing of differences – namely,
subordinate-level categories – pose more difficulty for
acquisition than categories that rest heavily on the process-
ing of similarities.

To the best of our knowledge, no developmental study
has systematically investigated the differential contribu-
tions of comparison of same-class exemplars vs. compari-
son of different-class exemplars for category learning (but
see Hammer, Bar-Hillel, Hertz, Weinshall, & Hochstein,
2008; Hammer, Hertz, Hochstein, & Weinshall, 2005,
2007, 2009, for computer simulations and findings with
adults). The current study is designed for this purpose, test-
ing both children and adults. Unlike previous studies on
comparison processes, we systematically dissociate the
two comparison types. Furthermore, we test the process of
category learning by comparison, rather than how compari-
son is used when referring to already familiar categories.

In order to ensure that the hypothesized condition dif-
ferences would most likely result from the operation of a
cognitive bias, rather than category-specific prior knowl-
edge, perceptual properties of the objects, or other aspects
associated with the pairing of the compared objects, we
undertook a series of methodological precautions: First,
we equated the objective amount of information provided
to the participants in the two conditions (see description in
Section 2). Second, in the two experimental conditions par-
ticipants learned the same categorization rules, one group
by same-class comparison and the other group by differ-
ent-class comparison. Participants in the two conditions
were then tested on exactly the same task, using exactly
the same stimuli. Third, we used novel stimuli, and coun-
terbalanced the common vs. distinctive features, so as to
exclude any possible interference of previous domain-spe-
cific knowledge or feature salience. Furthermore, we also
encouraged participants to attend to both the similarities
and the differences between the compared stimuli during
the learning stage in both conditions. Finally, in order to
exclude the possibility that the comparison bias is associ-
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ated with the processing of labels, we also avoided the use
of labels as category relation identifiers (see Gelman &
Waxman, 2007; Sloutsky, Kloos, & Fisher, 2007a, 2007b;
Sloutsky, Lo, & Fisher, 2001, for a discussion on the possible
developmental changes in label processing).

Based on the adult, but especially the developmental
literature suggesting an advantage of comparison by simi-
larity over comparison by difference, we expected early
elementary-school aged children to be better at learning
categories from comparison of similar-class exemplars
than from different-class exemplars, but older children
and adults to perform equivalently in these two conditions.
Alternatively, if under such controlled conditions, young
children would show similar proficiencies in learning from
different-class exemplar comparison as from same-class
exemplar comparison, then this may suggest that the pre-
viously reported comparison bias is more specific. That is,
it might be reasonable to conclude that the bias results
from other factors associated with everyday life learning
conditions of natural categories rather than from a general
cognitive bias as we postulate. Children’s age range was se-
lected so as to maximize the possibility of observing vari-
ance in performance across development, while at the
same time ensuring that children were mature enough to
complete the categorization tasks with minimal interven-
tion by the experimenter.

2. Methods

2.1. Participants

Forty adults (19 6 years 6 36), 20 early elementary
school aged children (6 6 years 6 9.5), and 20 older chil-
dren (10 6 years 6 14), participated in the experiment
(similar numbers of males and females). In the statistical
analysis we refer to participants’ age using both a rational
scale and a categorical scale in which children’s age catego-
ries are determined by their median age. We obtained
written consent from adult participants and parental con-
sent for participating children. See Table 1 for further infor-
mation on participants’ ages.

2.2. Materials

Five sets of computer generated color images of ‘‘alien
creatures” were used as stimuli. Each set was characterized
by four binary feature-dimensions that could differ and
determine creature categories within the given set (that
is, for each set, 16 creatures were created). Stimuli were
designed so that the differences between the creatures in

all varying feature-dimensions were highly distinctive
(see Fig. 1).

The experiment was conducted using a laptop com-
puter with a 15-in. screen, set to a resolution of
1280 � 1024 pixels. Stimulus presentation was done using
software specially designed for the experiment. In each
experimental trial, a pair of stimuli was simultaneously
presented in the center of the computer screen. Each stim-
ulus occupied 320 � 320 pixels, and the two stimuli were
separated by a gap of 320 pixels. Both children and adults
responded directly, using the two keys of a mini-sized
computer mouse. The left key was marked with a green2

smiley sticker, and the right key was marked with a red
smiley sticker.

2.3. Design and procedure

Participants in each age group were randomly assigned
to one of two experimental conditions – the learning from
same-class exemplars condition and the learning from dif-
ferent-class exemplars condition. There were no significant
differences in terms of mean ages of participants between
the two experimental conditions in each of the age groups
(all p > .3; see Table 1).

The experimental task was a simple same/different task
in which participants decided whether two simultaneously
presented creatures were of the same creature kind, or of
two different kinds. Each participant performed the cate-
gory learning task for five stimulus sets (identical tasks
for children and adults). Each categorization task had three
blocks: the pre-learning test block consisted of eight test tri-
als, the learning block consisted of four learning trials, and
the post-learning test block consisted of eight additional test
trials. In each one of the test blocks, half of the test trials
presented pairs of creatures of the same kind (identical
in the two pre-selected relevant dimensions), and half
were of different kinds (different in one of the pre-selected
relevant dimensions, and one of the irrelevant dimen-
sions). The overall similarity between the paired creatures,
with respect to the varying features, was always the same
whether the two creatures were of the same kind or from
different kinds, making a strategy based on overall similar-
ity judgment inadequate. Taken together, in each one of
the test blocks there were four trials in which the paired
creatures were identical in the two relevant features, two
trials in which they differed in the first relevant and one
of the irrelevant features, and two trials in which they dif-

Table 1
Mean and standard deviation (SD) of participants’ ages in the different experimental conditions and age groups.

