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Findings from numerous studies suggest that multiple neural systems are involved in category learning.
Specifically, it is often argued that acquiring a representation of different category structures (e.g., rule-based
vs. prototype-based representation) involves different computational challenges, which are resolved by
different neural circuitries in the human brain. Here we present an alternative approach for studying neural
mechanisms of category learning: We refer to the idea that any category learning task involves mapping
common features shared by same-category members, distinctive features discriminating members of
different categories, or both. We argue that since these processes are psychologically and computationally
distinct, they differ in their usability for category learning. Our participants learned novel categories of
complex visual stimuli by comparing either pairs of objects from the same novel category or pairs of objects
from different categories. Object pairs were chosen so that the objective amount of information they
contained was identical in the two category learning conditions, equally enabling learning the predefined
objective category structure. We find that the neural circuitry involved in detecting important between-
categories differences is associated mainly with the dorsal striatum (bilaterally) and the right hippocampus.
On the other hand, mapping within-category similarities and differences is restricted to high-level visual
brain areas. We suggest that multiple neural mechanisms are involved in category learning enabling us to
face different computational challenges associated with different basic types of induction processes that
differ in their usability for learning different category structures.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Category learning is the cognitive ability that enables creation of
compact and meaningful mental representations of objects and
events. Evidence from behavioral studies suggests that category
learning involves more than one mental process: In some scenarios, a
categorization rule can be described verbally as a set of feature-
dimensions by which object categories can be formed or discrimi-
nated (e.g., blue balls vs. red cubes). On the other hand, learning
scenarios such as information-integration category learning, (where
there is a within-category interdependence among certain feature-
dimensions), or some prototype learning tasks, involve learning
representations which people fail to describe verbally (Ashby and
Gott, 1988). For this reason it is frequently suggested that learning
different category structures involves a variety of computational

challenges, which are met by different neural mechanisms in the
human brain (Ashby and O'Brien, 2005; Smith and Grossman, 2008).

We now present an alternative approach for studying the nature of
the neural mechanisms involved in category learning, while addres-
sing previous findings showing that multiple neural mechanisms are
involved in category learning. Our findings suggest that different
neural mechanisms may be engaged for the task of learning the very
same objective category structure, depending on the nature of the
learning context and the provided information. Specifically, we find
that when healthy adult participants learn a novel categorization rule
(when categorizing novel complex visual stimuli), the processing of
informative between-category differences, (as when comparing
objects from different categories), is associated with enhanced neural
activity in the dorsal striatum (bilaterally), the right hippocampus,
and left lingual gyrus (ventral BA-19). In contrast, when the same
categorization rule is learned by processing similarly informative
within-category similarities and differences, (as when comparing
objects from the same category), the neural activity in these brain
areas is for themost part no higher than in a task that does not involve
learning. Instead, we provide evidence showing that the process of
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mapping within-category similarities and differences is restricted to
high-level visual brain areas including the right inferior temporal (BA-
37) and the right angular (BA-39) gyri.

Early evidence for the existence of multiple neural mechanisms for
category learning came from studying people with neural pathologies.
Impaired neostriatum function in patients with Parkinson's Disease
(PD) was reported to be associated with poor procedural learning,
whereas damage to the limbic-diencephalic region in amnesic
patients was reported to be associated with poor declarative learning
(Knowlton et al., 1996). This account is supported by more recent
neuroimaging studies with healthy participants (e.g., Nomura et al.,
2007). Moreover, the striatum seems to play multiple roles in
category learning: Some studies show that PD patients suffer mainly
from poor abilities in information-integration category learning tasks
which involve implicit learning (Maddox and Filoteo, 2001), whereas
others suggest that PD patients suffer mainly from poor declarative
rule learning (Ashby et al., 2003). More recently, by testing both PD
patients' behavior, and by testing healthy participants using neuroi-
maging techniques, Filoteo and colleagues (2005a,b) showed that in
the context of supervised learning, the striatum may be involved in
directing attention to the task-relevant feature-dimensions by
filtering out those that are task-irrelevant. According to Cincotta and
Seger (2007), subparts of the striatum play different roles in category
learning so that the head of the caudate is associated with feedback
processing, while the body and tail of the caudate and the putamen
are involved in creating stimulus-category associations.

Another corpusof neuroimaging studies suggests thatdifferent brain
areas are engaged in different cases of prototype category learning:
Implicit prototype learning is reported to be associated with reduced
activity in the right occipital cortex (specifically BA-19)when amember
of the learned category is processed. When the category prototype is
learned explicitly, processing a category member is associated with an
increase in neural activity in this region, as well as in the right
hippocampus region (Aizenstein et al., 2000; Reber et al., 2003).
Zeithamova et al. (2008) presented a somewhat different perspective
showing that when prototype learning requires contrasting between
two target categories (the A/B task), learning is associated with
significantly higher neural activity in the parahippocampus and inferior
parietal and orbitofrontal cortices. Hippocampal and parahippocampal
activities were also predictive of correct responses on an individual trial
basis in this task. On the other hand, performing a task that requires
discriminating between members and non-members of a single
category (the A/non-A task) is associated with higher activation in
the lateral occipital cortex and striatum. Correct categorization in the A/
non-A task is associated with significantly higher activation in the left
putamen and right anterior hippocampus.

We may deduce from this overview that multiple neural mechan-
isms in the human brain are involved in category learning. The most
common explanations for these findings are that which neural
mechanism is engaged during category learning depends on the
nature of the learned category structure, the nature of correspondence
between observer decision and the provided feedback, and/or
whether the category structure is learned implicitly or explicitly. In
the current study we present novel findings showing that different
neural mechanisms are associated with different forms of induction
required for category learning. We suggest that which of these
induction tools is engaged for the task of category learning depends
on the nature of the information building blocks (specifically, the type
of relational information) provided during the learning process, and
the computational challenges involved in their processing. To this
end, in our experimental taskwe do not compare the neural correlates
of learning one category structure or another, as has been done in
previous studies. Instead, we test the neural correlates of learning the
same objective category structure while changing the nature of the
information provided during the learning process. We argue that
studying the underlying neural mechanism of category learning using

such an approachmay help to further explain and to reconcile some of
the apparent inconsistencies across different previous studies dis-
cussing the neural basis of category learning.

