
F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 264–276, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Classification with Positive and Negative Equivalence 
Constraints: Theory, Computation and Human 

Experiments  

Rubi Hammer1,2, Tomer Hertz1,3, Shaul Hochstein1,2, and Daphna Weinshall1,3 

1 Interdisciplinary Center for Neural Computation 
2 Neurobiology Department, Institute of Life Sciences 

3 School of Computer Sciences and Engineering 
The Hebrew University of Jerusalem 

Jerusalem, Israel 91904 
rubih@alice.nc.huji.ac.il 

Abstract. We tested the efficiency of category learning when participants are 
provided only with pairs of objects, known to belong either to the same class 
(Positive Equivalence Constraints or PECs) or to different classes (Negative 
Equivalence Constraints or NECs). Our results in a series of cognitive 
experiments show dramatic differences in the usability of these two information 
building blocks, even when they are chosen to contain the same amount of 
information. Specifically, PECs seem to be used intuitively and quite 
efficiently, while people are rarely able to gain much information from NECs 
(unless they are specifically directed for the best way of using them). Tests with 
a constrained EM clustering algorithm under similar conditions also show 
superior performance with PECs. We conclude with a theoretical analysis, 
showing (by analogy to graph cut problems) that the satisfaction of NECs is 
computationally intractable, whereas the satisfaction of PECs is 
straightforward. Furthermore, we show that PECs convey more information 
than NECs by relating their information content to the number of different 
graph colorings.  These inherent differences between PECs and NECs may 
explain why people readily use PECs, while many of them need specific 
directions to be able to use NECs effectively. 
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1   Introduction 

In many supervised-learning scenarios, whether human or machine, a classifier is 
trained using a subset of labeled elements from a set of target categories (e.g. being 
presented with pictures of animals with their categorical identity such as "dogs" or 
"cats"). This training set can be used to learn a classification principle that can be 
generalized with regard to novel instances which were not encountered during the 
training stage. This problem has been studied extensively in the fields of machine  
[4, 6] and human [7, 5, 1] learning. We note that generally, labels indicate the relation 
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between the training instances, telling the classifier whether different instances are 
from the same or different categories: Elements with the same label provide Positive 
Equivalence Constraints (PECs), and elements with different labels provide Negative 
Equivalence Constraints (NECs). Nevertheless, equivalence constraints can be 
provided without the use of labels [9, 14]. In fact, it is not hard to think of many 
indirect contextual clues that may indicate the categorical relation between two or 
more exemplars. For example, seeing two animals playing together, one may assume 
that they are from the same species, while seeing one animal chasing another may 
indicate that the two are not the same. Examples of equivalence constraints, in the 
absence of labels, are shown in Figure 1. 

There has been little effort to date to separate between the contributions of these 
two types of constraints. One way of separating them involves informing the classifier 
that pairs of elements belong to the same class (or to different classes), without 
providing class labels. In this paper, we study the separate contributions of PECs and 
NECs in the context of human behavior (Section 2) and machine learning (Section 3). 
We then provide a theoretical basis and explanatory description of the classification 
limitations when using PECs vs. NECs (Section 4). 

 
Fig. 1. Examples of Positive equivalence constraints (PECs – creatures paired by light-gray frames) 
and Negative equivalence constraints (NECs – creatures paired by dark-gray frames) using ”alien 
creatures” created for the cognitive experiments. Note that no labels were used for specifying the 
categorical relations between creatures. In the current example, the pre-selected task-relevant 
dimensions are skin color and ear shape: (a) Two pairs showing one randomly selected PEC (left - 
the two creatures are from the same category despite differences in eye color and nose shape, since 
they share similar properties in the relevant dimensions) and one NEC (right, the two creatures 
differ in skin color, but also in some non relevant dimensions such as eye color and nose/chin 
shape). (b) Two pairs of highly informative constraints in which each pair differs in only one 
dimension, which is irrelevant in the case of PECs (left, eye color) and relevant in the case of NECs 
(right, face color).  