Condition/age-group 6 6 Age 6 9.5 10 6 Age 6 14 Adults

Same-class exemplars M = 7.70 M = 11.10 M = 24.71
SD = 1.06 SD = 1.29 SD = 5.15
n = 10 n = 10 n = 20

Different-class exemplars M = 7.55 M = 11.20 M = 25.45
SD = 1.07 SD = 1.48 SD = 3.61
n = 10 n = 10 n = 20

2 For interpretation to color in Figs. 1–6, the reader is referred to the web
version of this article.

108 R. Hammer et al. / Cognition 112 (2009) 105–119



Author's personal copy

fered in the second relevant and one of the irrelevant fea-
tures (see more details below). We used identical stimulus
pairs for the test blocks in the two experimental condi-
tions. Participants concluded the three-block categoriza-
tion task for one stimulus set, and then moved on to the
next set.

Before starting the experiment, participants were told
that they were going to play a game in which they would
learn about different creatures living on a remote planet.
Participants were further instructed that they would have
to decide whether each two creatures presented together
are of the same kind (pressing the left mouse key) or two
different kinds (pressing the right mouse key). Participants
were then told that, ‘‘Creatures of the same kind do not
need to be identical, as two different dogs are not totally
identical although they are of the same kind. Similarly,
two creatures from two different kinds do not have to be
totally dissimilar, as a dog and a cat also share many prop-
erties although not being of the same kind”.

Participants in the same-class exemplars condition were
then instructed that when two creatures appear inside a
green frame, it means that the two creatures are necessar-
ily of the same kind. Similarly, participants in the different-
class exemplars condition were instructed that when two
creatures appear inside two separate red frames, it means
that the two creatures are necessarily of different kinds.
Participants were further instructed that when such a
‘‘clue” is provided, they should respond by pressing the
left/right key. In addition, they were told to look for both
similarities and differences in order to try and identify
what is important to know about these creatures, and so
as to decide later whether other paired creatures are of
the same kind or not.

Following the instructions, participants performed one
warm-up categorization task that was similar to the exper-
imental tasks but had no time limit. While performing the
warm-up task, the experimenter repeated the instructions

to ensure that the participant knew which keys to use for
‘‘same” vs. ‘‘different” responses, and that the participant
understood the meaning of the clues. After performing
the warm-up task, the participant started the experimental
task with the first stimulus set without further intervention
by the experimenter (except the verbal encouragement gi-
ven to children at the end of each category learning task).
No feedback was provided for error or success.

Pre-learning test block: In the pre-learning test block of
the experiment, trial duration was four seconds, and par-
ticipants had to respond within this period of time. The
time interval between trials was half a second. In each of
the test trials, the two presented creatures were identical
in exactly two out of the four possible feature-dimensions,
and differed in the other two. Thus, the amount of similar-
ity vs. dissimilarity with respect to the four varying fea-
tures was roughly balanced, reducing possible response
bias. To further reduce the possibility of response bias, in
each experimental condition there were actually two
sub-conditions, which differed in the selected relevant fea-
ture-dimensions. The pre-learning test block provided an
indication of participants’ baseline performance, enabling
an estimation of the contribution of unsupervised learning
to performance of the task. It also allowed participants to
become familiarized with the particular dimensions in
which features varied for a given set. This phase of the
experiment was identical in the two conditions.

Learning block: The only difference between the two
experimental conditions was in the learning block, which
included different stimulus pairs within the colored frames
indicating their relation (same kind/different kinds). At the
beginning of each learning block, a slide stating ‘‘be pre-
pared for the clues” indicated to the participant the begin-
ning of the learning phase (it was also verbally announced
by the experimenter). After this slide disappeared, four
pairs of creatures appeared, one after the other, each with
a designating ‘‘clue”, as follows; in the same-class exemplars

Fig. 1. (a) The stimuli created for set 1. Each creature can be identified by the unique combination of its eye, skin color, fur color, and tail. Marked with pink
frames are two orthogonal exemplars, i.e., two creatures that differ in all four dimensions. (b) Two ‘‘orthogonal” exemplars from sets 2–5 (from top to
bottom).
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condition the two creatures appeared inside a green frame
indicating that these two creatures are of the same kind. In
the different-class exemplars condition, the two creatures
appeared in two separate red frames indicating that these
two creatures are of two different kinds. Each pair of crea-
tures differed by only one irrelevant feature in the same-
class exemplars condition, or by only one relevant feature
in the different-class exemplars condition. This pairing en-
abled a decisive indication concerning the irrelevance or
relevance of the specified dimension, respectively.
Although the relation between the two presented creatures
in the learning block was obvious, in order to verify that
participants understood the clues, they identified the cate-
gorical relation between the creatures by pressing the rel-
evant mouse key. Each one of the four trials in the learning
phase lasted 6 s (separated by a half second interval).