What kind of mental processes are required, and are potentially
available, for any supervised category-learning task? Learning from
feedback and observational learning both require processing equiv-
alence constraints – indications of the categorical relations between
stimulus examples from which a generalized categorization principle
can be learned by comparing these examples (on the role of
comparison in category learning see Boroditsky, 2007; Gentner and
Namy, 1999; and Spalding and Ross, 1994; see also Goldstone et al.,
2010 for a recent review). When we are presented with two stimuli
sharing the same label (i.e., members of the same category), we are
provided with a Same-Class Indication – an indication from which we
can identify the features that are shared by category members, as well
as the permittedwithin-category variability (the irrelevant features in
which category members may differ). When we are presented with
two stimuli that differ in their labels (i.e., members of different
categories), we are provided with a Different-Class Indication – an
indication enabling the identification of diagnostic features that are
required for discriminating between different categories (Hammer et
al., 2009a).

Same-class indications can also be the product of feedback,
signaling a Hit or a Miss – when making a same/different decision
in regard to the categorical relation between two members of the
same category, not being aware of this fact, a priori, the feedback that
follows such a decision indicates that these are indeedmembers of the
same category. On the other hand, different-class indications are the
product of feedback signaling a Correct-Rejection or False-Alarm –

when making a decision in regard to the categorical relation between
two members of two different categories, the following feedback
indicates that these are members of different categories. The same
principle is true in supervised learning scenarios in which a decision is
made in regard to the categorical relation between a single exemplar
and a given category representation (i.e., A/non-A task) or multiple
category representations (e.g., A/B task).

Same-class and different-class indications fundamentally differ in
the nature of the computation required for processing them: (1) Same-
class indications are always highly informative for learning irrelevant
within-category variability and relevant within-category similarities,
whereas different-class indications are informative for learning relevant
between category differences only in the rare cases when these
differences are very few. (2) Same-class indications are transitive,
while different-class indications are not. This makes same-class
indications even more informative as it also reduces the computational
effort in accumulating and binding information provided frommultiple
observations or learning trials. For these reasons, same-class and
different-class indications differ in their usability for learning different
category structures (Hammer et al., 2008).

Specifically, same-class indications may be usable both for learning
parametric similarity-based representations, such as the one required
for prototypeor exemplar-based learning, or for learning anexplicit rule
which is based on induction. On the other hand, different-class
indications are effective for rule learning only when they make it
possible to evaluate the relevance of very few feature-dimensions in
isolation. Different-class indications may also become valuable when
simultaneously learning more than a single prototype-based category
representation, a scenario in which discrimination capabilities are of
greater importance (such as with the case of the A/B category learning
task). Yet again, such a use of different-class indications is possible only
when the to-be-considered between-category differences are very few.
Since different-class indications are not transitive, any task that requires
their use will require additional effort for binding information from
isolated observations or learning trials (Hammer et al., 2008).

As learning a given category structure using only different-class
indications necessitates a different form of computation than the one
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required for learning the same category structure using only same-
class indications, we hypothesize that this may be reflected in the
neural correlates associated with each one of these two processes.
Accordingly, we tested human participants while they performed
complex rule-based category learning tasks, recording their brain
activity using functional MRI scanning (whole brain recording).
Specifically, we hypothesize that learning a categorization rule from
different-class indications is likely to require an induction process,
whereas same-class indications are likely to be automatically
incorporated by other learning systems, some of which do not require
explicit induction (e.g., systems involved in learning a similarity-
based category representation). The main motivation of using a
complex rule-based category learning task is that in such a task it is
relatively easy to formulate the hypothesis space representing the
possible ways for categorizing the stimuli prior to the learning
process, as well as the way in which this hypothesis space is
constrained by the information provided during the learning process
(Krawczyl et al., 2005; Holyoak, 2008). This enables quantifying the
amount of objective information provided in different learning
conditions, and then using this measure as a reference for better
evaluating participants' performance (e.g., Hammer et al., 2008). It is
important to note at this point that rule-based category learning is
believed to be based on explicit hypothesis testing that relies heavily
on explicit memory systems in the human brain (DeCaro et al., 2008;
Waldron and Ashby, 2001). We argue that this may be only partially
true as it may depend on the type of indications (same-class vs.
different-class) available during the learning process.

Methods

Outline

When designing the experiment we took the following method-
ological precautions: (1) We disassociated the two types of indica-
tions so that in one category-learning condition participants were
trained with only same-class indications while in the other they were
trained with only different-class indications. (2) For each category-
learning condition we used same-class and different-class indications
that were equally informative, making it equally likely to learn the
categorization rule if using a strictly optimized induction strategy. (3)
For each task, the learning phase was disassociated from the test
phase so that participants were not provided with any feedback for
their performance during the experiment. (4) Although the task was
an observational learning task, we avoided the use of category labels.
(5) In the two category-learning conditions, participants were
encouraged to attend to both similarities and differences within
each compared stimulus pair. (6) To better disassociate the neural
correlate of category learning from that of other more generic mental
processes, we included a control condition that did not require
learning, but in which participants were presented with the same
visual input and which required generating similar motor responses
as in the category-learning conditions.

Participants

Fourteen observers participated in the experiment, 4 males and 10
females, with an average age of 28.9 (range=22–41 years) and
normal or corrected-to-normal vision. Participants gave written
informed consent to the study, which was approved by the ethics
committee of the University of Magdeburg, Germany.

