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Recent studies stressed the importance of comparing exemplars both for improving performance
by artificial classifiers as well as for explaining human category-learning strategies. In this report
we provide a theoretical analysis for the usability of exemplar comparison for category-learning.
We distinguish between two types of comparison — comparison of exemplars identified to

Keywords: belong to the same category vs. comparison of exemplars identified to belong to two different
Category-learning categories. Our analysis suggests that these two types of comparison differ both qualitatively and
Categorization quantitatively. In particular, in most everyday life scenarios, comparison of same-class

Perceived similarity
Multidimensional scaling

exemplars will be far more informative than comparison of different-class exemplars. We also
present behavioral findings suggesting that these properties of the two types of comparison
Perceptron shape the category-learning strategies that people implement. The predisposition for use of one
Expectation-maximization strategy in preference to the other often results in a significant gap between the actual
information content provided, and the way this information is eventually employed. These
findings may further suggest under which conditions the reported category-learning biases may
be overcome.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction categories can be reduced to grouping objects based on their

relative proximity in the space (Duda et al., 2001). In particular,

Acting adaptively in a complex and changing environment
requires the ability to categorize objects and events, regardless
of whether the agent is biological or artificial. Categorization
can often be performed without supervision since objects can
be represented as data points non-uniformly scattered in
some multidimensional features space. In this case building

Shepard (1987) discussed this principle with respect to the
mental representation of objects when referring to human
cognition. The general rule that applies in this regard is that
the smaller the distance between two objects in mental
space, the greater their perceived similarity, and as a result
the greater the probability that they will be grouped together
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in the same category (Medin and Schaffer, 1978; Posner and
Keele, 1968; Rosch et al., 1976). For the last three decades
numerous studies have demonstrated that these ideas can
serve as powerful tools both for designing unsupervised
artificial classifiers (e.g. Fleming and Cottrell, 1990; Weber
et al., 2000), as well as for explaining human behavior (e.g.
Ashby et al., 1999; Pothos and Chater, 2002).

However, unsupervised categorization strategies do not
always guarantee creation of proper categories. In fact, that
when implemented in artificial classifiers they often fail to
provide a satisfying solution, and in particular they fail to provide
an explanation of human behavior and motivation. For this
reason, many scholars claim that categorization often requires
prior knowledge to determine the relevance or irrelevance of
different object properties for the categorization task (Caramazza
and Shelton, 1998; Keil, 1989; Murphy and Medin, 1985; Sloutsky,
2003; Smith et al.,, 1996; Tyler et al., 2000). Human conceptual
knowledge is therefore not based only on the general similarity
among objects, but rather on a more qualitative judgment of the
features that are more relevant for categorizing targeted objects,
and the degree of similarity among objects in these features
(Diesendruck et al., 2003; Hammer and Diesendruck, 2005; Medin
etal., 1993).

Fig. 1 illustrates a scenario in which unsupervised categor-
ization may be expected to produce satisfactory results (Fig 1a),
and a second scenario in which it may be expected to fail
(Fig. 1b). Referring to the pictures in Fig. 1a, it may be expected
that when asking a young child, who is not familiar with the
presented animals, “Which of these animals is not of the same
kind as the others?” he or she will probably identify animal 3 (a
bird) as the odd one simply because it differs from the others,
(elephants), in almost any possible aspect. In contrast, for the
example illustrated in Fig. 1b, we may expect that when ans-
wering the same question, the naive child will probably identify
animal 2 (a colorful bird) as the odd one, simply because it
dramatically differs from the others in color. But here the child
would be wrong— animals 2, 3 and 4, are all ducks, while animal

1is a seagull. In cases such as this, when irrelevant features
overshadow more relevant ones, the result is often inappropri-
ate categorization due to a lack of prior knowledge required for
directing attention to the relevant features (such as the shape of
the beak).

Thus, ignoring irrelevant, physically salient, features may
require the mediation of directed attention. Early categorization
models suggested that directed attention may affect the
perceived similarity among objects and the mental representa-
tion of categories. That is, similarity judgment and categoriza-
tion are context dependent and expected to be depend on
directing attention to specific features according to their
relevance in a specific context and not according to their
physical salience (Nosofsky, 1986). This implies that the
learner’s prior knowledge drives his similarity judgment. Later
category learning models (e.g. SUSTAIN — Supervised and
Unsupervised STratified Adaptive Incremental Network; Love
et al,, 2004) assume that the learner’s goals interact with
objective factors such as the nature of the learning task and
the structure of the world. These models also assume that prior
knowledge, represented by the learner’s goals, is an important
factor in shaping our conceptual knowledge (see also Medin
et al., 1993).

There is presently an ongoing debate concerning the nature
of the prior knowledge required for generalizing a categorization
rule, as well as the cognitive mechanism that enables obtaining
this knowledge. One common belief is that category learning
requires the direct learning of which features are most
important within each specific object domain (Caramazza and
Shelton, 1998; Keil, 1989; Murphy and Medin, 1985; Tyler et al.,
2000). Others suggest that prior knowledge can be obtained
without direct supervision, but categorization still requires
being experienced with objects and their features. Such inter-
action with objects is expected to end up with rescaling features
relevance for categorization (Sloutsky, 2003; Smith et al., 1996).
More recently it was suggested that category learning should be
seen as two different learning processes — classification and

Fig. 1 - (a) Three elephants and a bird. The bird (#3) differs from the elephants in almost every aspect, making categorization
easy and direct. (b) Three ducks and a seagull (#1) where naive observers may erroneously think that #2 is the odd object due to
its salient difference in colorfulness. When irrelevant features overshadow more relevant ones, inappropriate categorization
can result due to the lack of prior knowledge directing attention to relevant features (such as beak shape).
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inference (Erickson et al., 2005). While the first process encourages
between category comparisons, the second encourages within
category comparisons. These two processes may than highlight
common and distinctive features that are expected to be more
important for categorization. That is, learning from exemplars
comparison may enable gaining useful knowledge on which
features are more relevant for categorization.

In the current report we will examine object comparison as a
cognitive mechanism enabling rapid learning of categorization
principles driven by contextual constraints. Although similar
ideas have already been presented (e.g. Markman and Gentner,
1993; Namy and Gentner, 2002), the theoretical limitations of
learning by comparison have not been tested systematically
until recently (Hammer et al., 2005, 2007, in press, submitted for
publication). We now analyze further the theoretical attributes
and limitation of category learning by comparison. We also
provide additional analysis and interpretation of findings from
human behavior studies, demonstrating the possible effect of
these theoretical limitations on the strategies that people
implement when learning new categories.

1.1. “Birds of a feather flock together” — category learning
by comparison

Recent studies, in the fields of machine learning and human
cognition, stressed the importance of object comparison for
categorization. It was demonstrated that providing a clustering
algorithm with only a small set of exemplars identified to be of
the same class (denoted as a chunklet by Shental et al., 2004) is
sufficient for improving categorization performance by artificial
classifiers. This improvement is achieved mainly by re-evaluat-
ing the relevance of different object feature-dimensions to meet
the constraints imposed by the presented categorical relations
between the training examples (Bar-Hilel et al., 2003; Bilenko
et al.,, 2004; Shental et al., 2004; Xing et al., 2002).

Similarly, when human subjects (including young children)
are asked to compare a few exemplars identified to be from the
same category, they are able to identify the features that are
most important for categorization (Goldstone and Medin, 1994;
Kurtz and Boukrina, 2004; Markman and Gentner, 1993; Namy
and Gentner, 2002; Oakes and Ribar, 2005; Spalding and Ross,
1994). These studies demonstrate the importance of exemplar
comparison for later similarity judgment and categorization.
Nevertheless, these studies did not attempt to systematically
assess the strengths and limitations of category learning by
comparison. Moreover, they mainly focused on learning sce-
narios in which the learner was encouraged to look for simi-
larities between compared exemplars. We will demonstrate
here thatlearning by comparison is a complex process in which,
for example, looking for differences may sometimes be more
rewording than looking for similarities.