The quantity of information provided to the partici-
pants in the learning block was equalized and maximized

(given the limitations of each one of the comparison type)
between the two experimental conditions. Fig. 2a illus-
trates an example of the hypothesis space that the partic-
ipants could have worked out while performing the pre-
learning test block for the specific experimental tasks. The
table presents the four different binary feature-dimensions
in which this set of creatures varied: tail, eye, fur, and skin
dimensions. H1–H16 represent the 24 = 16 possible combi-
nations for irrelevant (marked with ‘‘0”) and relevant
(marked with ‘‘1”) dimensions. At one extreme, Hypothesis
1 suggests that no dimension is relevant for categorization
– that is, all creatures can be treated as if they are from the
same category. At the other extreme, Hypothesis 16 sug-
gests that all dimensions are relevant for categorization –
that is, each creature can be treated as if it is from a differ-
ent category. For this example, the two feature-dimensions
selected to be relevant for categorizing these particular
creatures are the tail and the eye dimensions. The partici-

Fig. 2. An illustration of the measures that were taken for equalizing the information quantity in the two learning-by-comparison conditions. (a) A table
illustrating the initial hypothesis space (16 possible hypotheses): all the possible combinations for relevant dimensions (marked as ‘‘1”) and irrelevant
dimensions (marked as ‘‘0”). (b) Two same-class exemplars indications (paired creatures in a green frame). The table below the upper same-class exemplars
represents the remaining hypotheses after being provided with the same-class indication suggesting that fur color is irrelevant (H1, H2, H5, H6, H9, H10,
H13, and H14). The table below the lower same-class exemplars represents the remaining hypotheses after being also provided with the indication that skin
color is irrelevant (H1, H5, H9, and H13). (c) Two different-class exemplars indications (paired creatures in two red frames). The table below the upper
different-class exemplars represents the remaining hypotheses after being provided with the indication that the tail is relevant (H9–H16). The table below
the lower different-class exemplars represents the remaining hypotheses after being also provided with the indication that the eye is relevant (H13–H16).

110 R. Hammer et al. / Cognition 112 (2009) 105–119



Author's personal copy

pants were asked to deduce this when provided with either
same-class or different-class indications.

Fig. 2b illustrates the learning in the same-class exem-
plars condition. The upper two exemplars are from the
same-class (as indicated to the participants by the single
green frame) and they differ only in their fur color. This
same-class ‘‘clue” indicates that fur color is not relevant
for categorization since the within category variation in
this dimension is similar to its overall variation. This elim-
inates all the hypotheses in which fur color is relevant (the
hypotheses marked in green in the table below the stimu-
lus pair). By reducing the hypothesis space by half, this
same-class indication provides �log28=16 ¼ 1 bit of infor-
mation. The same-class exemplars of the lower pair differ
only in their skin color. This same-class clue indicates that
skin color is also not relevant for categorization. This elim-
inates all the remaining hypotheses in which skin color is
relevant leaving the participants with the four hypotheses
in which both fur and skin color are not relevant for cate-
gorization. This same-class indication also provides
�log24=8 ¼ 1 bit of information. Taken together, the two
same-class exemplars indication provided 2 bits of infor-
mation by eliminating all the hypotheses in which either
one of the irrelevant dimensions is marked as relevant
(leaving only H1, H5, H9, and H13).

Additional same-class exemplar indications cannot pro-
vide any further information since all the irrelevant fea-
tures are already specified. Nevertheless, in each category
learning task we provided four same-class indications
(using four different pairs) so that each irrelevant feature

was specified twice. This was done to ensure that partici-
pants had sufficient opportunity to identify the task rele-
vant features.

Fig. 2c illustrates the learning in the different-class exem-
plars condition. The upper two exemplars are from differ-
ent-classes (as indicated to the participants by the two red
frames) and they differ only in their tails. This different-
class ‘‘clue” indicates that the tail is relevant for categoriza-
tion since this is the only feature discriminating two crea-
tures from two different kinds. This eliminates all the
hypotheses in which tails are irrelevant (marked in red in
the table below the stimulus pair). By reducing the hypoth-
esis space by half, this different-class clue provides
�log28=16 ¼ 1 bit of information. The lower two different-
class exemplars differ only in their eyes. This different-class
indication provides an additional �log24=8 ¼ 1 bit of infor-
mation by suggesting that eyes are also relevant for catego-
rization, leaving only the four hypotheses in which both
tails and eyes are relevant (H13–H16). Additional differ-
ent-class exemplar clues cannot provide any further infor-
mation since all the relevant features are already
specified. Here we also provided four different-class indica-
tions (using four different pairs) so that each relevant fea-
ture was specified twice.

To sum up, the quantity of information of each of the
same-class or different-class clues that were used is 1 bit,
and for each task in either condition participants received
a total of 2 bits of information (and received them twice,
redundantly) for each category learning task with each
creature set. Nevertheless, it is also obvious that even

Fig. 3. Schematic illustration of the categorization task for one set. The task-relevant dimensions are tails and eyes. In the pre-learning test block,
participants could only guess whether the two presented creatures were from the same kind. Nevertheless, this test phase enabled participants to identify
the potentially relevant features for this set (features in which these creatures can differ). In the same-class exemplars learning block, participants could learn
from the first clue – that the two presented creatures are of the same kind despite differing in fur color – that fur color is not relevant for category
membership. From the second clue they could have learned that the creatures’ skin color is also irrelevant. The two additional clues provided the same
insights concerning the creatures’ fur and skin colors (using different stimulus pairs), leaving the creatures’ eyes and tails as the only possible relevant
features for establishing category membership. From the first clue in the different-class exemplars learning block, participants could learn that the creatures’
tail is important since it is the only feature discriminating two creatures noted to be of different kinds. Similarly, from the second clue participants could
have learned about the importance of the creatures’ eyes. In the post-learning test block, participants had to perform the task according to what they had just
learned in the learning block. In the examples illustrated here, for the upper pair participants should have responded that the two are not of the same kind
since they differ in their eyes. For the lower pair participants should have responded that the two are of the same kind since they have identical eyes and
tails. Note that the creature pairs used in the test phases were identical for both conditions.
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when optimally used, each type of clue leaves a few alter-
native hypotheses in addition to the correct one (the ‘‘true
hypothesis” is H13 in which the tail and eye dimensions
are both specified as relevant, and the fur and skin colors
are specified as irrelevant). Alternative not-disproved
hypotheses either exclude also tail and/or eye as irrelevant
(for the same-class exemplars condition) or include fur
and/or skin color as also relevant (for the different-class
exemplars condition).