Materials

Twelve sets of computer-generated grayscale images of novel
“alien creatures” were used as stimuli. Each set was characterized by
four binary feature-dimensions that potentially could determine the

creatures' categories for the given set. Each set was used for a different
category learning task presented in a different experiment block. For
each set, categories were predefined as a rule, based on two feature-
dimensions only. The background in each image included a low-
contrast pattern with blurred and noisy circles or squares scattered in
varying patterns. These background shapes become relevant for the
control task. Fig. 1a illustrates a few stimuli from one stimulus set.

Procedure for the behavioral task

Before the fMRI Scanning session, participants were introduced to
the task in a Stimulus Familiarization session. This took place outside
the fMRI scanner, and participants were presentedwith stimulus pairs
and asked to decide whether the two simultaneously presented
creatures are of the same/different type (by pressing the left/right
mouse key). No feedback followed this decision so that the
predetermined categorization rule could not be learned at this
stage. Themotivation for conducting this unsupervised discrimination
task was to enable participants to become familiar with the stimuli
and the potentially informative feature-dimensions prior to the
Scanning Session.

Since for each stimulus set there are four possibly relevant feature-
dimensions, and since the number of task relevant feature-dimen-
sions was unknown to the participants, the hypothesis table in Fig. 1b
represents all possible combinations of relevant vs. irrelevant feature-
dimensions that could be considered by the participants: Hypothesis 1
(H1) represents a scenario in which none of the varying feature-
dimensions is relevant for categorization and H16 a scenario in which
all feature-dimensions are relevant, (a conjunction rule based on four
feature-dimensions). The other hypotheses represent the other
possible alternatives for one, two, or three relevant feature-dimen-
sions. It is important to emphasize that participants were not
informed of the number of feature-dimensions in which the stimuli
varied, nor the number of feature-dimensions which were with
diagnostic value.

After the Familiarization Session, participants started the Scanning
Session in which they were tested in three conditions: Category
learning by comparing Same-Class Exemplars, category learning by
comparing Different-Class Exemplars, and a Control condition in which
the participants did not learn a categorization rule. For each of the
category-learning blocks a different stimulus-set was used, requiring
learn a new categorization rule. For the control condition we used
stimulus sets also used for the same-class and different-class
conditions. Each experimental condition (same-class, different-class,
and control) was repeated six times during the scanning session, with
blocks from the three conditions being presented in random order. At
the beginning of each block, a slide indicating the specific task (saying
– “same-type clues”, “different-type clues”, or “background shape”)
was presented to the participant for 3.5 s (followed by a 0.5 s blank
screen). In the two category-learning conditions, this slide was
followed by a learning phase, duringwhich the participant could learn
a categorization rule by comparing pairs of creatures identified to be
members of the same-category or of two different categories. Same-
class and different-class pairs were selected for the learning phase to
provide the participants with the same amount of information in the
two learning conditions. In each category-learning condition, the
learning phase was followed by a test phase with eight test trials.
Participants were not provided with any feedback for their perfor-
mance (at any point during the experiment).

In the same-class condition participants could learn the categori-
zation rule from two same-class indications, each providing one bit of
information by eliminating half of the possible hypotheses; (see Fig. 1).
In each of the two learning trials, a pair of creatures were
presented with an equal sign (“=”) presented between them,
indicating that these paired creatures are of the same type. Fig. 1c
illustrates two same-class indications: From the upper indication
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participants could learn that same-category creatures may differ in
their tails (marked as d3 in Fig. 1a). Thus, tails are not relevant for
categorization since the within-category variability in this feature-
dimension is equal to the overall observed variability in this stimulus
set. From the lower same-class indication, participants could learn
that same-category creatures may differ in eye protrusion (marked as
d4 in Fig. 1a) indicating that this feature-dimension is also irrelevant.
Each same-class creature pair was presented separately for 5 seconds
(followed by a blank screen for one second). Together, the two same-
class indications provide two bits of information leaving only the four
possibilities in which d3 and d4 are both irrelevant for the
categorization rule (marked by “0” in the hypothesis table). This
leaves H1, H5, H9 or H13 as possible hypotheses for the categorization
rule.

In the Different-Class condition participants could learn the
categorization rule from two different-class indications, each provid-
ing one bit of information (Fig. 1d). Here, pairs of “creatures” were
presented with the not-equal sign (“≠”), indicating that these
creatures are from different types. From the upper different-class
indication of the figure, participants could learn that if creatures differ
in their spikes (marked as d2 in Fig. 1a) they are necessarily from
different types. That is, spike length is relevant for categorization since
it is a diagnostic feature. From the lower different-class indication
participants could learn that difference in creature legs (marked as d1
in Fig. 1a) is also relevant for discriminating between categories.
Together, the two different-class indications provide two bits of
information leaving only the four possibilities in which d1 and d2 are
both relevant (marked by “1” in the hypothesis table). This includes
H13, H14, H15 or H16 as the possibly relevant hypotheses. Note that
in both learning conditions – using either only same-class or only
different-class indications – the information is equal and efficient
learning will result with an equal number of alternative hypotheses.
The hypothesis by which participants' performance was evaluated in
this example is H13, stating that d1 and d2 are the only two relevant
feature-dimensions. H13 is the only hypothesis consistent with both
the same-class and the different-class indications provided (note that
participants never saw the same stimulus set for both learning
conditions). Describing it in other words, for the current stimulus set

example, the objective category structure that complies with both the
same-class and different-class indications described above can be
verbalized as a conjunction rule of one type of spikes and one type of
legs (whereas eye protrusion and tail type are irrelevant for this
categorization task).