We now address the subject of category learning by
comparison, presenting theoretical limitations of the compar-
ison process and its usability by humans. We approach this
question by discriminating between two types of comparison
processes — comparison of exemplars identified to be from the
same category (Same-Class Exemplars; also called Positive Equiva-
lence Constraints), and comparison of exemplars identified to be
from two different categories (Different-Class Exemplars; also
called Negative Equivalence Constraints). We suggest that these

comparison processes are complementary, and that they differ
in their usability. Specifically we present evidence suggesting
thatlearning by comparing same-class exemplars is expected to
be quite independent of the guidance of an “expert supervisor”.
On the other hand, learning by comparing different-class
exemplars requires further intervention in order to be both
informative and effective. We propose that the usability of these
comparison processes may be an essential element in shaping
human conceptual knowledge.

As we have seen in Fig. 1b, categorizing by global similarity
does not always provide proper categorization (e.g. discriminat-
ing between seagulls and ducks). In this case, comparing a few
exemplars, for which the categorical relations are available,
might be very useful for rescaling the importance of different
feature-dimensions and thus reshaping the categorization rule.
For example, itis sufficient to know thatin Fig. 1b Animals 2 and
3 are of the same kind in order to conclude that the salient
color dimension is not important for categorization (since two
animals from the same category may differ dramatically in their
color). Knowing that Animals 2 and 4 are from the same kind is
even more informative, since now we can exclude both color
and body weight from being relevant for categorization. As can
be seen, same-class exemplars are quite useful for excluding
salient irrelevant dimensions, but they are not necessarily
sufficient for directly identifying relevant, less salient, dimen-
sions. Yet when informed that Animals 1 and 3 are not of the
same kind, (although highly similar in their color and global
shape), we can conclude that finer differences in other features,
such as differences in head shape, are more relevant for ca-
tegorizing these animals correctly. As we can see, knowing the
categorical relation between a few exemplars can be quite useful
even when the objects’ names (categories labels) are not used.

We further claim that category learning by comparison is
embedded in many everyday life scenarios, as well as in many
experimental category learning tasks. For example, when a pa-
rent points two animals in the presence of his child and says,
“You see, these are both ducks”, the child can conclude that the
two are of the same kind. When the parent points two animals
in the presence of his child and says, “You see, this one is a duck
and that oneis a seagull” the child can conclude that the two are
from different kinds. This way the child can learn about features
that are common to the same category members or features that
are important for discriminating members of different cate-
gories. Comparison process can take place also when no labels
are presented — each time a learner makes a same/different
decision and receive a feedback for this decision, he can retrieve
the actual categorical relation from the provided feedback.
Furthermore, category learning by comparison does not neces-
sarily require any direct supervision — simple observation on
the way objects in the world behave and interact may provide
clues for their categorical relation. These observations may
enable the learning of a categorization rule, which can be later
generalized to other objects.

In the next section we discuss in detail the differences
between learning from same-class and different-class exemplars.
We will start with an illustration of the qualitative difference in
the usability of same-class exemplars and different-class exem-
plars for category learning, and we will suggest that this may
require two different processes in order to optimize the learn-
ing from both comparison types. We will also provide a
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quantitative analysis showing that same-class exemplars are
more often useful for category learning than different-class
exemplars; (a more detailed and formal analysis is provided in
the Appendixes).

1.2 Underlying differences between comparing
Same-Class and Different-Class Exemplars

We present theoretical limitations of category learning by
comparison. In particular we demonstrate that, although the
comparison of either same-class or different-class exemplars
can be used for category learning, these two processes differ in
their usability as follows:

1. Asthe distance (in a multidimensional feature space) between
the compared exemplars increases, the comparison process
becomes more informative for same-class exemplars and less
informative for different-class exemplars. We measure the
distance between exemplars in two ways: (a) The number of
dimensions in which two compared exemplars are signifi-
cantly separated (simplifying the representation to binary
dimensions and using the L1, city block, metric). This indicates
the number of relevant or irrelevant dimensions. In Appendix
A we suggest a means for quantifying the information content
of same-class exemplars comparison and different-class
exemplars comparison when referring to the object space as
to a hypercube. We show that as the number of irrelevant
dimensions increases, comparing same-class exemplars will
become more informative, while comparing different-class
exemplars will become less informative. (b) The Euclidean
distance between exemplars. This measure may be used to
estimate the information provided by the comparison process
regarding a specific dimension. Instead of referring to dimen-
sional relevance as a dichotomy, the Euclidean distance
between a pair of exemplars on each specific dimension can
provide a finer indication for its information content regarding
the possible relevance of this dimension. Furthermore, the
Euclidean distance between the compared exemplars can
provide an indication for the information content of the
compared exemplar pair when there are dimensions which
cannot be considered as independent for the categorization
process. In Appendix B we use the relatively simple case of a
binary linear classifier as a means for demonstrating the
relation between the Euclidean distance between the com-
pared exemplars, and the information content of the compar-
ison process. We show that as the Euclidean distance between
the compared exemplars increases, comparing same-class
exemplars will be more informative, while comparing differ-
ent-class exemplars will be less informative.

2. The property of belonging to the same-class is transitive but
the property of belonging to different-classes is not. This
differentiates the usability of same-class and different-class
exemplars for the purpose of packing together objects into
clusters. In Appendix C we quantify the contribution of
transitivity by quantifying the information content of same-
class exemplars and different-class exemplars in graph
partitioning. We suggest that transitivity makes same-class
exemplars comparison much more efficient then different-
class exemplars comparison even when not considering any
metrical assumptions about the structure of the object space.

Taken together, these differences lead us to expect that
same-class exemplars will be much more informative for ca-
tegory learning than different-class exemplars. Nevertheless,
we describe next the possible contributions of different-class
exemplars for category learning.

1.2.1. Relation between inter-exemplar distances and their
usability

As mentioned above, as the distance between compared
exemplars increases, the information provided by the compar-
ison of same-class exemplars also increases, while the
information available from different-class exemplars decrea-
ses. The information content of a comparison between paired
exemplars may be quantified as the reduction in volume of
the version space, i.e. the space of hypotheses consistent with
the constraints that have been previously seen in the learning
process. Since determining a general measure and analyzing
the structure of version space is difficult, we focus here on
some relatively simple cases.

Fig. 2 provides some intuition for the above statement,
using simplified scenarios analogous to those presented in
Fig. 1. Fig. 2a represents a condition reminiscent of Fig. 1a,
where the two categories are well separated in all dimensions.
In this case unsupervised classifiers are expected to categorize
the data points correctly as illustrated in Fig. 2c, which shows
classification by two simple models: Perceptron - represented
by blue dashed line and Gaussian Mixture model - represented
by red dashed ellipses. Here, unsupervised classifiers will be
successful simply because the true categorical assignment
corresponds well with the overall distance between objects in
the multidimensional feature object space. Fig. 2b represents a
condition reminiscent of Fig. 1b, with a smaller distance in the
relevant dimension of head shape than in the within-category
distance in the irrelevant dimension (color). Here, our un-
supervised classifiers are expected to fail, as illustrated in
Fig. 2d — instead of categorizing the data points as ducks and
seagulls, the data points will be categorized according to their
color, which is not relevant for categorizing the targeted
animals.

Comparison of paired exemplars might be quite useful in
conditions where the global distance (dissimilarity) between
objects is not a good predictor for their proper categorical
assignment. Fig. 2e illustrates a condition in which our
classifiers are provided with an indication (pink arrow) that
two very close objects are in fact not from the same category.
The comparison of these different-class exemplars will be
quite informative for updating our Perceptron — this piece of
information acts as a constraint (Negative Equivalence Con-
straint), forcing the classifier to relocate and change the
orientation of the category borderline between the data points.
Since the distance between the different-class exemplars in
the relevant dimension is larger than the distance in the
irrelevant dimension, the borderline is now updated to be
orthogonal to the relevant dimension as required. Since the
distance between the different-class exemplars in the relevant
dimension is still quite small, this comparison makes it
possible to localize the borderline quite accurately. This
example shows how different-class exemplars might be quite
useful in highlighting relevant dimensions that would have
been otherwise disregarded.
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Fig. 2 - Illustration of expected performance of common classifiers using a simplified representation for animal categories in
accordance with Fig. 1. (a, b) Representation of the actual categories as presented in Fig. 1: light blue circles represent ducks
(the colored duck marked with a cross), light purple represents the seagull; dark purple the elephants. (c, d) Representation of
expected categorization executed by unsupervised Perceptron (dashed blue line) and Expectation-Maximization classifier
(dashed red ellipses) in the two different scenarios illustrated in panel a, and panel b, respectively. Examples for the
contribution of informative different-class exemplars, indicated by pink arrow (e), and same-class exemplars, indicated by
green arrow (f), in improving performance. Examples for poorly informative different-class exemplars (g) and same-class

exemplars (h).