Post-learning test block: Immediately after the learning
block, the post-learning test block started. This test block
was identical for the two conditions, and was similar in
format and stimuli to the pre-learning test block. In this
phase, however, participants were instructed to make their
decisions according to what they had learned during the
learning block. After the categorization task for one set
was completed, there was a five second interval before
the task with the next stimulus set started. Fig. 3 presents
a schematic illustration of the experimental task paradigm.

3. Results

Our main hypothesis was that there would be no signif-
icant effect of condition among older children and adults,
but there would be a significant effect among younger chil-
dren in favor of the same-class exemplars condition. Com-
plementarily, the hypothesis was that there would be no
effect of age on performance in the same-class exemplars
condition, but that there would be such an effect in the
different-class exemplars condition. We measured partici-
pants’ ability to learn the new categories by using the
non-parametric sensitivity measure A0 (Grier, 1971), calcu-
lated from participants’ hits (correctly identifying two
creatures as belonging to the same category) and false-
alarms (incorrectly identifying two creatures as belonging
to the same category). A0 = 0.5 represents chance perfor-
mance, A0 = 1 represents perfect performance, and
0 < A0 < 0.5 represents response confusion. For each partic-
ipant we calculated his or her average performance in all
five sets. Participants with A0 < 0.5 or more than 12% of
missed trials in the post-learning test block were excluded
from the analysis (see Table 2). For the analysis, we used
as dependent measures both participants’ A0 in the post-
learning test block (denoted as post-A0), and the difference
between this and their measured A0 in the pre-learning test
block (post-A0 minus pre-A0). The latter measure (denoted
as A0-difference) is intended to ‘‘filter out” participants’
guessing strategy.

In order to evaluate the effect of age on sensitivity, we
first calculated the Pearson correlation between partici-
pants’ age (in years) and their post-A0 score, for each exper-

imental condition separately. In order to reduce the relative
weight of age differences among adults (which is less rele-
vant), we calculated the correlations between performance
and the natural log of age. We found no significant correla-
tion between ln age and post-A0 in the same-class exemplars
condition, r(38) = .12, p = .47, but the correlation between
ln age and post-A0 in the different-class exemplars condition
was highly significant, r(38) = .66, p < .0001. This result
supports our hypothesis that the capacity to learn from dif-
ferent-class exemplars develops with age, whereas the
capacity to learn from same-class exemplars is available
even for young children.

An ANOVA with post-A0 as dependent variable, age
group (young children, older children, and adults), and
experimental condition ( same-class exemplars vs. differ-
ent-class exemplars) as between-subject factors, revealed
no main effect of condition, F(2, 74) = .53, p = .47, but a sig-
nificant effect of age group, F(2, 74) = 10.74, p < .0001,
g2

p ¼ :23. Importantly, there was a significant interaction
between condition and age, F(2, 74) = 4.38, p < .02,
g2

p ¼ :11 (see Fig. 4 – left). Independent samples t-tests
on the effect of condition within each age group showed
that young children’s post-A0 score was significantly higher
when they were trained with same-class exemplars
(M = .74; SD = .12) than when they were trained with dif-
ferent-class exemplars (M = .62; SD = .12), t(18) = 2.24,
p < .05, d = 1.05. Older children performance when they
were trained with same-class exemplars (M = .81;
SD = .14) was not significantly different from their perfor-
mance when trained with different-class exemplars
(M = .80; SD = .11), t(18) = .26, p = .80, and adults’ perfor-
mance was somewhat better when they were trained with
different-class exemplars (M = .87; SD = .09) than when
they were trained with same-class exemplars (M = .80;
SD = .14), t(38) = �1.99, p = .054, d = .65, though this differ-
ence was not statistically significant.

Moreover, one-way ANOVAs showed a significant effect
of age on the post-A0 score only in the different-class exem-
plars condition F(2, 37) = 18.39, p < .001, but not in the
same-class exemplars condition F(2, 37) = .79. Post-hoc
Scheffe tests showed that in the different-class exemplars
condition, young children’s performance (M = .62;
SD = .12) was significantly lower than that of older children
(M = .80; SD = .11) and adults (M = .87; SD = .09) (p < .005
in both cases). There was no significant difference in the
post-A0 score between older children and adults, p = .23.

Similarly, an ANOVA with A0-difference as the depen-
dent variable revealed no main effect of condition, F(2,
74) = .89, p = .35, but a significant effect of age, F(2,
74) = 5.18, p < .01, g2

p ¼ :12. Again there was a significant
interaction between condition and age, F(2, 74) = 7.47,
p < .002, g2

p ¼ :17 (see Fig. 4 – right). t-Tests on the effect
of condition within each age group showed that for young
children, improvement was significantly greater when
they were trained with same-class exemplars (M = .32;
SD = .16) than with different-class exemplars (M = .12;
SD = .14), t(18) = 2.86, p < .02, d = 1.35. An opposite pattern
was found in the other age groups, such that improvement
was greater when provided with different-class exemplars
than when provided with same-class exemplars – though
only for adults the condition effect was statistically signif-

Table 2
Number of participants excluded from the analysis in each age group and
experimental condition.

Condition/age-group 6 6 Age 6 9.5 10 6 Age 6 14 Adults

Same-class exemplars 3 1 5
Different-class exemplars 2 1 3
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icant – older children, t(18) = �1.92, p = .071, d = .91;
adults, t(38) = �2.71, p < .02, d = .88.