Immediately after being trained with either the same-class or the
different-class indications, participants were tested on the categori-
zation rule that they had just learned. In each of the eight test trials
that followed the test phase, two creatures were presented with no
indication for their categorical relation. In each of the test trials, the
two presented creatures were identical in exactly two out of the four
possible feature-dimensions, and differed in the other two. Thus, the
amount of similarity vs. dissimilarity with respect to the four varying
features was balanced, reducing possible response bias. In half of the
test trials the paired creatures differed in the two irrelevant feature-
dimensions and were identical in the two relevant feature-dimen-
sions (i.e., same-class creatures). In the other half of the test trials the
creatures differed in one relevant feature-dimension (i.e., different-
class creatures) and one of the irrelevant feature-dimension.
Participants made a same/different decision (pressing the appropri-
ate key of the response box) according to what they had learned
during the preceding learning phase (but did not receive feedback for
their decisions). Each test trial lasted 3 s (2.8 s for stimulus
presentation and response, and 0.2 s inter-trial-interval with a blank
screen). Between blocks there was a 20 s blank screen rest period.

Control condition blocks were similar in structure, stimulus type
and duration. However, here participants were not asked to categorize
the presented creatures but to decide whether the low-contrast
background shapes in the two stimuli are the same (square-square or
circle-circle) or different (square-circle). These low-contrast pattern
shapes were also part of the stimuli used in the category learning
conditions, but in these conditions theywere task irrelevant. To insure
that this task is sufficiently demanding, the stimuli were designed so
that the background shape distribution pattern varied between
stimuli (thus, it could not be predicted), they were blurred and
noisy and with low-contrast (see examples in Figs. 1 and 2). Thus,
although the control condition did not involve category learning,
participants were presented with similar visual input, and had to

Fig. 1. Stimuli design. (a) Example of stimuli taken from one of the 12 stimulus sets used in the experiment. Creatures in each stimulus set vary in four feature-dimensions (for the
current example, d1: legs; d2: spikes; d3: tail; d4: eye protrusion). For each set we created 16 stimuli, representing all combinations for the four binary dimensions). (b) Hypothesis
table illustrating all possible combinations for relevant (“1”) or irrelevant (“0”) feature-dimensions. (c) Examples of same-class pairs indicating d3 (tail; upper pair) and d4 (eye
protrusion; lower pair) as irrelevant. (d) An example of different-class pairs indicating d2 (spikes) and d1 (legs) as relevant feature-dimensions.
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produce similar motor output as in the two category learning
conditions. This enables us to differentiate neural activity associated
with category learning from that accompanying the processing of
visual input, general visual attention and the production of motor
output (eye saccades and key pressing). See Fig. 2 for an illustration of
the general block design in each condition.

Scanning procedure

For stimulus presentation and participant response recording, we
used Presentation software (www.neurobs.com) running on a
standard PC computer. Stimuli were back-projected onto a screen
which could be viewed via a mirror mounted on the head coil. The
distance between the participant's eyes and the screenwas 59 cm. The
screen was 325×260 mm, which is appropriate for an angle of about
±15°. In each experimental trial, the pair of stimuli was simulta-
neously presented at the center of the screen. Each stimulus occupied
10×10 cm on the screen, and the two stimuli were separated by a gap
of 6.5 cm. Participants responded directly using the two keys of a
response box (for same/different responses, respectively).

Measurements were carried out on a 3 T scanner (Siemens Trio,
Erlangen, Germany) equipped with an eight channel head coil. A 3D
anatomical data set of the participant's brain (192 slices of 1 mm
each) was obtained before the functional MRI measurement.
Additionally, we acquired an Inversion-Recovery-Echo-Planar-Imaging
(IR-EPI) scan with the identical geometry as in the functional
measurement. For fMRI, 550 functional volumes were acquired in
18:20 min using an echo planar imaging (EPI) sequence (echo time
(TE), 30ms; repetition time (TR), 2000ms; flip angel, 80°; matrix size,
64×64; field of view, 19.2 cm×19.2 cm; 33 slices of 3 mm thickness
with 0.3 mm gaps). During the scans, participants wore earplugs and
their head was fixed with a cushion.

Procedure for scanning data analysis

The functional data were analyzed with BrainVoyager™QX 1.8.6
software (Brain Innovation, Maastricht, Netherlands). A standard
sequence of preprocessing steps, including 3D-motion correction,
linear trend removal, and filtering with a high-pass of three cycles per
scan was performed. The functional data set was projected to the IR-
EPI-images, co-registered with the 3D-data set, and then transformed
to Talairach-space and spatially smoothed with a Gaussian filter

(FWHM=4 mm). For the fixed-effects GLM-analysis, we defined the
following predictors for each 1 minute block: task indicating slide (0–
3.5 s), first (same/different or control) indication (3.5–9.5 s), second
(same/different or control) indication (9.5–15.5 s), test phase (15.5–
39.0 s), and rest (39.0–60 s). These were convolved with the two-
gamma hemodynamic response functions using the default para-
meters implemented in BrainVoyager™QX. First we calculated a
balanced contrast using all predictors of the different-class condition
and the same-class condition vs. all predictors of the control condition
using a significance level of pb 0.05 (FDR-corrected). The contrasts
between each of the two category learning conditions and the control
condition are illustrated in Supplementary Fig. 1. This analysis step
was done as an initial step for all further analyses (see Results) that
reveal effects specific for each of the category learning conditions,
using a significance level of pb0.05 (Bonferoni corrected) and a
minimum cluster size of 100 mm3.

Results

Behavioral performance

We measured category learning efficiency as participant perfor-
mance in the 8 test trials in each block. For each participant we
averaged performance from the six blocks of each condition. Themain
performance measure we used is the non-parametric sensitivity
measure A′ (Grier, 1971), calculated from the Hit rate (correctly
identifying two creatures as belonging to the same category) and
False-Alarm rate (FA; incorrectly identifying two creatures as
belonging to the same category) of each participant in each condition
separately. A′=0.5 represents chance performance, A′=1 perfect
performance; 0≤A′b0.5 represents response confusion (particularly
likely when a participant produces many missed trials).

