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Abstract— We present a method that automatically evalu-
ates emotional response from spontaneous facial activity. The
automatic evaluation of emotional response, or affect, is a
fascinating challenge with many applications. Our approach
is based on the inferred activity of facial muscles over time,
as automatically obtained from an RGB-D video recording of
spontaneous facial activity. Our contribution is two-fold: First,
we constructed a database of publicly available short video
clips, which elicit a strong emotional response in a consistent
manner across different individuals. Each video was tagged by
its characteristic emotional response along 4 scales: Valence,
Arousal, Likability and Rewatch (the desire to watch again).
The second contribution is a two-step prediction method, based
on learning, which was trained and tested using this database of
tagged video clips. Our method was able to successfully predict
the aforementioned 4 dimensional representation of affect,
achieving high correlation (0.87-0.95) between the predicted
scores and the affect tags. As part of the prediction algorithm
we identified the period of strongest emotional response in the
viewing recordings, in a method that was blind to the video clip
being watched, showing high agreement between independent
viewers. Finally, inspection of the relative contribution of
different feature types to the prediction process revealed that
temporal facets contributed more to the prediction of individual
affect than to media tags.

I. INTRODUCTION
The common belief that ”The face is a picture of the mind”

(Cicero c. 63 BC) inspired the computer vision community
to find ways to objectively evaluate people’s emotional state
from their facial expressions. In accordance, in the past two
decades we witnessed an ever increasing interest in automatic
methods that extract and analyze human facial expressions
in order to predict their emotional state (e.g. [13]) or provide
media tagging (e.g. [15]).

Media tagging has become an integral part of the Internet
environment in recent years. Many web platforms allow
(and even encourage) users to label their content by using
keywords or designated scales (e.g. Facebook’s reactions, see
Fig. 1). As opposed to explicit tagging, in which the user
is actively involved in the tagging process, implicit tagging
is done passively and relies only on the normal interaction
between the user and the stimulus (e.g. watching a video
clip). As such, it requires less effort and is less prone to
biases. In parallel, it has been suggested that explicit tagging
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Fig. 1: Facebook’s reactions.

tends to be rather inaccurate in practice. For example, users
tend to tag videos according to their social needs, which
yields tagging that could be reputation driven, especially in
a setup where the user’s friends, colleagues or family may
be exposed to the tags [19].

Affect computation from facial expressions cannot be
readily separated from the underlying theories of emotional
modeling, which rely on assumptions made by researchers in
the fields of psychology and sociology, and in some cases are
still under debate. The relevant theoretical background and
previous work are thoroughly reviewed in [8]. Briefly, the
Facial Action Coding System (FACS) is often used to analyze
facial activity in a quantitative manner. FACS gives a score to
the activity of individual facial muscles called Action Units
(AUs) based on their intensity level and temporal segments
[6] (see Fig. 2).

In our work we took advantage of the emerging tech-
nology of depth cameras, which are commonly used for
human computer interaction in gaming, in order to achieve
better affect recognition and media tagging. Specifically, we
used a depth camera (Carmine 1.09) to record participants’
spontaneous facial activity when viewing a set of video
clips designed to elicit a reliable emotional response. We
then developed two types of pertinent prediction models for
the automatic quantitative evaluation of affect from facial
expressions, including models for the tagging of video clips
(i.e. implicit media tagging) and models for the prediction

Fig. 2: Examples of Action Units from FACS.



of viewers emotional state (i.e. affect prediction). While
focusing on emotion-related indicators based on non-verbal
cues, the two types of prediction models differ in their target:
media tagging aims to predict attributes of the multimedia
stimuli, while affect prediction aims to evaluate a person’s
individual emotional response.

In order to infer descriptive ratings of emotion, we em-
ployed the dimensional approach [7] to modeling emotion.
In accordance, we represented emotion by 2 key scales –
Valence and Arousal, and 2 additional contemporary scales
– Likability and Rewatch (the desire to watch again) – which
are more suitable for modern uses in HCI and media tagging.

Our method is based on learning from a tagged database
of video clips. In order to train a successful algorithm and
be able to test it against some meaningful ground truth, we
needed a database of video clips that can invoke strong emo-
tional responses in a consistent manner across individuals.
We could not find a reliable database of video clips that
suited our needs (see reasoning in [8]), and therefore we
constructed a new database from publicly available video
clips as described in Section II-B. This database is available
to the community1, including all necessary links to the
video clips and the corresponding emotional tags. A similar
empirical procedure was used to collect data for the training
and evaluation of our method, as described in Section II.