Same-class exemplars are useful for category learning in a
different way. Fig. 2f shows a condition in which the same-class
exemplars indicates that two objects, which differ dramatically
in their color, can still be from the same category. This cons-
traint (Positive Equivalence Constraint) suggests that the color
dimension is not relevant for categorization, despite the fact
that objects can be easily separated along this dimension. As the
number of irrelevant dimensions increases, paired same-class
exemplars can provide more information by indicating that two
exemplars, which are distant in more than one dimension, are
nevertheless from the same category. If our classifier represents
categories by calculating a Gaussian Mixture, providing it with
such same-class exemplars can also assist it in updating the
center of the category from which these two exemplars are
taken, by simply calculating the mean coordinates of the
specified set of exemplars (Hammer et al., 2007; Shental et al.,
2004).

Same-class exemplars and different-class exemplars are not
always informative. In Fig. 2g we show an example of poorly-
informative different-class exemplars: Knowing that two dis-
tant objects are not from the same category is not useful for
improving performance as compared to unsupervised categor-
ization (Fig. 2d). Such different-class exemplars are not infor-
mative in two respects: First, since the distance between the
different-class exemplars, in the relevant dimension, is smaller
than it is in the irrelevant dimension, the orientation of the
borderline will not be updated sufficiently. In this case the large
distance in the irrelevant dimension overshadows the smaller
distance in the relevant one. Second, since the overall Euclidean

distance between the two exemplars is quite large, there is a
large uncertainty concerning the actual location of the border-
line. Furthermore, when the number of categories is larger than
two, there is a larger probability that a third, hidden, category
may be present between distant different-class exemplars.

Fig. 2h illustrates poorly-informative same-class exem-
plars. Being informed that two nearby objects are from the
same category does not provide much information since it
does not capture the possible variance permitted within this
category, or within which directions such variance is per-
mitted. Such cases are conceptually similar to a case when we
are informed that an object is from the same category as itself.

The illustrations in Fig. 2 suggest that same-class exemplars
indeed differ from different-class exemplars in the way they can
be used. But the two types of comparison also differ quantita-
tively in their information content, so that same-class exem-
plars will be more often informative for learning. This idea is
illustrated in Fig. 3. Fig. 3a demonstrates a case of exemplars
defined by 3 dimensions (color, texture and shape), with the
single relevant dimension for categorization being shape. Thus
the two target categories differ in their values only in this
dimension — one category is constrained to the subspace (sur-
face) of square shapes, while the other is constrained to the
circle subspace. The two other dimensions cannot be taken into
account as relevant for categorization since the within category
variation is as large as the between category variation in these
dimensions.

Fig. 3b provides an example of poorly informative “same-
class exemplars” — the indication that an object is in the same
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Fig. 3 - (a) A simple example of three dimensional space with binary dimensions — color (red vs. blue), shape (square vs. circle),
and texture (full vs. doted). The gray surfaces indicate the two target categories (differing only in shape). The table on the right
illustrates the hypotheses space (eight possible hypotheses) — all possible combinations of relevant dimensions (marked as

“1”) and irrelevant dimensions (marked as “0”). (b—d) Same-class exemplars differing in 0, 1 or 2 dimensions, going from low to
high information content. (e-g) Different-class exemplars differing in 3, 2 or 1 dimension, going from low to high information

content.

class as itself. Of course this indication changes nothing about
what we know of the relevance or irrelevance for categoriza-
tion of the three given dimensions. It excludes none of the
hypotheses described in the Hypotheses table, log, 8/8=0 bit.
Similarly, two different same-class exemplars that are “suffi-
ciently close” can be treated in the same way (leaving the
question of what determines “sufficiently close” open). The
same-class exemplar pair in Fig. 3c provides 1 bit of informa-
tion since it indicates that two objects from the same category
may differ in color. It excludes all the hypotheses in which
color is relevant (H5, H6, H7 H8), —log, 4/8=1 bit. The same-
class exemplar pair in Fig. 3d provides 2 bits of information
since it indicate that two objects from the same category may
differ both in color and texture. It excludes all the hypotheses
in which color, texture or both, are relevant (H2, H4, H5, H6, H7
and HB8), -log, 2/8=2 bits. The latter same-class exemplar pair
reduces the uncertainty in partitioning the object space quite
dramatically since it leaves only the possibility that the shape
dimension is the relevant one — despite the fact that the
constraint only provides indirect evidence for this claim.

Fig. 3e provides an example for poorly informative dif-
ferent-class exemplars — it indicates that two objects that

differ in all three dimensions are not from the same category.
This indication changes little about what we know of the
relevance or irrelevance of the three dimensions, excluding
only the possibility that non of the dimensions is relevant (H1),
log, 7/8=0.19 bit. Although the different-class exemplar pair
in Fig. 3f differs in only two dimensions, it still provides little
information — we may guess that shape is the relevant di-
mension for categorization, but we may just as well guess that
the texture dimension is the relevant one. In fact, when not
knowing the number of possible relevant dimensions, these
different-class exemplars do not even exclude the possibility
that the color dimension is relevant as well (excluding only H1
and HS5), log, 6/8=0.41 bit. Note that these two examples of
different-class exemplar pairs demonstrate that there are
more possibilities of poorly informative different-class exem-
plar pairs than of poorly informative same-class exemplar
pairs. Finally, the different-class exemplar pair in Fig. 3g
exemplifies informative different-class exemplar pairings,
directly indicating that shape is relevant — since this is the
only dimension differentiating the two exemplars identified to
be from two different categories (excluding H1, H2, H5 and H6),
log, 4/8=1 bit.



108 BRAIN RESEARCH 1225 (2008) 102-118

In Appendix A we provide a formal proof for the above
statement showing that informative different-class exem-
plars, and poorly informative same-class exemplars, are both
relatively rare. Furthermore, the information content of a ty-
pical same-class exemplar pair increases as the number of
dimensions in which they differ increases (using a city block
metric for estimating the information content in reducing the
hypotheses space). The information content of different-class
exemplar pairs will behave in the opposite way. As a result,
when the total number of dimensions increases, particularly
with respect to the number of relevant dimensions, so does the
information provided by a randomly selected same-class
exemplar pair, while the information provided by a randomly
selected different-class exemplar pair decreases.

In Appendix B we describe a method for estimating the
information content of same-class and different-class exemplar
pairs as a function of the Euclidean distance between the paired
exemplars. This enables a non-discrete computation of the
information content of same-class and different-class exemplar
pairs. It also provides a measure for estimating the information
content of same-class and different-class exemplar pairs when
dimensions cannot be considered as independent, such as in
information-integration category learning tasks (Ashby and Ell,
2001). Note that this analysis is based on the Euclidean distance,
and in its current formulation it only shows qualitative
differences between same-class vs. different-class exemplars.
Specifically, it shows that as the distance between paired same-
class exemplars increases, their information content increases
as well, while for different-class exemplar pairs the relation
between information and distance is reversed.

Together, the two analysis provided Appendix A (L1 metric)
and Appendix B (L2 metric) demonstrate a clear difference for
the usability of same-class vs. the usability of different-class
exemplars comparison in the context of the two metrics
known to be most relevant for explaining human similarity
judgment (Shepard, 1987) and categorization strategies (Ashby
and Ell, 2001).

1.2.2.  Graph partitioning and transitivity

The advantage of same-class exemplars over different-class
exemplars does not result only from the different relation-
ship between distance and information for the two types of
comparison processes. In this section we show that using same-
class exemplars is much more beneficial for packing together
objects into clusters than the use of different-class exemplars, in
a more general case, even when generalization according to
distance in specified dimensions is not relevant. This property
of same-class exemplars can be helpful in summing together
pieces of information when constructing an internal represen-
tation of newly-learned categories. For example, transitivity
may facilitate formation of a category prototype by averaging
common relevant features of packed-together objects. Similarly,
a small subset of packed-together objects can be used as a set of
exemplars representing the category.