The importance of investigating the separate contributions of PECs and NECs lies 
in the different ways that they are used and in their different basic properties. Though 
it would seem that the two types are equally important for category learning, actually 
they have very different characteristics, deriving both from how prevalent and how 
informative they are. The most obvious and intuitive underlying difference is that 
PECs may be compactly represented and efficiently satisfied, while simultaneous 
satisfaction of NECs is computationally difficult, usually requiring application of an 
approximation scheme. 

In Section 2 we measure the differential use of PECs and NECs by humans. Our 
results suggest that people use PECs quite intuitively, but demonstrate a common 
difficulty in using the naturally less informative NECs. Even when we set up an 
experiment whereby NECs and PECs provide the same amount of information, many 
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participants fail to use NECs efficiently. On the other hand, providing them with 
directions for the use of NECs dramatically improves performance, whereas the 
efficacy of using PECs is unchanged by the provision of similar directions. For 
further details concerning the experimental design and human findings reviewed here, 
see [9].  

To gain further insight into the separate use of PECs and NECs, in Section 3 we 
analyze their separate contributions when incorporated into a clustering algorithm, 
using the constrained-EM algorithm suggested by Shental et al. [14]. The latter is an 
extension of the Expectation Maximization (EM) algorithm for estimating a Gaussian 
Mixture Model (GMM), which can make use of equivalence constraints of either 
type. While the constrained EM algorithm has been applied previously to several real-
world datasets and shown to significantly enhance performance compared to its 
unconstrained counterpart [14], here we test this algorithm in a scenario which 
simulates the human experiments described above. 

We stress that the computer experiments should not be considered as direct 
simulations of the cerebral events underlying the behavioral results. However, as 
shown below, comparison of the two results leads to interesting observations 
regarding the possible use of PECs and NECs. Specifically, the results of the 
computer experiments may have similar properties to human performance – stemming 
from the fact that they both perform classifications in the same context, using similar 
information. These shared properties may be understood more easily from the 
computer experiments, and hopefully can be used to improve our understanding of 
human performance characteristics. 

In Section 4 we provide a formal basis for the computational difference between 
the use of PECs and NECs. Our analysis involves two distinct and complementary 
arguments: First of all, in Section 4.1 we use the language of complexity theory to 
argue that satisfying positive constraints can be done efficiently, while satisfying 
negative constraints is essentially intractable. Secondly, in Section 4.2 we define a 
measure of information for both types of constraints, and show that PEC information 
content is typically much larger than that of NECs. 

2   Experiments and Results in Human Category Learning 

In order to investigate how people use PECs and NECs, we conducted three category-
learning experiments in which the two types of constraints were presented separately. 
In each experiment, participants performed a simple rule-based categorization of 
novel stimuli ("alien creatures faces'') in which the relevant or irrelevant dimensions 
had to be identified by either the PECs or NECs provided. In each trial, participants 
reviewed three constrained object pairs and were then asked to identify which objects 
belong to the same category as a given standard. Thus, participants needed to learn 
from the constraints which dimensions are relevant for the current trial, and to 
compare the trial standard with the other objects solely on the basis of these 
dimensions. Note that in many trials the constrained objects belonged to different 
categories than that of the standard provided. In each experimental condition, 
participants performed 10 trials. Performance level is presented using the non-
parametric sensitivity measure A' defined as 
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where H represents the normalized Hits and F represents the normalized False-
Alarms. Score of 0.5 represents poor performance and score of 1 represents perfect 
performance. For further information concerning non-parametric signal analysis 
measures, see [8, 15]. 

2.1   Experiment 1: Randomly Selected Constraints 

In order to evaluate the expected contribution of the two types of constraints in 
natural scenarios, when there is no deliberate selection of constraints to maximize the 
information provided to the classifier, in the first experiment we compared 
performance when using randomly selected PECs or NECs (see example in Fig. 1a) 
with a control condition where no equivalence constraints are provided (the "noEC" 
condition). The random constraints were preselected at the design stage (all 
participants were faced with the same constraints). Paired sample t-tests (see also 
Figure 2 left) showed that participants’ performance with a random set of three PECs 
was better than with either three random NECs, t(11) = 4.81, p < 0.001, d = 2.90, or 
with no constraints at all, t(11) = 4.33, p < 0.005, d = 2.61. There was no significant 
difference between performance in the random NEC and noEC conditions t(11) = 
1.02, p = 0.33. 