One-sample t-tests showed that participant performance in all
three conditions was significantly better than chance (A′=0.5):
Learning from different-class indications (A′=0.84±0.17; Mean±
SD), t(13)=7.23, pb 0.001; Learning from same-class indications
(A′=0.64±0.17), t(13)=3.10, pb 0.01; Control (background
shapes; A′=0.96±0.03), t(13)=50.21, pb 0.001. Importantly, per-
formance in the learning from different-class condition was signifi-
cantly better than that in the same-class condition, t(13)=3.52,
pb 0.005. As shown in Fig. 3, this difference in sensitivity between the
two category learning conditions reflects the somewhat higher Hit

Fig. 2. Outline of a block design in each experimental condition. (a) Illustration of one category learning block of the same-class indications condition. The block started with a slide
indicating to the participant the block type (overall duration 4 seconds). This was followed by the learning phase (12 s) in which two same-class exemplar pairs were presented with
the “=” sign, indicating for the participants that each two stimulatingly presented creatures are members of the same category. During the following 8-trial test phase (24 s),
participants had to decide whether the presented pair of creatures was from the same type or different types (pressing the appropriate response-box button), receiving no feedback.
(b) Illustration of one block of the category learning from different-class indications condition, in which two different-class exemplar pairs were presented with the “≠” sign,
indicating for the participants that each two stimulatingly presented creatures are members of two different categories. (c) Illustration of one block of the control condition; here,
during the “learning phase,” no information for the categorical relation between the paired stimuli was provided, so that no learning could take place. In the control condition,
instead of learning a categorization rule, participants related to the low contrast background shapes.
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rate, t(13)=2.51, pb 0.05, but mainly the lower FA rate, t(13)=
−5.92, pb 0.001, when learning from different-class indications (Hit
rate=0.74±0.26; FA rate=0.16±0.16) compared to same-class
indications (Hit rate=0.58±0.18; FA rate=0.40±0.14). See Dis-
cussion for a comment on the possible source of this effect.

Neural correlate of learning from different-class indications

In order to characterize the neural correlate of category learning
from different-class indications we contrasted the neural responses in
the two category learning conditions during the learning phase
(different-class higher than same-class), as shown in Fig. 4. This
reveals significantly higher neural activity in an assembly of cortical
and subcortical brain areas including the left lingual gyrus (ventral
BA-19; Fig. 4a), left and right putamen and the left caudate (Fig. 4b, c),
and the right hippocampus (Fig. 4d, showing the contrast in the
hippocampus for the test phase). Fig. 4e shows the nature of the
differences in the neural activity in the two category learning
conditions, also with respect to the control condition. Note that,
excluding the neural activity in the left caudate, the neural activity in
the other listed brain areas is no higher than the neural activity in the
control condition, which requires no category learning. Moreover, for
the most part, the significant effects in these brain areas seem to be
exclusively associated with learning: As can be seen in Fig. 4f, most of
these effects dramatically decrease in the subsequent test phase.
Although the neural activity in the different-class condition remains
significantly higher in the right and left putamen, the effect size is
reduced. The only effect to become even more substantial during the
test phase is the one observed in the right hippocampus. It is
important to note that when evaluating the pattern of BOLD responses
during the test phase, one should remember that this is likely to be
affected by the pattern of BOLD responses observed in the preceding
learning phase, so that even the reported effect seen in the
hippocampus might be due to learning stage differences, not test
stage differences.

Looking at the greater neural activity in the learning phase of the
learning from different-class indications condition and recalling that
performance, too, was superior in this case, there is an apparent
overall positive correlation between learning stage neural activity (in
the dorsal striatum, hippocampus and lingual gyrus) and participant

performance in the test phase (across the two category learning
conditions). Thus, a possible conclusion would be that the level of
neural activity in these brain areas is not truly associated with the
type of indications from which the categorization rule is learned (i.e.,
same- vs. different-class indications), but rather the overall level of
neural activity in the learning phase is simply correlated with the
overall expected level of performance in the following test phase.
Given the temporal order, onemight even claim that neural activity in
the learning phase predicts (or even associated with the cause of)
participant competence in the following categorization task (test
phase).

Although the above conclusion might seem compelling, we argue
against it. The basis for negating this conclusion is that when we look
at the across subjects correlation between activity in these areas and
behavioral performance, for each one of the two category learning
conditions separately, we find no correlation at all. To test this
correlation, we average the BOLD signal across the three relevant
dorsal striatum areas (left and right putamen and left caudate;
marked as clusters 1, 2 and 3 in Fig. 4). This step is justified both by
what is known about the anatomical and functional relations among
these brain structures (Bar-Gad et al., 2003), and by the analysis
presented in the Supplementary data, showing that the neural activity
in these three brain areas is highly correlated in the tasks tested here
(during both the learning and the test phases). The correlations
among the activation in these three sub-structures in the dorsal
striatum with activation in the left lingual gyrus and right hippocam-
pus are also provided as a reference (see Supplementary Tables 1–4).
This analysis shows that the correlations among the neural activity in
left lingual gyrus, right hippocampus and sub-structures in the dorsal
striatum strongly depend on experimental condition (same- vs.
different-class) and task phase (learning vs. test).

Fig. 5a shows the correlation between the neural activity (Beta) in
the dorsal striatum in the learning phase and the level of performance
(A′) in the test phase for each experimental condition. Within each
condition there is no significant correlation between the two
parameters: Different-class condition, r(14)=0.02, p=0.95; Same-
class condition, r(14)=−0.19, p= 0.52. This is also the case when
looking at correlations between the neural activity in the dorsal
striatum in the test phase and the level of performance for each
experimental condition separately: Different-class condition, r(14)=

Fig. 3. Behavioral performances. (Left) each participant (marked with his or her initials) is represented twice on a Receiver Operation Characteristic diagram, once for the same-class
condition (green) and once for the different-class condition (pink). (Right) mean (and standard error of the mean) sensitivity (A′) in the three experimental conditions.
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0.34, p= 0.23; Same-class condition, r(14)=0.31, p= 0.28. It is
important to note that these correlations are not significant although
there is substantial variability in participants' performance and in the
neural activity within each of the two category learning conditions.