One-way ANOVAs showed a significant effect of age on
the A0-difference only in the different-class exemplars condi-
tion F(2, 37) = 11.54, p < .001, but not in the same-class
exemplars condition F(2, 37) = .12. Post-hoc Scheffe tests
showed that in the different-class exemplars condition,
young children’s improvement (M = .12; SD = .14) was sig-
nificantly smaller than that of older children (M = .43;
SD = .16) and adults (M = .45; SD = .21) (p < .005 in both
cases). There was no significant difference in the A0-differ-
ence between older children and adults, p = .98.

Taken together, the above analyses show that for young
children, learning from same-class exemplars is more
effective than learning from different-class exemplars.
For older children, and especially for adults, the exact
opposite is the case.

3.1. Participants’ response-bias

In order to evaluate the effect of learning condition
(same-class vs. different-class) on the response bias in each
age group, we analyzed the changes in participants’ hit and
false-alarm rates separately. More specifically, we ana-
lyzed the difference between participants’ hit rate in the
post-learning test block and participants’ hit rate in the
pre-learning test block (denoted as hit-difference). Positive
values represent improvement in performance (increase
in the hit rate after learning; hit-difference = 0 represent
no improvement). Similarly we analyzed the difference in
participants’ false-alarm rate (denoted as FA-difference).
Negative values represent improvement in performance
(reduction in the false-alarm rate after learning; FA-differ-
ence = 0 represent no improvement). Fig. 5 illustrates par-
ticipants’ false-alarm and hit rates plotted on a receiver
operating characteristics (ROC) diagram.

An ANOVA with FA-difference as the dependent vari-
able revealed both a significant effect of condition, F(2,
74) = 9.23, p < .005, g2

p ¼ :11 (a larger reduction in the
false-alarm rate in the different-class exemplars condition
than in the same-class exemplars condition), and a signifi-

cant effect of age, F(2, 74) = 7.50, p < .002, g2
p ¼ :17, but

no significant interaction between condition and age, F(2,
74) = .37, p = .69. One-way ANOVA with Post-hoc Scheffe
tests showed that this latter main effect results from the
lack of significant reduction in young children’s false alarm
rate in both experimental conditions (M = �.06; SD = .16),
as compared to adults’ false-alarm reduction (M = �.24;
SD = .17), p < .05.

An ANOVA with hit-difference as the dependent vari-
able revealed no effect of condition, F(2, 74) = 2.93,
p = .09, but a significant effect of age, F(2, 74) = 3.55,
p < .05, g2

p ¼ :09. More importantly, there was a significant
interaction between condition and age, F(2, 74) = 8.22,
p < .001, g2

p ¼ :18 (see Table 3 for means). Further investi-
gation of this interaction using one sample t-tests (with
test value = 0) for each condition in each age group sepa-
rately, showed that learning from same-class exemplars
helped increase the hit rate for young children,

Fig. 4. Left: mean (and standard error of) sensitivity A0 following training, i.e., post-A0 , by condition and age. Right: mean (and standard error of) sensitivity
change from pre-training to post-training test, i.e., A0-difference, by condition and age. Note the superior sensitivity and greater sensitivity change for same-
class exemplars in young children, and the opposite effect in adults (as well as for older children in regard to sensitivity change). Note also the increase in
both measures with age for different-class exemplars and nearly no dependence on age for same-class exemplars.

Fig. 5. ROC diagram presenting mean hit and false-alarm rates (error bars
represent standard errors). Distance from the diagonal solid line repre-
sents sensitivity level (with points on the line representing chance
performance, A0 = 0.5). Distance from the diagonal dashed line represents
response bias (points below this line represent ‘‘conservative” perfor-
mance). Gray arrows roughly illustrate the performance change (magni-
tude and direction) from the pre-learning test blocks (not circled) to the
post-learning test blocks (circled).
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t(9) = 8.93, p < .001, d = 5.95 , older children, t(9) = 6.78,
p < .001, d = 4.52, and adults, t(19) = 4.75, p < .001,
d = 2.18. In turn, learning from different-class exemplars
did not have a significant effect on young children’s hit
rate, t(9) = .12, p = .91, but it dramatically increased the
hit rate of older children, t(9) = 4.07, p < .005, d = 2.71,
and adults, t(19) = 6.34, p < .001, d = 2.91.

In summary, learning by same-class exemplars compar-
ison is significantly helpful in increasing children’s hit rate
– i.e., for correctly identifying creatures that are of the
same kind. But this comes at the cost of over generalization
– i.e., occasionally identifying creatures of different kinds
as if they are from the same kind. In contrast, for adults,
learning from same-class exemplars resulted both in in-
creased hit and reduced false-alarm rates. In the different-
class exemplars condition, participants’ pattern of behavior
was quite different. Namely, learning from different-class
exemplars was highly useful for older children and adults,
enabling increased sensitivity without changing their re-
sponse bias. However, for younger children, learning from
different-class exemplars had only a minor contribution in
reducing their false-alarm rate.

4. Discussion

In the current study, we tested the contribution of ob-
ject comparison to category learning. Specifically, we
tested the differential utility of comparing same-class
exemplars vs. different-class exemplars. We hypothesized
that if the bias to favor commonalities over differences in
comparison processes indeed contributes to the late acqui-
sition of subordinate categories, then both children and
adults should be able to learn effectively new categoriza-
tion principles by comparing same-class exemplars, but
young children should have greater difficulty than adults
when comparing different-class exemplars. Alternatively,
if the bias has no relevance to the developmental findings
regarding hierarchical structure, then no such age by con-
dition interaction should occur. The results strongly sup-
port the former hypothesis.