Whenever the number of categories is larger than two, same-
class exemplars will be much more useful for graph partitioning.
This results mainly from the fact that the property of belonging
to the same-classis transitive, but belonging to different-classes
is not: For example, being informed that objects A and B are from
the same category and that B and C are from the same category

is sufficient for concluding that all three objects are from the
same category. On the other hand, knowing that D and E are
from different categories, and that E and F are from different
categories, does not tell us much about the categorical relation
between D and F. As the number of objects and categories
increases, the contribution of transitivity in “packing objects”
into categories also increases. Note that the above statement
concerning transitivity of same-class exemplars is true only
when assuming that each object belongs only to one category. In
real life scenarios this is not always the case. For example, an
animal can be classified both as a dog and as a mammal. In this
way, a dog will not be perceived to be from the same category as
a cat in one comparison context (dogs vs. cats), but it can be
perceived to be from the same category as another cat in
another comparison context (e.g. mammals vs. reptiles). For the
purposes of our discussion here, we assume that the compar-
ison context is identical for all referred objects and that there is
no overlapping between categories.

Fig. 4 provides an illustration for the differences between
same and different-class exemplars in graph partitioning. To
keep the illustration simple, we provide three labeled points
(although the formal theoretical basis provided in Appendix C is
for the harder, more general, case where no labels are provided.
In that case same-class exemplar pairs have an advantage also
when the number of categories is only two). As can be seen,
indicating a small random set of same-class pairs is sufficient to
significantly reduce graph uncertainty. This is not the case for
different-class pairs. The hypotheses space even in such simple
example is quite large — all the combinations for coloring the
six gray points using three colors which is 3°=729 different
possibilities. Assigning the right color to all the gray points is easy
when provided with same-class pairs, and due to transitivity it
does not require direct connection to either one of the labeled
points. Assigning the right color to the gray points is hard when
provided only with different-class pairs. In this case, in order to
know the color of a point it needs to be directly connected to all
the labeled points from the categories to which it is not related.

In order to provide a formal basis for the theoretical
difference between different-class and same-class exemplars
for graph partitioning, we analyze the problem in two ways.
First, in Appendix C.1, we show a qualitative difference between
the two comparison processes — clustering with different-class
exemplars is related to the problem of finding the maximal cut
in a graph, which is known to be very hard (NP-complete). In
contrast, clustering with same-class exemplars is related to the
analogous problem of finding the minimal cut in a graph, for
which efficient polynomial algorithms are known.

Secondly, in Appendix C.2, we define the notion of
information for both types of comparison processes, and
obtain a lower bound on the difference in information content
between same-class exemplars and different-class exemplars.
This provides a quantitative measure for comparing the
usability of the two comparison process. Specifically, the
information content of different-class exemplars is inversely
related to the number of different graph colorings for the
graph defined by the negative constraints. Computing this
number is very hard (again, an NP-hard problem), with no
known approximations (Khanna et al., 2000). More impor-
tantly, for random graphs it is known that the number of
solutions tends to be very large whenever there is a solution to
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the coloring problem. In contrast, the number of colorings for a
graph defined by same-class exemplars is rather small due to
transitivity. Thus, the difference in information content

a

Fig. 4 - A simple illustration for the advantage of same-class
exemplar pairs over different-class pairs in graph
partitioning. Note that spatial proximity is not a relevant
factor in this illustration (a) A graph in need of partitioning.
The three labeled (colored) points A, B, C are data points each
representing an exemplar from a different category.

The categorical identities of the gray data points are not
given. The task is to color correctly the gray points while
using the minimal number of constraints, thus reducing the
task complexity. (b) A small set of six same-class indications
(green arrows) is sufficient for correctly coloring the graph.
Note that due to transitivity, there are many more
combinations that enable the retrieval of this result with six
same-class indications. (c) A small set of seven
different-class indications (pink arrows), in addition to the
different-class indications provided by the labels (dotted pink
arrows) are not sufficient to significantly reduce the
uncertainty in the graph. In this case, when only a few
indications are provided, we can decisively color only points
connected directly to labeled points from all the other
categories (e.g. the green point in the dotted circle).

between same-class exemplars and different-class exemplars
is typically very large.

1.3. Research hypothesis

We argued and demonstrated above that same-class exemplar
pairs qualitatively differ from different-class exemplar pairs in
their usability for category learning. Furthermore, in most
natural scenarios same-class exemplar pairs are expected to
be significantly more informative than different-class exem-
plar pairs. For this reason, we expect that although both
comparison types can contribute to category learning, they
may in fact involve different learning mechanisms.

We hypothesize that people use same-class and different-
class exemplars in different ways, and with different proficiency
levels. In particular, since same-class exemplars are expected to
be more often informative in everyday life scenarios, people will
develop superior abilities for using same-class exemplars than
for using different-class exemplars, even in cases where the
objective amount of information provided is identical. In order
to test this hypothesis, we conducted an experiment in which
we measured the usability of a small set (three pairs) of same-
class vs. different-class exemplars in a simple rule-based cate-
gory learning task. In these category learning tasks, the ca-
tegorization rule could be learned by either same-class or
different-class exemplars (see Experimental procedures). Using
novel stimuli also enabled us to exclude the intervention of
other factors such as prior domain specific knowledge and
features saliency effects. This task also simulates best the case
of categorization according to the L1 metric analyzed above.

Furthermore, we manipulated the “Level of Supervision” — the
amount of intervention and instructions provided by the
experimenter during the task, and tested its effect on participants’
performance. We discriminate between three conditions: In the
first condition same-class and different-class exemplars were
randomly selected. This condition is expected to simulate the more
common everyday life scenario when no expert supervisor
provides the learner with carefully selected exemplar pairs that
maximize the information. According to the above theoretical
analysis, we expected that performance with a small random set
of same-class exemplars will be significantly better than perfor-
mance with a small random set of different-class exemplars. This
is to be expected because in the random Same-Class Exemplar
condition participants are objectively provided with more
information than in the random Different-Class Exemplar condi-
tion. In fact, there is high probability that a random set of three
same-class exemplar pairs is sufficient for providing all the
information needed for perfect performance in the performed
categorization task (see Experimental procedures and Appendix A
for details).

In the second condition, the sets of pairs of same-class and
different-class exemplars were selected deliberately so that they
contained all the information needed for learning the categoriza-
tion rule. This was done by using same-class exemplar pairs as
the one described in Fig. 3¢, and different-class exemplar pairs as
the one described in Fig. 3g. Here we expected that most
participants will again perform quite well when same-class
exemplars are introduced, but many will fail to use even these
Informative different-class exemplars since they are less trained
with the proper strategy for using this comparison type.
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Fig. 5 - Participant sensitivity (A’) as a function of Comparison Type and Level of Supervision. Dark gray (circle) data-point and
dashed line — participant mean performance in the Control, no comparison, condition. Green (square) data-points — mean
performance in the learning from Same-Class-Exemplar condition. Pink (triangle) data-points — mean performance in the
learning from Different-Class-Exemplar condition. Thick colored error bars represent standard errors. Light-gray error bars
represent standard deviations; (note that the number of participants for the Random and Informative plus Directions conditions

was 12, while for the Informative condition it was 40).

In the third condition participants were not only provided
with similarly, and sufficiently, Informative same-class and
different-class exemplar pairs as in Condition 2, but at the
beginning of the experiment, the experimenter also directed
the participants, coaching them about the strategy for
learning from the provided same-class or the different-class
exemplar pairs. The directions were simple and straight
forward: we asked participants to look for all the features in
which the paired exemplars are different, as well as those in
which they are similar. We further directed participants to
integrate the information provided by the three different pairs
of exemplars used for the rule learning. We expected that such
Directions will be significantly more beneficial for improving
performance in the different-class exemplars conditions,
since most participants are expected to be already quite
experienced in the use of same-class exemplars from their
everyday life experience. In order to eliminate any possible
advantage in these Same-Class Exemplar conditions, with
respect to their correspondent Different-Class Exemplar condi-
tions, we also avoided the use of transitive same-class
exemplar pairs.

As a baseline, we tested a group of participants in similar
categorization tasks but with no supervision at all (partici-

pants were not trained with same-class nor different-class
exemplar pairs).