In addition, we considered the possibility that the relatively low
neural activity in the same-class conditions results from more

participants being short of attention or confused, specifically when
performing this category learning condition. Accordingly, we exclud-
ed five participants for whom performance was poor in either one of
the category learning conditions (A′b0.5, associated with response
confusion, or relatively many trials in which the participant did not
responded on time), or that their dorsal striatum neural activity

Fig. 4. The neural correlate of learning from different-class indications. Neural activity in brain areas determined by the different-classNsame-class contrast for the learning phase (a,
b, and c) and the test phase (d). (a) Activation in left lingual gyrus (ventral BA-19). (b) Bilateral activation in the putamen. (c) Bilateral activation in the putamen (continues the
voxel clusters as in panel b) and in the left caudate. (d) Activation in the right hippocampus. (e, f) Mean Beta (and standard error of themean) for each of the functional ROIs, for each
experimental condition, in the learning phase (e) and test phase (f); the latter provides a reference demonstrating that differential activation in the two category learning conditions
is mainly restricted to the learning phase.
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during the learning phase was lower than during the between-block
intervals (which might be associated with not paying attention to the
stimuli). Fig. 5 presents mean performance and level of neural activity
in the dorsal striatum of all participants (5b) or after excluding the
five poorest performers (5c). Apparently, excluding these poor
performers (who indeed performed poorly specifically in the same-
class condition) has no significant effect on the overall pattern of
neural activity though it brings the performance level in the three
(two category learning and the control) conditions closer to equality.

The lack of significant correlation between neural activity in the
learning phase and performance in the test phase, within each one of
the two category learning conditions separately, suggests that it is
unlikely that the significant difference between the two conditions in
these two parameters results from some simple interdependence
between them, which has nothing to do with the nature of the
provided information. Instead, it is more likely that the type of
indications (same-class vs. different-class) provided during the
learning phase directly affects both the brain areas engaged in the
task of category learning and the outcome of the learning process
(Table 1).

To lend further support to this latter conclusion, we performed a
regression analysis to test whether activity level adds predictive
power beyond the learning-condition effect. We converted the
categorical variable of category learning condition to an interval-
scale dummy variable (labeling the same-class condition with the
value “0” and the different-class condition with the value “1”). Next,

we calculated the linear regression between the three factors
referring to the category learning conditions and the neural activity
as independent variables, and the participants' performance as the
dependent variable. The regression analysis (using the “enter”
method) shows that participant performance is predicted from the
learning condition, β(18)=0.57, pb 0.04, and that adding the neural
activity during the learning phase to the regression analysis has no
additional explanatory power, β(18)=0.13, p= 0.61. This suggests
that differences in neural activity that cannot be attributed to category
learning condition have no direct effect on performance. Table 2
shows the Pearson correlations among the three parameters.

Neural correlate of learning from same-class indications

Finally, we note that the neural correlate of category learning from
same-class indications (same-classNdifferent-class contrast) shows a
significant effect in a cluster of only 88 voxels in the right inferior
temporal gyrus (BA-37), and two clusters in the right angular gyrus
(BA-39), with 69 and 49 voxels, respectively (all at a significance level
of t=3; see Fig. 6 and Table 3). Since these effects are significant but
limited to relatively small clusters of voxels, we consider them with
caution. Nevertheless, we report these effects since the right and left
BA-37 and BA-39 cortices have been reported by others to be involved

Fig. 5. Behavioral performances vs. neural correlate (learning from different-class indications condition) in the left and right dorsal striatum. (a) Scatter plot showing relation
between neural activity in the left and right dorsal striatum (combined) and performance in each of the three experimental conditions. Dashed pink and green lines are regression
lines of different- and same-class conditions, respectively (see text). (b) Mean neural activity and standard error of the mean (left) and performance (right) averaged over 14
participants. (c) Mean neural activity and standard error of the mean (left) and performance (right) for best 9 performers.

Table 1
Talairach coordinates for ROIs determined by the different-classNsame-class contrast in
the learning phase (the test phase for the right hippocampus).

x Y z No. of voxels Beta t

Left ventral BA-19 −14 −66 −8 392 1.62 6.6
Left caudate −12 3 11 270 0.77 6.4
Left putamen −19 11 7 572 0.87 7.1
Right putamen 23 7 5 1446 0.93 7.7
Right hippocampus 26 −19 −7 204 0.31 7.0

Table 2
The binominal Pearson correlations between the experimental condition (using the
dummy values same-class=“0”; different-class=“1”), the neural activity in the left
and right dorsal striatum (Beta values), and the participants performance (A′ values).

Category learning
condition

Participants
performance

Neural activity in the
dorsal striatum

r=0.63
pb0 .005

r=0.49
pb0. 05

Category learning condition r=0.66
pb0. 005

Linear regression analysis for these three factors suggests that the significant correlation
between neural activity and in the dorsal striatum and the participant performance is the
byproduct of the other two correlations presented in this table (see text).
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in prototype-based category learning (Reber et al., 2003; see Kéri,
2003).

Discussion

Our findings show that learning a categorization rule from
different-class indications is associated with significantly higher
neural activity in the left lingual gyrus (ventral BA-19), left and
right dorsal striatum, and right hippocampus as compared to the
condition where the same objective category structure is learned by
processing same-class indications. Moreover, when processing same-
class indications, the neural activity in these brain areas, for the most
part, is no higher than in a condition that did not require any category
learning but in which the same visual input was presented and
participants produced a similar motor output. The reverse contrast
(same-classNdifferent-class) shows that the task of category learning
from same-class indications is associated with marginally higher
neural activity in the right inferior temporal gyrus and right angular
gyrus, brain areas involved in high-level visual processing. This overall
pattern of neural activity is striking – contrasting the two comparison
processes reveals significant effects in brain areas that have been
reported by others to be involved in learning different category
structures.