 

Fig. 2. Mean A′ scores with standard errors in all conditions. Exp 1: 12 participants, within-subject 
design: random PECs (0.83 ± 0.02), random NECs (0.75 ± 0.02), and no constraints (0.73 ± 0.01). 
Exp 2: 80 participants, between-subject design: highly informative highPECs (0.85±0.07) and 
highNECs (0.83 ± 0.13). Exp 3: 12 participants, within subject design: directed PECs (0.88 ± 0.07) 
and NECs (0.95 ± 0.04). 

2.2   Experiment 2: Highly Informative Sets of Constraints 

The results of Experiment 1 can simply derive from the fact that a small random set of 
PECs provide more information than a small random set of NECs, and not necessarily 
from the fact that classifying with NECs is more complex than with PECs (as will be 
shown in section 4).  Thus, this result probably reflects inherent properties of the 
constraints and not participant proficiency in their use.  Experiment 2 therefore tested 



268 R. Hammer et al. 

the use of PECs and NECs when these were specifically chosen to provide all the 
information needed for perfect performance. Figure 1.b presents an example of such 
highly informative PECs and NECs. 

Importantly, we found a difference here, too, in performance with PECs vs. NECs. 
Although independent sample t-test showed that the mean level of performance with 
highPECs was not different from that with highNECs, t(78) = 0.85 (see Fig. 2 
middle), the Leven test for homogeneity of variances showed that the standard-
deviation in the highPEC condition was significantly smaller than in the highNEC 
condition, F(78) = 13.94, p < 0.001. The Shapiro-Wilk test of normality further 
showed that although in the highPEC condition, sensitivity was normally distributed, 
W(40) = 0.95, p = 0.11, the sensitivity distribution in the highNEC condition differed 
significantly from normal, W(40) = 0.89, p < 0.001. Interestingly, we found that 
participants may be divided into two groups: those who are able to use informative 
NECs quite well (with above-median Hit and below-median FA rates in Fig. 3, right 
inset), and those who are unable to do so (with below-median Hit and above-median 
FA rates). This raises the possibility that using NECs is not only computationally 
difficult, but that it may be non-intuitive for some participants to derive the proper 
strategy for their use, perhaps due to their inexperience with informative NECs in 
most natural settings. 

 

Fig. 3. Histograms of sensitivity showing its distribution across participants with highPECs (left) 
and highNECs (right). Dashed curves represent the expected normal distribution given the observed 
mean and standard deviation. Boxes represent the corresponding ROC (Receiver Operating 
Characteristic) diagrams, where dashed lines represent each group median FA (Vertical) and 
median Hit (horizontal). 

2.3   Experiment 3: Highly Informative Constraints with Directions 

Having found in Experiment 2 that some participants have difficulty using even 
informative NECs, we provided all participants in Experiment 3 with directions for 
the use of either highPECs or highNECs (identical to the constraints used in Exp. 2). 
We found that when provided with these directions all participants succeeded in using 
either type of constraint. Moreover, the bimodal pattern of performance with 
highNECs observed in Experiment 2 was replaced by a uniformly high success rate, 
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and performance was higher than in the directed-highPEC condition, t(11) = 3.29, p < 
0.01, d = 1.98; see Fig. 2 right. These findings further support the interpretation that it 
is the difference between PECs and NECs in natural circumstances that leads to the 
different proficiencies in their use. 

2.4   Summary and Discussion 

Evaluating baseline performance with randomly selected constraints in Experiment 1, 
we found a clear advantage for category learning from PECs compared to NECs. 
Moreover, random NECs were poorly informative, leading to categorization 
performance similar to that observed when participants merely performed associative 
categorization (in the control condition without constraints). Experiment 2 
demonstrated that deliberately selected PECs, containing all the information needed 
for perfect performance, are in fact not more informative than randomly selected 
PECs. In contrast, informative NECs enabled much better performance than randomly 
selected NECs at least for some participants. 