2. Behavioral results

Our main hypothesis was that there will be no significant
effect of the Level of Supervision on performance in the Same-

Table 1 - Performance mean and standard deviation (SD)
in the different conditions

Comparison type/ Random Informative Informative
level of supervision plus
directions
Same-Class Exemplar M=0.83 M=0.85 M=0.88
SD=0.07 SD=007 SD=0.07
n=12 n=40 n=12
Different-Class M=0.75 M=0.83 M=0.95
Exemplar SD=0.07 SD=0.13 SD=0.04
n=12 n=40 n=12
Control M=0.73
SD=0.05
n=12




BRAIN RESEARCH 1225 (2008) 102-118 111

Class Exemplar condition, but that there will be such an effect
in the Different-Class Exemplar condition. We measured parti-
cipant ability to learn the new categories by using the non-
parametric sensitivity measure A’ (Grier, 1971), calculated from
participants’ Hits (correctly identifying a test exemplar as a
member of the target category) and False-Alarms (incorrectly
identifyinga test exemplar as a member of the target category).

Abattery of independent sample t-tests show that categoriza-
tion performance in all conditions of learning by comparison was
significantly better than performance in the Control, no compar-
ison condition (p<0.02 for all learning conditions), except for the
Random Different-Class Exemplar condition t(22)=0.62, p=0.54 (see
Fig. 5 and Table 1). This result suggests that comparison is useful,
as long as the compared exemplars differ in an informative
manner. Nevertheless, the following analysis shows that the
process of learning by comparison is more complex.

In order to evaluate the effect of Level of Supervision on
sensitivity, we first calculated the nonparametric Spearman
correlation between level of supervision (ordinal scale: 1 - Ran-
dom exemplar pairs; 2 - Informative exemplar pairs; 3 — Informa-
tive exemplar pairs plus Directions) and A’ score, for each
experimental condition separately. We found no significant
correlation between Level of Supervision and A’ in the Same-Class
Exemplar condition, p(64)=0.19, p=0.14, but the correlation
between Level of Supervision and A’ in the Different-Class Exemplar
condition was highly significant, p(64)=0.60, p<0.0001. This
result supports our hypothesis that learning from different-
class exemplars is a process highly dependant on the learning
conditions while learning from same-class exemplars is a more
robust process, less affected by the learning conditions.

Atwo-way ANOVA with A’ as the dependent variable, level of
supervision (Random, Informative, and Informative plus Directions),
and comparison type (Same-Class Exemplars vs. Different-Class
Exemplars) as between-subject factors, revealed no main effect
of comparison type, F(2, 122)=0.62, but a significant effect of
level of supervision, F(2, 122)=12.41, p<0.0001, #3=0.17. Impor-
tantly, there was a significant interaction between comparison
type and level of supervision, F(2, 122)=4.42, p<0.02, #5,=0.07.
Post-Hoc independent sample t-tests on the effect of compar-
ison type within each level of supervision showed that in the
Random exemplars condition A’ score was significantly higher
when participants were trained with Random same-class
exemplars (M=0.83; SD=0.07) than when they were trained
with Random different-class exemplars (M=0.75; SD=0.07),
t(22)=2.87, p<0.01. There was no such comparison type effect
in the Informative exemplars condition, t(78)=0.85, p=0.40.
Surprisingly, performance in the Informative plus Directions
condition was better when participants were trained with
different-class exemplars (M=0.95; SD=0.04) than when they
were trained with same-class exemplars (M=0.88; SD=0.07),
t(22) =-3.08, p<0.005.

Moreover, one-way ANOVAs showed a significant effect for
level of supervision on the A’ score only in the Different-Class
Exemplar condition F(2, 61)=10.98, p<0.001, but not in the Same-
Class Exemplar condition F(2, 61)=1.81, p=0.17. Post-Hoc Scheffe
tests showed that in the Different-Class Exemplar condition,
performance with Random exemplars (M=0.75; SD=0.07) and
with Informative exemplars (M=0.83; SD=0.13) were both signifi-
cantly lower than performance in the Informative plus Directions
condition (M=0.95; SD=0.04) (p<0.005 in both cases). There was no

significant difference in the A’ score between Random exemplars
and Informative exemplars, p=0.07. Nevertheless this difference
was significant when using the Post-Hoc LSD test, p<0.05.

Same-Class and Different-Class Exemplar conditions did not
only differ in the mean level of performance, but they also
significantly differed in their variances. Levene’s test for
homogeneity of variance showed a significant effect for Level
of Supervision on performance variance only in the Different-
Class Exemplar condition F(2, 61)=6.72, p<0.005, but not in the
Same-Class Exemplar condition F(2, 61)=0.27, p=0.76. Further
tests showed that there was no significant difference in
variance between the Random Exemplar conditions, F(1, 22)=
0.01, p=0.94, but there was such an effect for the Informative
Exemplar conditions when the variance in the Informative
Different-Class Exemplar condition (SD=0.13) was significantly
higher than in the Informative Same-Class Exemplar condition
(SD=0.066), F(1, 78)=13.94, p<0.001. In the Informative plus
Directions Same-Class Exemplar (SD=0.07) and Different-Class
Exemplar (SD=0.04) conditions the pattern was reverse F(1, 22)=
5.04, p<0.05 (see also the standard deviations in Fig. 5).

This latter analysis suggests that when presented with same
class exemplars, participants show quite similar performance
levels and they are quite capable of learning the categorization
rule even with little intervention by a supervisor. On the other
hand, when presented with Informative different-class exem-
plars, participants demonstrate a wide range of abilities. When
participants are also provided with directions specifying the
learning strategy, this has no effect on performance variance
in the Informative (plus Directions) Same-Class Exemplar condition,
but it narrows down the variance in the Informative (plus Di-
rections) Different-Class Exemplar condition.

3. Discussion

3.1. Summary

We reported here in detail computational properties of category
learning by comparison and their effect on human performance.
We suggested that the process of learning by comparison should
be treated as two separate processes: Learning from same-class
exemplar comparison vs. learning from different-class exemplar
comparison. These processes differ qualitatively from each other:
As the distance between same-class exemplars increases, the
information content of their comparison also increases, while as
the distance between different-class exemplars increases, their
information content is reduced. Moreover, same-class exemplar
comparison is transitive but different-class exemplar comparison
is not. We further showed that the two learning processes also
differ quantitatively, so that learning from same-class exemplars
is expected to be more often informative than learning from
different-class exemplars. In this respect, we suggest that though
the two learning processes seem to be useful for the same goal,
they in fact differ and should be treated as complementary. This
may require two different strategies (algorithms) for maximizing
performance when using each of the comparison types. We
further suggested that the two processes may not evolve in a
similar way in humans.

We propose that these differential properties of same-class
and different-class exemplars may affect their usability, even
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under conditions in which the two types of comparison can be
used quite efficiently and to the same extent. In order to test
this, we designed an experiment in which we tested people’s
abilities in executing (separately) the two learning processes in
a rule-based category learning task — in which both compar-
ison types can be similarly effective. We further tested the
usability of same-class vs. different-class exemplar compar-
isons under different levels of supervision —i.e. the amount of
intervention by a supervisor, (the experimenter), in the
selection of the provided exemplars for the learning phase
and the directions provided to the learner (participant).

We expected that learning from same-class exemplars would
be less affected by such intervention than learning from different-
class exemplars for two reasons: First, since even the comparison
of arbitrary same-class exemplars is expected to be quite
informative, a small set of randomly selected same-class
exemplars is likely to provide most of the information needed
for a specified categorization task. This is why we did not expect a
significant difference between the Random vs. the Informative
Same-Class Exemplar conditions. Since the comparison of Random
different-class exemplars is not expected to be sufficiently
informative, we expected that providing participants with Infor-
mative different-class exemplars might enhance their perfor-
mance. Secondly, the availability of highly informative same-
class exemplars in everyday life, together with poor availability of
informative different-class exemplars, could drive people to adopt
an appropriate strategy for learning from same-class exemplars,
but not from different-class exemplars. This is why we expected
that regarding performance in the Informative Different-Class
Exemplar plus Directions condition, the directions that were
provided would be much more effective in improving perfor-
mance compared to the Directed Same-Class Exemplar condition.
The reported findings strongly support our hypotheses.

3.2. Implications

The reported theoretical analysis, together with the behavioral
findings, suggests that the differentiating properties of informa-
tion building blocks may have a dramatic effect in shaping the
most fundamental cognitive abilities of humans, and probably
of other living species. Furthermore, the current findings sug-
gest a means for predicting human category-learning limita-
tions in different conditions, and perhaps possible ways for
overcoming such limitations.