Our findings show that elementary school aged children
(6–9.5 years old), similar to adolescents (10 years old and
older) and adults, were capable of learning a categorization
principle after being presented with a few paired same-
class exemplars. In contrast, when provided with paired
different-class exemplars, young children, but not older
children or adults, showed poor performance. In fact, while
young children showed the greatest improvement in cate-
gory learning performance when presented with same-

class exemplars, older children and adults learned even
better when presented with different-class exemplars.

A number of studies in the developmental literature
have noted the importance of comparison for category
learning. For instance, Gentner and Namy (1999) found that
when young children are asked to categorize an object (e.g.,
a banana) in isolation, they often do so by using similarities
that are either thematic (e.g., grouping it with a monkey) or
perceptual (e.g., grouping it with a moon). However, when
the same object is paired with another object from the same
superordinate category (e.g., an apple), children switch
back to sorting it taxonomically (e.g., grouping it with an
orange). These researchers, and others, noted that the pro-
cess of comparison invites children to perceive, attend to, or
perhaps even actively search for, commonalities between
the compared items (Gentner & Namy, 2006). Waxman
has argued that this may be a major source of the finding
that applying the same label to different objects facilitates
categorization (Waxman, 1999). What the present findings
reveal, however, is that this ‘‘consequence” of comparison
is in fact a bias, especially for young children. In every com-
parison process, the observer can potentially detect both
commonalities and differences between items, and the
capacity to detect these could, a priori, be equivalent. Our
findings are consistent with the idea that detecting com-
monalities is favored, and that this preference is signifi-
cantly exaggerated in young children.

Our analysis of the error patterns supports the above
conclusion. In particular, young children’s high false-alarm
rate (when presented with same-class exemplars) means
that they were especially prone to over generalize, thus
including in the relevant category objects that did not fit
all of its defining features. There is indeed a vast develop-
mental literature on young children’s tendency to over
generalize, ranging from overextensions in word learning
(Gelman, Croft, Panfang, Clausner, & Gottfried, 1998), to
over regularizations in rule learning (Marcus et al., 1992).
In the present context, this finding fits current claims in
the categorization literature that children start off with
fairly global categories, and only later do they break these
down into narrower classes (Mandler, 2008; Quinn, 2004).

The pattern of errors among the older participants,
mainly the reduction of false-alarms, suggests a potential
advantage for using different-class exemplars (see also
Hammer et al., 2005, 2008, 2009) – an advantage not avail-
able to young children. Namely, comparing different-class
exemplars that differ only in a single salient property, as
was the case in the current experiment, is very useful for
identifying a relevant dimension for categorization. Appar-
ently, starting in late childhood, people become capable of

Table 3
Mean (±SD) changes in hit and false-alarm rates (post-learning–pre-learning) in each age group and experimental condition.

Condition/age-group 6 6 Age 6 9.5 10 6 Age 6 14 Adults

Same-class exemplars Hit rate change 0.36 ± 0.13 0.38 ± 0.18 0.25 ± 0.24
FA rate change �0.02 ± 0.17 �0.06 ± 0.21 �0.18 ± 0.36

Different-class exemplars Hit rate change 0.00 ± 0.13 0.34 ± 0.26 0.38 ± 0.27
FA rate change �0.10 ± 0.13 �0.23 ± 0.15 �0.29 ± 0.19
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implementing this useful strategy for learning by different-
class exemplars comparison.

Young children’s relative difficulty in learning from
comparison of different-class exemplars, even when the
two learning conditions are objectively similarly useful as
in the present study, can contribute to the late emergence
of subordinate categories. Specifically, the argument is that
learning global categories requires mainly detection of a
few within-category commonalities while ignoring the
many within-category differences, something that can be
effectively achieved by same-class comparison. In turn,
learning subordinate-level categories requires primarily
detection of the few between-category differences, some-
thing that is most effectively achieved via different-class
comparison. It thus follows that the differential usability
of these two learning-by-comparison processes across ages
documented here, may give rise to developmental changes
in the hierarchical structure of categories.

An open issue underlined by the current findings relates
to the origins of this comparison bias. Why does learning
from same-class exemplars emerge earlier than learning
from different-class exemplars? A number of motivational
and/or cognitive causes are plausible. One motivational
alternative is that early in development, children may lack
the need or interest to learn highly specific categories, thus
leading to less practice in different-class exemplars com-
parison. A cognitive possibility is that the two comparison
processes place different demands on working memory
(Halford, Wilson, & Phillips, 1998), which in turn might
give rise to the developmental differences. A second cogni-
tive possibility is that the two processes require different
kinds of inferences for learning a categorization rule. In par-
ticular, a same-class exemplars comparison decisively
indicates irrelevant feature dimensions (feature-dimen-
sions in which the same-class exemplars differ). Neverthe-
less, same-class comparisons also invite the learner to use
a strategy by which he or she directly assumes which are
the relevant feature-dimensions (feature-dimensions in
which the same-class exemplars are similar). In turn, when
learning from different-class exemplars comparison,
attending to similarities has no value. Here, learners can
only infer that, taken together, the set of discriminating
feature-dimensions is relevant for categorization. That is,
if two objects do not share all of these features, then they
are not of the same kind. When the objects differ in only
one feature, then this feature must be a relevant one. This
inference from negation, (which is useful only when the
compared exemplars differ in only a single feature), may
be harder, especially for younger children.