Taken as a group, participants in the highPEC and highNEC conditions had similar 
performance. However, further analysis revealed that in the highNEC condition, the 
performance distribution was bimodal with a relatively large standard-deviation. This 
highNEC condition bimodality was also apparent in the Hit and False-Alarm 
distributions, with about half of the participants in the highNEC condition performing 
almost perfectly and the other half performing very poorly, as though they had not 
received any informative constraints at all. In contrast, in the highPEC condition, 
performance was quite good for all participants, reaching only rarely the extremes of 
nearly-perfect or very poor performance. 

 

Fig. 4. Schematic summary of performance in the three experiments described above – with 
randomly chosen constraints (I) or highly informative constraints, without (II) or with (III) 
directions for their use 

Providing directions for the use of the constraints in Experiment 3 revealed a 
number of surprising results. First of all, we found that the strategy for using 
highNECs could be readily learned via simple instructions, leading participants to 
nearly perfect performance. This result suggests that the failure of the poor 
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performance subgroup in using highNECs was due to their inability to find the correct 
strategy, and not an inability to adopt new strategies. Still, it is surprising that a 
strategy for using highNECs was easily learned when instructions were provided, but 
many people (university students!) failed in intuitively implementing this strategy 
when performing the task without instruction. Secondly, we found that giving similar 
instructions for the best strategy for using PECs did not improve performance and 
participants remained at quite good, but not perfect performance levels. These 
differences between the benefit of instructions for using PECs and NECs were rather 
unexpected, and support our main claim that people use PECs, but not NECs, 
intuitively. Figure 4 summarizes participant performance in the three experiments. 

3   Experiments Using the Constrained-EM Algorithm 

In this section we analyze the contribution of PECs and NECs when separately 
incorporated into the constrained-EM clustering algorithm [14]. Recently, 
equivalence constraints have been used for learning distance functions and for 
clustering [2, 3, 10, 17]. A number of clustering algorithms have been adapted to 
incorporate equivalence constraints, including K-means [16], complete-linkage [12] 
and an EM of a Gaussian Mixture Model (GMM) [14].  While most of these 
algorithms can easily incorporate positive constraints, incorporating negative 
constraints into these algorithms is usually much harder computationally and requires 
the application of various heuristics, or approximations. 

3.1   Experimental Setup 

Our experiments were designed to replicate the experimental setup described above: 
Each of the 32 different alien faces was represented by a binary 5-dimensional vector. 
The constraint information provided to the algorithm was identical to that presented to 
human participants. As in the cognitive experiments, we ran the constrained EM 
algorithm in the randEC and highEC conditions, comparing each to the baseline noEC 
condition. Also, the test stage consisted of evaluating the quality of the cluster 
associated with the given standard, which was selected at random.  Performance was 
measured using the A' score, defined above. Each “subject” was simulated using 5 
different realizations of PECs and NECs, for which we averaged the A' scores, as 
done in our cognitive experiments. 

The EM algorithm is a gradient-based method which converges to a local 
maximum of the data likelihood. The algorithm is therefore very sensitive to its initial 
conditions, which implicitly determine the local maximum to which the algorithm 
will converge. Our results were therefore averaged over 200 different “subjects”, each 
performed five different categorization tasks.  

3.2   Experimental Results 

Figure 5 displays performance (A') histograms for the constrained EM algorithm when 
trained using NECs and PECs, respectively. Results for the 2 conditions (averages 
and standard deviations) are also summarized in Table 1. 
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Based on the results reported in Shental et al. [14], in which the constrained EM 
algorithm was tested on real world datasets, it came as no surprise to see that (on 
average) the constrained EM which used PECs achieved better A' scores than the 
same algorithm using only NECs. This is the case with both the random and the 
informative sets of constraints. There is no significant difference between 
performance using PECs in the two conditions, and no significant difference between 
average performance without constraints (noECs) compared to using NECs. This is in 
agreement with the human psychophysical findings above. When highNECs are 
provided, average performance is significantly higher than in the noEC condition, but 
still significantly lower than with highPECs. Unlike the results with human 
participants, the distribution of the highNEC scores is unimodal. This may suggest 
that the constrained-EM does not make optimal use of highNECs, similar to the 
"poorly-performing" human participants. 