As we have shown, comparing same-class exemplar pairs is
expected to be always quite useful, but even in a simplified
category learning task they are not sufficient for perfecting
performance. Same-class exemplar comparison is imperfect
even when the objective conditions enable perfect performance.
In reference for this statement, we recently executed a
computer-simulation for testing similar conditions to those
tested in the behavioral study reported here (Hammer et al.,
2007). This simulation showed that a constrained EM (Expecta-
tion-Maximization) algorithm always performs almost perfectly
in a categorization task, when itis trained with few paired same-
class exemplars — even when these are randomly selected. The
algorithm performance level when trained with few same-class
exemplar pairs was A’>0.9 in all tests, (and A’=1 in most of
them), suggesting that the objective amount of information
needed for perfect performance was available. However, our

human participants failed in achieving this level of performance
when trained with same-class exemplars, although they were
quite capable of achieving similar performance levels in the In-
formative plus Directions Different-Class Exemplar condition.

On the other hand, comparing different-class exemplar pairs
is not expected to be useful in most everyday life scenarios. This
statistical fact clearly emerges from the theoretical analysis
provided here. This analysis suggests that in the absence of an
expert supervisor that knowingly selects informative different-
class exemplar pairs and “feeds” them to the learner, executing
a “learning from different-class exemplars” process is expected
to be of little value. Furthermore, even when informative
different-class exemplars are selected by an “expert supervisor”
(as was the case in the Informative Different-Class Exemplar
condition) participants’ performances differed dramatically,
suggesting that different people execute different learning
strategies when faced with informative different-class exem-
plars; (for further analysis of the distribution pattern in such
conditions, see Hammer et al.,, in press). We suggest that the
later results from the former — i.e. the fact that informative
different-class exemplars are rare results in a poor proficiency
level, observed in many participants, for executing correctly the
process of “learning from different-class exemplars”.

Nevertheless, comparing informative different-class exem-
plar pairs can sometimes be quite rewarding: When executed
correctly, as occurred in the Informative plus Directions Different-
Class Exemplar condition, this comparison process enables
superior performance than that achieved by executing same-
class exemplar comparison. We suggest that this difference
between same-class and different-class exemplar compar-
isons is an outcome of the fact that same-class exemplar
comparison directly indicates only which dimensions are
irrelevant, while different-class exemplar comparison may
directly indicate the relevant ones. Since eventually general-
ization of a categorization rule requires identification of the
relevant dimensions, even perfectly identifying all the irrele-
vant dimensions will not be sufficient for perfecting perfor-
mance. As demonstrated in Fig. 1b, knowing that two distinct
birds are from the same category is at most sufficient for
knowing that the salient features that distinguish the two are
not important for determining if two birds are from the same
kind or not. Nevertheless it is not sufficient for identifying the
relevant features for perfecting bird categorization.

In fact, the superiority of the constrained EM algorithm,
when tested with same-class exemplars, emerges from its
ability to execute Principle Component Analysis (PCA) as a first
step. This provides the algorithm with a representation for all
the possible relevant dimensions in which there is informative
variance. Later, by executing the “learning from same-class
exemplars” step, the algorithm updates its covariance matrix
to fit the constraints imposed by the same-class exemplars.
This could be described as if the EM algorithm “identifies” the
irrelevant dimensions which then enable it to identify also the
complementary set of relevant dimensions. Humans do not,
and apparently cannot, behave similarly: We are limited and
driven by the physical properties of objects in the world and
their representation in our perceptual systems. The salience of
object features interact with our requirements and it may
happen that physically salient features will overwhelm our
judgment by overshadowing less salient, but potentially more
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relevant, features — i.e. features that better predict the
behavior or core properties of a perceived object.

It mightbe possible that people execute a kind of PCA —thatis,
they can learn without any supervision the variability within the
different feature-dimensions in the world. But even if they do, it
seems that such learning in humans is still limited by the prior
biases of our perceptual system. One can further claim that such
perceptual biases, if they exist, are also driven by evolutionary
constraints shaping our perceptual system, so that features that
were more important for our survival have become perceptually
more salient. But since feature-importance seems to be context
dependent, such an evolutionary mechanism is likely to be quite
limiting. Furthermore, it is not unlikely that changes in our
everyday life demands exceed evolutionary changes in our per-
ceptual system, perhaps forcing other brain areas to become
involved in a creative way with facing these increased demands.
Learning by comparison, and more specifically learning by
comparing different-class exemplars, might be such a “higher”
learning process. These processes becomes most valuable when-
ever there is little correspondence between the overall similarity
between objects and their categorical identity — situations in
which unsupervised categorization will fail to satisfy our needs.

Comparing different-class exemplars can be highly useful
when the compared exemplars are selected carefully, but even
then it is not always sufficient for perfecting performance (even
when adult university students are tested). Nevertheless, as de-
monstrated, the process of category-learning from informative
different-class exemplars can be triggered in adults by using
simple directions (but see Hammer et al., submitted for pub-
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lication for relevant findings with children). Also, the constrained
EM algorithm we tested frequently failed when trained with
informative different-class exemplars, suggesting that its archi-
tecture is not the appropriate one for using this source of infor-
mation. Here, the flexibility of the human brain prevailed, being
able to rapidly adopt an optimized strategy, as was demonstrated
in the Informative plus Directions Different-Class Exemplar condition.

The current report suggests that the conditions for which
supervised category-learning is executed should be considered
with care, and that simple changes in the selection of the
information building blocks, as well as the strategies implemen-
ted for using them, are extremely important in some conditions
but not in others. Specifically we provide the intuition for the
conditions in which different-class exemplar comparison will be
of great value. We also suggest that when an expert supervisor is
unavailable, it might be much more efficient to limit the learning
process to learning by comparing same-class exemplars. These
principles do not contradict previous category learning models
(e.g- Anderson, 1991; Goldstone and Medin, 1994; Love et al., 2004;
Nosofsky, 1986), and in fact we think they can be (and should be)
naturally integrated into these models.

4. Experimental procedures

4.1. Subjects

104 students (mean age 24+3.2, 60 female and 44 male) from the
Institute of Life Sciences at the Hebrew University of Jerusalem

Informative Exemplars Pairs

Different Same

Fig. 6 - Examples of stimuli used in the experiment during the learning phase. On the left — triads of paired stimuli used in the
Random Different-Class Exemplar (pink frames) and Same-Class Exemplar (green frames) conditions. On the right — triads of
paired stimuli used in the Informative Different-Class Exemplar (pink frames) and Same-Class Exemplar (green frames) conditions.
For all four conditions, the examples shown have eye color and ear shape as relevant dimensions. The random set of
different-class exemplar pairs is not very helpful for identifying the relevant dimensions since each pair differs in more than
one dimension, not all of which are relevant. The random set of same-class exemplars is quite useful for identifying the
relevant dimensions since each pair of exemplars differs in more than one irrelevant dimension. The informative
different-class exemplar pairs were selected so as to ensure that each pair would specify only one relevant dimension and the
triad of pairs would specify all the relevant dimensions. The informative same-class exemplar pairs were selected so as to
ensure that each pair would specify only one irrelevant dimension and the triad of pairs would specify all the irrelevant

dimensions.
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participated in the experiment. We obtained written consent
from participants. Participants were randomly assigned to the
different experimental conditions: 12 performed both the Con-
trol and the two Random conditions in a within-subject design
(order of the Same- vs. Different-Class Exemplar conditions was
counterbalanced and the Control condition was always first); 80
participants performed the Informative conditions in a between-
subject design (40 performed the Same-Class Exemplar condition
and 40 the Different-Class Exemplar condition), and 12 partici-
pants performed the Informative plus Directions condition in a
within-subject design (with counterbalanced order).

4.2, Materials

Computer-generated pictures of “alien creature faces” were
used as novel stimuli, as shown in Fig. 6. Each face was cha-
racterized by a unique combination of 5 potentially task-
relevant dimensions: shape of chin, nose and ears, and color of
skin and eyes. We designed 10 different sets of 32 stimuli each,
such that for each set, all combinations of the 5 binary
dimensions were presented in each of the 10 experimental
trials. All sets were used in each experimental condition. Two
or three (of the 5 possible) dimensions were selected as
relevant for category definition on each trial, so that same-
class exemplars had to have the same features (values) for all
relevant dimensions and different-class exemplars had to
differ in at least one of these.