A related computational explanation for the observed
comparison bias is that same-class indications are not only
usable for forming a rule-based category representation,
but they are also usable for a similarity based representa-
tion. In particular, a small set of same-class exemplars
can either be directly used as an exemplar-based represen-
tation of a category (by mapping the permitted distribu-
tion of a category members within the feature-dimension
space), or can be used for creating a prototype-based rep-
resentation (the same-class exemplar set can be used for
computing a weighted mean of the prototype properties).
In contrast, different-class indications are poorly usable

for this purpose. This is the case even when they are suffi-
ciently informative for creating a rule-based representa-
tion as in the current experimental setting. Properly
using different-class indications for a non-rule-based rep-
resentation would require a different strategy than the
one used with same-class indications (Hammer et al.,
2007, 2008, 2009). It is possible that in our experiment,
when young children were provided with same-class indi-
cations, they were able to form a similarity-based repre-
sentation of categories, which enabled a similar
performance level to that of the older participants. How-
ever, young children might not have an alternative strategy
for computing different-class indications, as they are also
not as capable as older participants in forming an explicit
categorization rule using different-class indications.

A final possibility that we would like to propose, how-
ever, is that there are further, even more significant objec-
tive computational differences between the two
comparison processes. As it will become clear, the strength
of this account is that it makes the comparison bias inevi-
table, thus providing an ecological explanation for the
development of the hierarchical structure of categories.
Moreover, this explanation is consistent with the motiva-
tional and cognitive explanations listed above, and may,
in fact, provide an account of their origin.

4.1. The information quantity of exemplars comparison

In the experiment reported here, we predefined the tar-
get categories by two feature-dimensions, e.g., the tail and
the eye, and deliberately equated the information quantity
in the two learning conditions by providing participants
with either same-class indications or different-class indi-
cations with an information value of 1 bit. In recent stud-
ies, however, Hammer et al. (2007, 2008) showed that
the qualitative differences between same-class and differ-
ent-class comparisons are, in fact, typically associated with
a quantitative difference in the information content of
these two comparison types. Specifically, a typical same-
class comparison is significantly more informative than a
typical different-class comparison. This statement is dem-
onstrated by the example portrayed in Fig. 6, which pre-
sents a scenario similar to the one illustrated in Fig. 2,
wherein creatures differ on four possible feature-
dimensions.

In terms of same-class comparisons, Fig. 6 reveals that,
unlike the stimuli presented in the current experiment, not
all same-class indications provide 1 bit of information.
Being constrained only by the requirement that the two
paired creatures will share the same tail and eye, the fol-
lowing same-class indications are possible. (1) If informed
that a creature is of the same kind as itself (or another
apparently identical creature; Fig. 6b(I)), then we are pro-
vided with no information. Such indication does not permit
us to exclude any of the hypotheses presented in the
hypotheses table (Fig. 6a), and thus, �log216=16 ¼ 0 bits.
(2) If two paired same-class creatures differ in a single fea-
ture (Fig. 6b(II)), then we can exclude all the hypotheses in
which this feature is identified as relevant, i.e.,
�log28=16 ¼ 1 bit (leaves H1, H2, H5, H6, H9, H10, H13,
and H14). This is the type of pairing used in the learning
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phase in the same-class exemplars condition of the current
experiment. (3) If two paired same-class creatures differ in
two features (Fig. 6b(III)), then we can exclude all the
hypotheses in which either one of these features is rele-
vant, �log24=16 ¼ 2 bits (leaves H1, H5, H9, and H13).
(4) If we had more generalized categories than those used
in the current experiment, such as categories in which
same-class creatures could also differ in their tails
(Fig. 6b(IV)), then even more informative same-class indi-
cations would have become available, �log22=16 ¼ 3 bits
(leaves only H1 and H5). As the within category variation
increases, which is the case with general categories, the
information content of a typical same-class indication also
increases.

In contrast, different-class indications are constrained
by the requirement that two paired creatures will differ
at least in the tail or the eye, thus giving rise to the follow-
ing possibilities: (1) if two paired different-class creatures

differ in all four features (Fig. 6c(I)), then we can exclude
only the hypothesis in which no dimension is relevant
(H1) �log215=16 ¼ 0:093 bit. (2) If the two different-class
creatures differ in three features (Fig. 6c(II)), then we can
exclude only the hypotheses in which none of the features
differentiating the two creatures is relevant, �log214=16 ¼
0:193 bit (exclude only H1 and H3). (3) If the two different-
class creatures differ in two features (Fig. 6c(III)), then we
are provided with �log212=16 ¼ 0:415 bit (exclude only
H1, H2, H3 and H4). Finally, (4) if the two different-class
creatures differ in only one feature (Fig. 6c(IV)) – as was
the case in the different-class exemplars condition of the
current experiment – then we are provided with
�log28=16 ¼ 1 bit (exclude H1, H2, H3, H4, H9, H10, H11,
H12, and H13). From this analysis, we can see that the
maximal information value of different-class indications
will always be 1 bit. When the number of between cate-
gory differences decreases, as is the case when referring

Fig. 6. The different information quantity possibilities for same-class and different-class comparisons for a four-dimensional feature space. (a) The
hypothesis table. (b) Same-class exemplars pairs, from poorly informative (I) to highly informative (IV). (c) Different-class exemplars pairs, from poorly
informative (I) to highly informative (IV).
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to subordinate-level categories, then the relative portion of
the more informative different-class indications, compared
to the poorly informative ones, increases.

In sum, excluding the null case in which we are in-
formed that a creature is of the same kind as itself, the
minimal information quantity of same-class indication is
equal to the maximal information quantity of different-
class indication. Furthermore, as the number of irrelevant
feature-dimension increases, the information quantity of
a typical same-class indication exponentially increases,
while the information quantity of a typical different-class
indication exponentially decreases (for a formal proof of
this statement, see Hammer et al., 2008, Appendix 1).