These findings suggest that different neural mechanisms are
employed for executing two different fundamental comparison-
based induction processes – namely, learning a categorization
principle by comparing different-class exemplars versus learning by
comparing same-class exemplars. We argue that since the processes
of learning different types of category structure (e.g., rule-based,
prototype-based, or information-integration-based representation)
may differ in their dependence on one or both of these two types of
induction-based comparison processes, the relative weights of the
neural mechanisms associated with executing these two processes
may differ when learning different category representations.

Separate cerebral structures reflecting different computations

Why does not the neural circuitry involved in category learning
from different-class indications simply overlap the one required for
processing same-class indications? What is the possible source or
purpose for such an anatomical and functional disassociation? As we
suggested in the Introduction, the answer may be related to the fact
that the process of learning a categorization rule by comparing
different-class exemplars differs fundamentally from that of learning
such a rule by comparing same-class exemplars. This fundamental
difference relates to a number of elements of category learning, which
we review in the following paragraphs. These include the nature and
quantity of acquired information, and the degree to which informa-
tion must be integrated over multiple comparisons.

The first obvious difference is that comparing different-class
exemplars is most effective for directly identifying diagnostic features,
whereas comparing same-class exemplars is most effective for
identifying within-category common features. Comparing same-class
exemplars may be even more effective for excluding irrelevant
feature-dimensions by mapping permitted within-category variabil-
ity. In fact, same-class indications may be useful for a variety of
fundamental visual system processes such as establishing an invariant
representation of an object by aligning and comparing its multiple
representations (Bar-Hillel et al., 2005).

In addition, the quantity of information provided by a same-class
indication is typically far greater than that provided by a different-
class indication: When we are informed that two exemplars which
differ in many visible feature-dimensions are members of the same
category, we can conclude that these feature-dimensions are
irrelevant for categorization. As the number of task-irrelevant
feature-dimensions increases, the information gain from comparing
same-class exemplars also increases. This is not the case when
comparing different-class exemplars: When two different-class
exemplars differ in many feature-dimensions, it becomes impossible
to deduce which of the differences between the two has diagnostic
value for discriminating between the represented categories. In fact,
only when there is a single difference may one be able to decisively
identify it as a diagnostic feature. Thus, learning a complex rule or any
category structure based on multiple feature-dimensions, using
mainly different-class indications, will be more demanding in the
need to incorporate information from multiple comparisons. Given
the fact that same-class indications are transitive, but different-class
indications are not, makes this difference in computational effort even
more prominent. In the experimental task we used here, we
deliberately provided participants with same-class and different-
class exemplar pairs that always differed in a single feature-
dimension (irrelevant or relevant, respectively). Hence, in both
conditions we used indications providing a single bit of information,
making it similarly possible to learn the categorization rule, when
using an optimal induction strategy (See Hammer et al., 2008 for a
formal proof for this statement). Nevertheless, we found that the
neural correlate of these two comparison processes is still different
even in this case, suggesting that this difference represents an
essential difference in computation and not quantitative differences.

Behavioral implications of the different category learning mechanisms

Our finding that different cortical structures are involved in these
two types of category learning is consistent not only with the different
natures of their respective computational challenges, but also with a
series of differences that we have reported between the ensuing
performance strategies, levels and development, as reviewed in the
following paragraphs.

In previous studies we found that the objective computational
differences between same-class and different-class indications have a
striking effect onhumanbehavior evenwhen tested under conditions in
which the advantages of learning from same-class indications are
eliminated: Both children and adults are capable of learning a
categorization rule when provided with very few same-class indica-
tions, though this always ends with reasonably good yet “suboptimal”
performance. Proficiency of learning categorization rules when

Fig. 6. The neural correlate of learning from same-class indications. Neural activity in
brain areas determined by the same-classNdifferent-class contrast for the learning
phase. (Left) Activation in the right inferior temporal gyrus (BA-37). (Right) Activation
in the larger cluster in the right angular gyrus (BA-39).

Table 3
Talairach coordinates for the ROIs determined by the same-classNdifferent-class
contrast in the learning phase.

x y z No. of voxels

Right BA-37 54 55 −5 88
Right BA-39 (I) 40 −54 29 69
Right BA-39 (II) 41 −58 38 49
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provided with similarly-informative different-class indications devel-
ops only at late childhood (Hammer et al., 2009b). In fact, learning from
(the rarely) informative different-class indications is not always
intuitively employed even by many adults, though when employed it
leads to superior categorization performance, compared to learning
solely from same-class indications (Hammer et al., 2009a,b; and current
Results).

Learning category structure from poorly informative different-class
indications may be possible only by applying a statistical learning
strategy. One would need to detect regularities, noting that some
combinations of between-category differences co-occur more often
than others, suggesting that these combinations may carry diagnostic
value. This type of learning requires many learning trials, and the
current experiment was not designed to test such potential learning
mechanism (see Turk-Browne et al., 2008, for a possible cognitive
mechanism involved in statistical learning of a multidimensional
representation, and Shohamy et al., 2004, Turk-Browne et al., 2009,
for a possible neural mechanism for detecting category regularities).

Another difference between these strategies may be that learning
a category structure based on few relevant feature-dimensions, using
informative different-class indications, is more likely to involve the
declarative learning system. Though we do not provide direct
behavioral evidence for this hypothesis in the current study, this
idea is supported by recent behavioral findings: Providing verbal
directions to adult participants, encouraging them to use an explicit
induction-based learning strategy, significantly boosts performance
when they are learning a categorization rule from different-class
indications, but not when they learn the same category structure from
same-class indications (Hammer et al., 2009a).