 

Fig. 5. Histograms of A′ scores of the GMM simulations using the constrained EM algorithm. Left: 
Results of the random equivalence constraints (randEC) condition. Right: Results of the highly 
informative constraints (highEC) condition. 

Performance in the unsupervised noEC condition is above chance similar to our 
findings in the cognitive experiments. This is due to use of proximity relations which 
rule out many impossible groupings. As in our cognitive experiments, performance in 
the randNEC condition is not significantly better than in the noEC condition, since 
these constraints are usually non-informative.  However, when informative constraints 
are provided, the algorithm seeks a solution which also complies with the constraints, 
and this additional information can, in many cases, direct the algorithm towards better 
solutions both in terms of refining the cluster centers (easily done with PECs) and the 
deviation from the cluster centers (NECs and PECs). 

Table 1. Average sensitivity scores of the constrained EM algorithm for the noEC, randEC and 
highEC conditions 

Condition: noEC NECs PECs 
randEC 0.77 ± 0.04 0.78 ± 0.04 0.97 ± 0.02 
highEC 0.77 ± 0.04 0.85 ± 0.04 0.99 ± 0.01  



272 R. Hammer et al. 

4   The Underlying Difference Between PECs and NECs 

In order to provide a formal basis for the computational difference between negative 
and positive constraints, we analyze the problem in two ways. First, in Section 4.1 we 
show that clustering with NECs is related to the problem of finding the maximal cut 
in a graph, which is known to be very hard (NP-complete). In contrast, clustering with 
PECs is related to the analogous problem of finding the minimal cut in a graph, for 
which efficient polynomial algorithms are known.  

Secondly, in Section 4.2 we define the notion of information for both types of 
constraints, and obtain a lower bound on the difference in information content between 
positive and negative constraints. Specifically, the information content of NECs is 
inversely related to the number of different graph colorings for the graph defined by the 
negative constraints.  Computing this number is very hard (again, an NP-hard problem), 
with no known approximations [11]. More importantly, for random graphs it is known 
that the number of solutions tends to be very large whenever there is a solution to the 
coloring problem. In contrast, the number of colorings for a graph defined by positive 
constraints is rather small due to transitivity. Thus, the difference in information content 
between PECs and NECs is typically very large. 

Notation 
We represent the data as a graph G = {V,E}, where the set of nodes V of size N 
corresponds to the datapoints, and the set of edges E of size M corresponds to the 
given constraints, either positive or negative (but not both). The task is to divide the 
data-points into K classes. 

4.1   The Complexity of Satisfying Positive or Negative Constraints 

Assume K = 2, and the task is therefore to partition the data into two clusters. Each 
partition is represented by C – the set of all edges from E which connect nodes 
assigned to different clusters; the set C is called the cut of graph G. Each cut is 
assigned a cost – the number of edges in C. 

Enforcing positive constraints is manageable  
Given positive constraints, we seek a partition in which as few positive constraints as 
possible are violated. Finding this partition is equivalent to finding the minimal cut in 
the above graph. There are known efficient algorithms to solve this problem. Thus, in 
the complexity hierarchy of computer science, this problem is considered tractable.  

Enforcing negative constraints is hard  
Given negative constraints, we seek a partition in which as few negative constraints as 
possible are violated. Finding this partition is equivalent to finding the maximal cut in 
the graph defined above. There are no known efficient algorithms to solve this 
problem. Therefore, in the complexity hierarchy of computer science, this problem is 
almost certainly intractable.  
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4.2   The Information Content of Positive or Negative Constraints 

We define the information of a set of constraints E to be the difference between the 
entropy H of all the partitions of the set of nodes V to K clusters,1 and the entropy HG 
of all such partitions consistent with E. Assuming that each allowed partition is 
assigned equal probability, the entropy HG is equal to the log of the number of 
allowed partitions. We are interested in the difference between the information of 
positive and negative constraints, namely in 
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where the entropy superscript + or – denotes respectively whether the set of 

constraints is positive or negative, −
G#  denotes the number of partitions consistent 

with E if the constraints are negative, and +
G#  is similarly defined if the constraints 

are positive. 