As a result of this analysis, we suggest that even an ideal
observer, who has no specific motivation for creating a par-
ticular hierarchical organization of categories, and no con-
straints on working memory or inferential capacities, will
nonetheless face difficulties in learning from haphazard
different-class indications simply because these are objec-
tively poorly informative. In contrast, the information con-
tent of same-class indications is always high, enabling
observers to identify irrelevant variations in almost all
conditions (see Hammer et al., 2007, for a computer simu-
lation supporting this statement). That is, it may be the
case that everyday life experiences have motivated us to
perceive different-class indications as worthless.

Moreover, the information quantity of a typical same-
class indication is expected to be higher than that of a typ-
ical different-class indication due to the fact that same-
class indications are transitive (if A = B, and B = C, then
A = C), but different-class indications are not (if D – E,
and E – F, then the relation between D and F cannot be in-
ferred). Although transitivity is not relevant to the category
learning task we tested here, we suggest that its usability
in everyday life scenarios may have also contributed to
the expectation of receiving valuable information only
from same-class comparisons.

In summary, this theoretical survey suggests that: (1)
the differential usability of same-class and different-class
indications is an objective fact; (2) same-class indications
are always highly informative for identifying irrelevant
within category differences, and their information value
increases as one shifts to more global categories where
the within category variation is large; and (3) different-
class indications will be informative only when the com-
pared different-class exemplars differ in very few features.
The postulated causality that can be derived from these
conclusions is that the hierarchical structure of categories
may emerge from the computational limitations of using
same-class and different-class indications, especially when
the learner has limited computational resources. In partic-
ular, subordinate-level category learning will require infor-
mation that can be gained mainly from different-class
comparisons. However, given that collecting pieces of
coherent information from haphazard different-class com-
parisons is computationally very demanding, this learning
process is unlikely to be rewarding. Consequently, young
children are likely to typically rely either on same-class
comparison processes, or on unsupervised category learn-
ing strategies affected by bottom-up factors such as global
similarity judgment biased by the distinctiveness of object

features (e.g., Hammer & Diesendruck, 2005; Samuelson &
Smith, 2000; Sloutsky, 2003). This, in turn, will make the
learning of more global categories commonplace, and the
learning of subordinate categories infrequent.

Over-generalized category representations may also re-
sult from the fact that although same-class indications
have high information content, learning only from same-
class comparisons may end up with a potentially increased
number of false-alarms (but not misses). This is so because
the constraints imposed by same-class indications always
leave alternative hypotheses, in addition to the correct
one (H13 in the example described in Fig. 2), in which
some of the relevant feature-dimensions are suspected as
irrelevant (as is the case with H1, H5, and H9). If people
implement a heuristic by which they look for the simplest
representation possible consistent with the constraints im-
posed by the provided same-class indications, then there is
high likelihood that they will select an over simplified rep-
resentation such as the one suggested by H9 or H5, in
which only one of the relevant features is indeed treated
as relevant, or perhaps even H1, in which none of the fea-
tures is taken to be relevant (see Pothos & Close, 2008 for
similar thoughts). At the same time, using this ‘‘simplifica-
tion of representation” heuristic when trained with infor-
mative different-class indications is likely to lead learners
to select the correct hypothesis (H13), since this will al-
ways be the simplest representation suggested by these
indications. The response bias analyses reported here sup-
port the idea that people, at least partially, follow this heu-
ristic (see Hammer et al., 2009, for further discussion of
previous similar results with adults).

Later in development, perhaps in order to meet further
everyday life demands, people adopt tools appropriate for
learning more specific categories, and become able of
extracting insights by comparing objects from different
categories. But this requires further effort since informa-
tive different-class indications are not likely to become
available by sheer chance. In fact, in many circumstances,
even adult participants need to be ‘‘pushed” in order to
correctly execute learning by different-class exemplars
comparison (Hammer et al., 2005, 2008, 2009). Moreover,
such learning may require the availability of an ‘‘expert
supervisor”, knowingly providing the learner with differ-
ent-class exemplars that are similar enough to be informa-
tive. This may not only drive the learner to reconsider a
few easily perceived different-class exemplar differences
as important, but it may also boost perceptual learning
by forcing the learner to identify subtle differences be-
tween apparently identical exemplars. For example, train-
ing physicians by contrasting two highly similar X-ray
images, one of a patient with an early tumor and one of a
healthy person, may help them detect the few subtle diag-
nostic features associated with the pathology, even with-
out any further guidance (for similar ideas, see Allen &
Brooks, 1991; Brooks, 1987; Brooks, Norman, & Allen,
1991). As Cree and colleagues argue, when deliberately
selecting stimuli from low-level concept nodes (e.g., a sub-
ordinate-level category), it becomes easy to associate a
highly distinctive feature to a concept, and, as a result, dif-
ferences can be processed even more easily than similari-
ties regardless of the domain of knowledge (i.e., living vs.
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non-living kinds) (Cree, McNorgan, & McRae, 2005; see
also Randall et al., 2004, for a comparison of domain differ-
ences in exemplar complexity). This is consistent with the
findings presented here regarding a possible advantage of
learning via different-class comparison when exemplars
are selected to maximize the information provided.

Although there is a relatively heavy cost in searching for
more informative different-class indications or extracting
information from relatively poorly informative different-
class indications, different-class exemplars comparison
may become crucial at a later developmental stage in order
to refine conceptual knowledge. At the other extreme,
comparison of highly dissimilar same-class exemplars
may force the learner to consider very few subtle similari-
ties as important. This may be essential for learning ab-
stract or highly generalized categories. Eventually, the
two learning-by-comparison processes are needed for
learners to shift from shallow categorization driven by
overall similarities between objects, to categories defined
by networks of core properties and the visually accessible
properties that are most strongly associated with them. It
is this flexibility and depth in categorical representation
that are the trademarks of human conceptual knowledge.
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