On the other hand, same-class indications may invite people to use
alternative strategies: (1) Using induction-based learning for exclud-
ing irrelevant feature-dimensions (differences between the compared
same-class exemplars). After filtering out irrelevant within-category
differences, the categorization rule can be based on the remaining
salient similarities between the compared same-class exemplars.
Since this induction-based strategy does not enable direct identifica-
tion of relevant feature-dimensions, its implementation may result in
participants' missing less salient yet important within-category
similarities which can be also used as between-category differences.
(2) Learning a similarity-based category representation, such as an
exemplar-like representation that maps permitted within-category
variability, a prototype-like representation, based on constructing a
prototypical class element, or a combination of the two. This
potentially non-declarative learning strategy can be sufficient for
learning a representation that will support better-than-chance
performance even when using non-transitive same-class indications
as in the current experiment (see Hammer et al., 2007, for a computer
simulation demonstrating the feasibility and performance of such a
classifier). These strategies for processing same-class indications are
likely to result in suboptimal performance though the objective
amount of information provided by same-class indications is typically
higher than that provided by different-class indications. This result is
consistent with the current behavioral findings showing relatively
constrained performance when learning the categorization rule solely
from same-class indications. It is important to note here that
providing the participants with an opportunity to explore the to-be-
categorized stimuli, prior to the learning from comparison phase,
helps improving learning from same-class indications more than it
helps improving learning from different-class indications (see
Hammer et al., 2009a, 2009b for further discussion).

Roles of different cerebral structures in comparison-based learning and
induction

Returning to our functional imaging results, what may be the roles
of the specific areas that we found activated when participants

perform category learning tasks? We found that learning from
different-class indications is associated with the dorsal striatum and
the hippocampus. These areas may be involved in identification of
diagnostic features and creation of associations among them,
processes linked to optimal use of different-class indications. Yet,
further study is required in order to determine the exact role of these
brain structures in category learning. The significantly higher neural
activity in the left lingual gyrus (BA-19), associated with processing
different-class indications, may suggest that learning which visual
features have diagnostic value also involves mid- to high-level visual
processing areas. This might be the outcome of directed attention
mechanism aimed to highlight specific visual features with mid-level
complexity (Hochstein and Ahissar, 2002), or the process of initiating
changes in tuning properties to objects or specific object features
(Jiang et al., 2007). The dorsal striatum and hippocampusmay interact
in order to form a category representation by creating proper
associations between the task's relevant visually perceived features
represented in the lingual gyrus (see Shohamy andWagner, 2008, and
Kurmaran et al., 2009, for related ideas regarding the role of the
hippocampus in associating learning events and possible character-
istics of this mechanism in decision making and category learning).

Our results suggest that as category learning becomes more
heavily dependent on information provided by different-class indica-
tions, the dorsal striatum and hippocampus will become more
dominant in the learning process. This may be the case in any
category learning task that is best performed by identifying very few
diagnostic features, as it is the case in rule-based category learning
tasks such as the one tested here. This process may also become
significant during final stages of learning other, more complex
category structures, after most of the irrelevant within-category
variability, and some of within-category feature-dimension depen-
dences have been acquired (either from information provided by
same-class indications, or based on unsupervised statistical learning).

Turning to the neural correlates of comparing same-class exem-
plars, this process includes the right inferior temporal gyrus and right
angular gyrus (high-level visual areas). In addition, processing same-
class indications is associated with a significant correlation between
the neural activity in the left lingual gyrus (mid-level visual area)
during the learning phase, and participants' performance level in the
test phase (see Supplementary Table 4). This suggests that learning to
categorize visually perceived objects on the basis of within-category
similarities and differences involves higher demands from visual areas
that process complex objects and visual features. This also seems to
reduce the amount of subcortical structure intervention that may be
involved in attention modulation and associative learning. As the
behavioral findings show, this learning process results in a relatively
simplified representation of the learned category principle. It is
possible that this involves creation of a similarity-based category
representation instead of one which is based on explicit induction
strategy (as seems to be the case for learning based on different-class
indications).

Although we only directly tested rule-based category learning
task, a case in which quantifying and equalizing the information
provided by same-class and different-class indications is relatively
easy, our findings suggest that when studying the neural basis of
category learning, one must take into consideration the quantitative
and qualitative computational differences between these two com-
parison-based learning processes. We argue that this principle is not
limited to rule-learning, and that similar functional disassociation
may be observed in the context of other tasks as the relative weights
of between-category discrimination and within-category generaliza-
tion changes (see for example Zeithamova et al., 2008, for potentially
relevant findings when contrasting A/non-A with A/B prototype
learning tasks). Given the current experimental design, in which
participants learned the categorization rule without any feedback for
their performance and in the absent of category labels, it seems that

708 R. Hammer et al. / NeuroImage 52 (2010) 699–709



Author's personal copy

the hippocampus and dorsal striatum are not only associated with
reward processing or in creating associations between category
representations and category members. We suggest, instead, that
these brain structures are also involved in other forms of computation
that are specifically required for learning a generalized categorization
rule by detecting diagnostic features and creating associations
between them (see Cincotta and Seger, 2007, for a relevant
discussion).

Importantly, the current findings suggest that two different neural
mechanisms are involved in facing the two most basic comparison-
based learning processes needed for category learning: One mecha-
nism, associated with computing same-class indications, enables
ignoring irrelevant dissimilarities and identifying the most relevant
within-category similarities. The second mechanism, which is
associated with computing different-class indications, enables pur-
posely identifying diagnostic features, which best discriminate objects
from different categories. The current findings, together with findings
from previous developmental studies, suggest that learning to
incorporate these two systems may underlie our capacity to shift
from categorization strategies driven mostly by low-level bottom-up
factors, to richer, more complex and purpose-oriented representa-
tions of objects and events, which better fit our needs (Diesendruck et
al., 2003; Hammer and Diesendruck, 2005; Hammer et al., 2009b;
Sloutsky, in press).
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