To compute +
G#  we note that all the nodes in every connected component of the 

graph G should be assigned to the same cluster in each allowed partition2. We can 
therefore treat every connected component as a single meta-node, and the number of 
different partitions is 

where NC denotes the number of connected components of G. In particular, if the 
graph G has no loops,  
NC = N – M and therefore 

MN
G K −+ =#    (3) 

where M is the number of edges in E.  

It is quite hard to compute −
G#  in the general case: it represents the different 

number of colorings of graph G, a number whose computation is known to be NP-
hard. We start with the simple case where graph G has no loops, for which we can 
show that 

This result can be readily proven by induction on the number of constraints M. 
We can now state the first result of this section: 

Result 4.1 
When the graph of constraints has no loops, as in the experiments described above, 
the information gain of positive over negative constraints is 

                                                           
1 We allow partitions that assign no node to one or more clusters. However, it can be readily 

shown that the number of such partitions is negligible when N >> K. 
2 A connected component is a subset of nodes that are connected to each other by edges from E. 
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The result follows from substituting (3) and (4) into (1).  
For a general graph with NC connected components, we note that each connected 

component in G has at least one legal coloring (by assumption). We immediately get 
the following bound 
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where qi denotes the number of nodes in the i-th connected component (if smaller 

than  K, or K otherwise), and l
CN denotes the number of connected component with l 

or more elements K
CCCC NNNN ≥≥≥= ...21 . Substituting (5) and (2) into (1) we 

get the second result: 

Result 4.2 
The information gain of positive over negative constraints satisfies 
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This bound is rather loose, as it is derived by assuming that each connected 
component has only one coloring solution. Typically, however, the situation is quite 
different: if a graph has any solution at all, it would typically (for random graphs) 
have an exponential number of solutions (Krivelevich, 2002). We can therefore state 
that, 

 If N >> NC, the information content of positive constraints is exponentially larger 
than negative constraints.  

5   Discussion  

We investigated properties of PECs and NECs and their effects on performance in a 
classification task – in the context of human cognition and machine learning. Parallel 
theoretical analyses demonstrated that the use of NECs is computationally much more 
difficult than use of PECs, and that NECs convey less information than do PECs. In 
accordance with this theoretical result, our cognitive experiments found that humans 
can easily make use of randomly-chosen PECs, but random NECs do not provide any 
gain in performance compared to the no-constraints baseline condition. Computer 
experiments similarly found improved performance only with random PECs. While 
the EM algorithm does not necessarily simulate human categorization strategies, it 
does demonstrate that the difficulties in using NECs are inherent. The theoretical 
analysis implies that our results are general and not limited to the rule-based 
classification task (that assumes an object space whose dimensionality may be 

)1log( −= KMI  
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reduced in a consistent manner) or the EM algorithm (that assumes a Euclidean object 
space with proximity representing similarity). 

If the limitation in using NECs derives from their properties when chosen at 
random, informative NECs should allow good performance. Surprisingly, we 
discovered that only about half of the participants succeeded in properly using highly 
informative NECs, selected to pinpoint a single relevant dimension. Our computer 
experiments found an improvement with highNECs, but not to the level achieved by 
highPECs. These results may derive from the good performing participants shifting 
their classification strategy, while the poor performers were unable to do so. The 
computer algorithm, also unable to change its strategy, similarly obtained only 
moderate improvement. The poor performance by many human participants is 
consistent with the hypothesis that since NECs are generally less informative than 
PECs, people lack experience in their use and many fail to use them even when they 
are informative. This hypothesis is supported by the finding that the provision of 
directions allowed all participants to achieve very good performance with highPECs. 

If people are generally not experienced in the use of NECs for general 
classification scenarios, are NECs useful at all? One possibility is that NECs are 
important for the difficult task of identifying fine, yet important differences between 
highly similar categories – as in subordinate-level categories or perceptual learning 
requiring identification of subtle differences between stimuli. In these cases, 
informative NECs may increase the perceived dissimilarities [7] leading to refinement 
of the classifier conceptual knowledge. 
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