4.3. Procedure

For each experimental trial, the task was to decide which
stimuli (creatures) belong to the same category as a given
standard. Thus, participants needed to learn by comparing
either same-class exemplars, or different-class exemplars,
which are the relevant dimensions for the current category-
learning trial. Later, in the test phase, participants performed
the categorization task and compared the trial standard
stimulus with the other test stimuli solely on the basis of
these dimensions.

Participants were told, (while performing a warm-up trial),
that during each experimental trial they would have to learn
which of the 32 “alien creatures” (test stimuli) belongs to the
same tribe as the one identified as “chief” (a standard
representing the target category). They were instructed that
each trial in the experiment would be independent of the other
trials and would necessitate learning a new way of categorizing
the aliens into tribes. Participants were not informed that for
each trial 2 or 3 dimensions were chosen as trial-relevant. In
general, we did not give participants specific instructions which
would clarify the optimal categorization strategy or the
structure of the categories; rather, participants were simply
told that during each trial they would have to use the clues
provided for identifying members of the chief’s tribe. Partici-
pants were also instructed that they would have limited time to
respond, and that they should perform the task not only
accurately, but also as quickly as possible.

On each trial, 3 pairs of either same-class or different-class
exemplars appeared simultaneously for 20 s in order to allow
participants to compare each exemplar pair and integrate the
information provided by the set of pairs. For the Same-Class

Exemplar condition, participants were instructed that the two
creatures that are presented together within a single green
frame are necessarily of the same kind. In the Different-Class
Exemplar condition, participants were instructed that two
creatures that are presented together in a pink frame are
necessarily of different kinds. There was no learning phase in
the Control condition. After 20 s the learning phase was
terminated and the test phase began. In the test phase,
participants were given 50 s to select (by drag-and-drop) from
the array of 32 stimuli presented simultaneously on the screen,
those that he or she thought belong to the standard’s category.
The trial was then terminated and the next experimental trial
began. All together, participants performed 10 category learn-
ing tasks in each experimental condition.

4.3.1. Control and Random conditions

Participants in the Random, lowest Level of Supervision, were
tested on three experimental conditions: In the first, they
categorized stimuli without the learning phase (Control condi-
tion). This condition was needed to assess the contribution of
learning by comparison that was tested in the other experi-
mental conditions. In the second and third experimental
conditions, participants were provided with Randomly-gener-
ated Same-Class or Different-Class Exemplars. These randomly
generated pairs were consistent with the task-assigned cate-
gories, but no attempt was made to control the information they
provided as a set (i.e., their selection was random). In a sense,
these Random conditions were designed to represent expected
real-world scenarios in which the classifier is provided with
haphazard indications of the categorical relations between
stimuli and not those that are necessarily most useful for good
categorization (see Fig. 6-left for examples).

Note that for reasons mentioned in the Introduction, in the
Random Same-Class Exemplar condition the information pro-
vided by three randomly selected pairs almost always sufficed
for identifying the task-relevant dimensions. This was not the
case for the Random Different-Class Exemplar condition, where
the information provided was almost as poor as in the Control
condition.

4.3.2. The Informative conditions

Participants in the Informative, intermediate Level of Supervision
conditions, performed categorization tasks in which both same-
class and different-class exemplars were deliberately selected so
as to provide all the information needed for perfect performance.
The goal here was to test participants’ inherent proficiencies
in the comparison of same-class vs. different-class exemplars,
when both types are similarly informative.

4.3.3.  The Informative plus Directions conditions

The procedure in the Informative plus Directions, high Level of
Supervision condition was identical to that of the Informative
condition with exactly the same sets of same-class and
different-class exemplars presented in the learning phase.
The only difference between these two Level of Supervision
conditions was in the instructions provided during the warm-
up trial of each condition. Participants in the Informative plus
Directions condition were encouraged to compare the paired
exemplars and to derive a generalized categorization rule from
their similarities and differences. The directions were simple
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and straightforward, and all participants easily learned the
category-learning strategy. In particular, before performing the
Informative plus Directions Same-Class Exemplar condition, parti-
cipants were informed that they should exclude the dimension
discriminating between each two paired exemplars, since this
dimension was necessarily irrelevant for the categorization
task, and reserve judgment about the rest of the dimensions,
for which the paired exemplars had identical features, since
they may or may not be relevant. Before performing the Infor-
mative plus Directions Different-Class Exemplars condition, parti-
cipants were informed that they should take into account the
dimension discriminating between each two paired exemplars
because, as the only differentiating dimension it must be
relevant for the categorization task.

Appendixes

Appendix A. Dimension reduction in a hypercube space (L1
Metric)

We compare the contribution of Same-Class Exemplar pairs vs.
Different-Class Exemplar pairs for cases in which 1—a dimension is
either relevant or irrelevant, 2— the dimensions are independent,
and 3— dimensions are pseudo-binary — i.e. the number of
values in each dimension can be greater than two, but we assume
that for each dimension there is at most one orthogonal border
line decisively separating between categories. We show that the
number of objects in each category is not an important factor for
reaching our conclusion. Under these assumptions we can refer
to the object space as to a hypercube.

For the case of a Same-Class Exemplar pair, its information
content (in bits) can be obtained from the number of irrelevant
dimensions it specifies. This will be the number of dimensions
in which the within-category variation, presented by the Same-
Class Exemplar pair, is similar to the observed between-
category variation. A Same-Class Exemplar pair will be poorly
informative (0 bits) only when it is composed of two nearby
objects from the same category (objects that are both taken
from the region of the same vertex of the hypercube; see text
Fig. 3b).

In the case of Different-Class Exemplar pairs, relevant dimen-
sions can be directly identified as the dimensions in which two
compared objects differ significantly. Nevertheless, as the num-
ber of dimensions in which they differ increases, it becomes less
clear which of these dimensions are relevant for discriminating
between the categories. As a result, Different-Class Exemplar pairs
can at most provide 1 bit. This will happen only when the com-
pared objects differ in only one dimension.

The following analysis provides an assessment of the
amount of information provided by a small set of Same-Class
Exemplar pairs vs. a small set of Different-Class Exemplar pairs, as
a function of the total number of dimensions in the feature
space, and the number of dimensions relevant for the
categorization task.

Let:

¢ the number of categories.
d the number of relevant dimensions; assuming binary
dimensions, c=2%.

o

z =

the total number of dimensions.
the number of objects in the neighborhood of each vertex.
the number of objects in each category, N=2°"n.

It follows that,

. Total number of Same-Class Exemplar (SCE) pairs (with #bits=0,

1,2...D-dy:

SCE = NC(Nz* 1 2D7d2dn<22D7dn - 1) B 2Pn <2D;n B 1)

B 92D-dp2 _ oD,
N 2

. The number of poorly informative Same-Class Exemplar

(poorSCE) pairs (with #bits=0):
2°n(n-1)

poorSCE = 5

. The number of highly informative Same-Class Exemplar

(infSCE) pairs (with #bits>1):

2°n(2%"n-1) gopu_1) 2°m?(2°7-1)

inf SCE = 5 5 5

Therefore the ratio between the number of highly informative
and the number of poorly informative Same-Class Exemplar
pairs is:

2Pn?(sP-4 — 1) oD

n( 1 — 1>1 whenever D>d
n(n—

i.e., whenever there is at least one irrelevant dimension, most
of the Same-Class Exemplar pairs will be highly informative.
Furthermore, as the number of irrelevant dimension in-
creases, a larger portion of Same-Class Exemplar pairs will be
highly informative.

. Total number of Different-Class Exemplar (DCE) pairs (#bits<1):

i Nzc(;— 1) ) 22(D—d)2dr;2 (2d -~ 1) ) 22D—dn2£2d - 1)

92D2 _ 92D—d,y2
B 2

. The number of highly informative Different-Class Exemplar

(infDCE) pairs (with #bits=1):

. n2cd n22%d
inf DCE = )

. The number of poorly informative Different-Class Exemplar

(poorDCE) pairs (with #bits<1):

22Dn2 _ 22D7dn2 n22dd
2 2

poorDCE =

n2od(92D-d _ 92024 _ 4
(e zm g
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Therefore the ratio between the number of highly informative and
the number of poorly informative Different-Class Exemplar pairs
is:

n224d
n294 (221341 _92D-2d _ d)
d

<1 whenever D>d

(22D—d _92D-2d _ d)

i.e., the majority of Different-Class Exemplar pairs are poorly
informative. Furthermore, as the total number of dimen-
sions increases, a larger portion of Different-Class Exemplar
pairs will be poorly informative.

The properties of hypercubes suggest that as the dimen-
sionality of the hypercube space increases, the vast
majority of diagonals are expected to be from an order
higher than 2 (Bowen, 1982). For that, the above calcula-
tion suggests that the information content for most Same-
Class Exemplar pairs is expected to be more than 1 bit. For
Different-Class Exemplars, in similar conditions, most pairs
are expected to provide much less than 1 bit of informa-
tion. The difference in the information content between
the two types of comparison processes increases as the
total number of dimensions increases, and particularly as
this number increases with respect to the number of
relevant dimensions.

To conclude, in the context of a category learning task in
which we dichotomically discriminate relevant dimensions
from irrelevant ones, the information content of a haphazard
small set of Same-Class Exemplar pairs will be significantly
larger than the information content of a small set of Different-
Class Exemplar pairs.

Appendix B. Similarity and information content of same-class
and different-class constrained pairs for a binary perceptron
(L2 Metric)

The intuition says that for a Same-Class Exemplas constraint,
the information value increase with the Euclidean distance
between the constrained points, while for Different-Class
Exemplar constraints the opposite thing happens. A natu-
ral measurement for the information value of a constraint

a

b

Fig. 7 -Illustration for the main difference between Same-Class and Different-Class constraints on a two-dimensional space.

is the reduction it incurs to the volume of the ‘version space’,
i.e. the space of all possible hypotheses. An informative con-
straint is not consistent with a large portion of the ver-
sion space, and hence it leaves a small number of possible
hypotheses.

However, placing a measure and analyzing the structure of
the version space is relatively hard in all but the simplest
cases. We therefore focus here on the relatively simple case of
a binary linear classifier passing through the origin, as the one
used in certain versions of the Perceptron or linear SVM. This
classifier is characterized by a weight vector wER?, and given
an input pattern xR its output is a binary label y={-1, 1}
given by the formula

y = sign(w - x)

The advantage of using this simple classifier is that the
hypotheses space (the set of all possible w parameters) has a
relatively simple structure. It can be equated with the unit
sphere W={w:|| w||=1}, and it has a natural prior measure, i.e.
the uniform measure over the sphere.

A Same-Class Exemplar constraint (x;, x», 1) demands that

(w-x1>0 & w-x2>0) or (w-x1<0 & w-x2<0).

This can be summarized by demanding that (w-x;)(w-x,)>0.

Similarly, a Different-Class constraint demands that
(w-x1>0 & w-x,<0) or (w-x;<0 & w-x,>0) and equivalently (w-x;)
(w-x,)<O0.

Looking at this characterization, we can see that a Different-
Class Exemplar constraint (x4, X, —1) is equivalent to the Same-
Class Exemplar constraint (x;, —X,, 1) since
(w-xq)(w-x2)>0 iff (W-xq)(W-(—%2))<0

This means that for such a binary classifier every Same-
Class Exemplar constraint can be converted to a Different-Class
Exemplar constraint and vice versa, so there is no inherent
difference between the information values of the two con-
straint types. However, the two types of constraints radically
differ with respect to the way they are affected by the similarity
between the constrained data points.

The main difference between the two types of constraints is
sketched in Fig. 7. In these sketches we assume for simplicity that
the classifier operates in R? i.e. each data instance is described
using two measurements only. In Fig. 7a, a typical linear classifier

C
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is plotted: the classifier is characterized by a single borderline
passing through the origin, which separates between data point
labeled by 1 and those labeled by —1. a separator in this example
can be characterized by a single number — the separator’s direc-
tion in [0, 2. Notice that such a separator only discriminates
between two points if their direction is different. Hence a natural
measurement for the similarity between two points is the cosine
of the angle between them, expressed by

X1 X2
<o b ) = I T e

When this angle is small, the two points are similar and the
cosine will be close to 1. When they are far from each other
and create an angle of 90 degrees, the similarity as measured
by the cosine will be 0. Finally, when two points are antipodes,
their cosine-based similarity will be - 1.

In Fig. 7b we assume that a Same-Class Exemplar constraint
is given between the two drawn data points. Since these
points are known to be together (i.e. both should be on the
same side of the linear separator), they disallow all the
possible separators passing through the indicated blue (dark)
sector. Hence the fraction of the version space disallowed by
such a constraint is the angle between the two points, divided
by the measure of all the version space, i.e.

1 < X1 X2 )
p=— arccos \ —————— -
™ [IFxaf] - [l %2 |f

It can hence be seen that the closer the points, the higher
the cosine between them (i.e. their similarity), but the angle
between them (the arc-cosine) tends toward zero and so is
their information content p.

In Fig. 7c we see the effect a Different-Class Exemplar
constraint has on the version space. The two points in this
figure are assumed to be from different classes, and again the
area of disallowed separators is marked in blue (dark area).
This time the disallowed area is proportional to the comple-
mentary angle and the expression for the information content
is

1 ( —X1-X2 >
p=—arccos |\ w—— -
m x| [l %2 |

This time points with high similarity (high cosine) give
negative values in the arc-cosine argument, leading to large
excluded angles and hence high information content.

The points illustrated in the Fig. 7 for two dimensional
instances can be proved and extended to arbitrary high
instance dimension under mild assumptions, including
mainly a uniform prior over the space of allowed separators.

Appendix C. Graphs partitioning and transitivity

This Appendix provides a formal basis for the computational
difference between Same-Class Exemplar pairs and Different-
Class Exemplar pairs in graph partitioning. This difference,
unlike those of Appendix 1 and 2, is not limited by any metrical
assumptions.

Notation. We represent data points in a graph G G={V, E}, where
the set of nodes V of size N corresponds to the data points, and the
set of edges E of size M corresponds to the given paired exemplars,
either Same-Class or Different-Class (but not both). The task is to
divide the data-points into K classes.

Appendix C.1. The complexity of satisfying Same-Class

us. Different-Class pairs

Assume K=2, and the task is therefore to partition the data
into two clusters. Each partition is represented by C — the set
of all edges from E which connect nodes assigned to different
clusters; the set C is called the cut of graph G. Each cut is
assigned a cost — the number of edges in C.

Appendix C.1.1. Enforcing Same-Class Exemplar constraints is
manageable. Given Same-Class Exemplar pairs, we seek a
partition which violates as few edges as possible, representing
Same-Class Exemplar constraints. Finding this partition is
equivalent to finding the minimal cut in the above graph.
There are known efficient algorithms to solve this problem.
Thus, in the complexity hierarchy of computer science, this
problem is considered tractable.

Appendix C.1.2. Enforcing Different-Class Exemplar constraints
is hard. Given Different-Class Exemplar pairs, we seek a
partition which violates as many edges as possible, represent-
ing Different-Class Exemplar constraints. Finding this partition
is equivalent to finding the maximal cut in the graph defined
above. There are no known efficient algorithms to solve this
problem (although approximate solutions can be produced by
using meta-heuristic search methods). Therefore, in the
complexity hierarchy of computer science, this problem is
almost certainly intractable.

Appendix C.2. The information content of Same-Class vs.
Different-Class pairs

We define the information of a set of paired exemplars E to
be the difference between the entropy H of all the partitions
of the set of nodes V to K clusters, and the entropy Hg of all
such partitions consistent with E. Assuming that each
allowed partition is assigned equal probability, the entropy
Hg is equal to the log of the number of allowed partitions.
We are interested in the difference between the information
of Same-Class and Different-Class constraints, namely in

I=(H-H{) - (H-Hg) =Hg —H{ = log

QO

where the entropy superscript + or — denotes, respectively,
whether the set of constraints is Same-Class or Different-
Class, #¢ denotes the number of partitions consistent with E
if the constraints are Different-Class, and #& is similarly
defined if the constraints are Same-Class.

N¢ denotes the number of connected components of G. In
particular, if the graph G has no loops, Nc=N - M. For a general
graph with N¢ connected components, we note that each
connected component in G has at least one legal coloring (by
assumption). Here Nt denotes the number of connected
components with 1 or more elements Nc=N&>N2>...>NK. The
following can now be shown:
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The information gain of Same-Class over Different-Class pairs
satisfies

K
1> N log (K—1+1)
=2

We can therefore state that, if N> N, the information
content of Same-Class constraints is exponentially larger than
Different-Class constraints; (for the detailed calculation and
further comments regarding this analysis, see Hammer et al.,
2007).
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