In order to predict emotional tags from RGB-D recordings
of spontaneous facial activity, we used the commercial
software Faceshift c© [1] . Faceshift extracts quantitative
measures of over 50 FACS action units. Subsequently we
computed a vector representation for each recording based on
these measures. The procedure by which we have obtained a
concise representation for each video of facial expressions,
which involved quantification of both dynamic and spatial
features of the AUs activity, is described in Section III-A.

In Section III we further describe the method by which
we learned to predict affect from the ensuing representation
for each viewer and each viewed clip. In the first step of
our method we generated predictions for small segments of
the original facial activity video, employing linear regression
to predict the 4 quantitative scales which describe affect
(namely Valence, Arousal, Likability and Rewatch, a.k.a.
VALR). In the second step we generated a single prediction
for each facial expressions video, based on the values pre-
dicted in the first step for the set of segments encompassed
in the active part of the video. The results are described in
Section IV, showing high correlation between the predicted
scores and the actual ones.

Prior work
Tagging of media implicitly and predicting viewers af-

fective state based on data obtained from depth cameras is
a recent and uncharted territory. A few exceptions include
Niese et al. [12] who used 3D information from the raw data
obtained by a 2D camera, and Tron et al. [16], [17] who used
depth cameras to classify the mental state of schizophrenia
patients based on their facial activity.

1cs.huji.ac.il/˜daphna/Video_tagging/index.html

Implicit Media Tagging: most previous work that used
facial expressions for implicit media tagging combined it
with additional input, such as content from the video itself
or additional physiological measures. For example, Zhao et
al. [22] used only facial features to predict categories of
movies such as comedy, drama and horror. Bao et al.[2]
added the user’s acoustic features, motion and interaction
with the watching device (tablet or mobile). Wang et al. [20]
used head movement as well as facial expressions, combined
with ”common emotions”.

Affect prediction: previous work often used several
types of inputs – some physiological (e.g. facial expressions,
brain activity or acoustic signals) and some derived from
the media the participant was exposed to (e.g. the video
clip’s tagging or visual and acoustic features). Moreover, they
typically relied on the participant’s reported emotional state.
Examples include McDuff et al. [11] who used a narrow set
of facial features (smiles and their dynamics) to predict a
participant’s likability response and desire to watch again.
Bargal et al. [3] was among the few to propose a model
based only on facial expressions. Interestingly, Soleymani et
al. [14] reported that results when using facial expressions
are superior to results when using EEG.

A more in-depth review of prior work is provided in [8].

II. METHOD

The data collection in our study had two phases: (i)
Database construction: collect and evaluate a suitable
database of video clips which elicit strong and consistent
emotional responses in the viewers (Section II-B). (ii) Emo-
tion prediction and analysis: record people’s spontaneous
facial expressions when viewing these clips (Section II-C).
The same empirical procedure, described in Section II-A,
was used in both phases.

A. Experimental Design

Data collection was carried out in a single room, well lit
with natural light, with minimal settings (2 tables, 2 chairs,
a white-board, 2 computers and no pictures hanging on the
walls). Participants were university students recruited using
banners and posters. Thus 52 volunteers between the ages
19-29 (µ = 23.4) with normal vision participated in this
study (13 males and 13 females in phase 1 and 14 males
and 12 females in phase 2), for which they received a small
payment.

Each data collection session consisted of the following
stages (see Fig. 3):

1) A fixation cross was presented for 5 seconds, and the
participant was asked to gaze at it.

2) A video clip was presented.
3) The participant verbally described his subjective emo-

tion to the experimenter, using two sentences at most.
4) The participant rated her subjective feelings on a pre-

printed ratings paper (following [5]).
5 discrete scales were used for rating: Valence, Arousal,

Likability, desire to watch again (Rewatch) and Familiar-
ity. Specifically, we used SAM Manikins for Valence and



Fig. 3: The Experimental design.

Arousal [10], the liking scale for Likability [9], and self-
generated scales for Rewatch and Familiarity. The SAM
Manikins method was chosen because it is known to be com-
prehensive, parsimonious, inexpensive and quick [4]. After
every 4 trials, a visual search task was presented (“Where’s
Waldo?”) in order to keep the participants focused, while
forcing them to change their head situs, sitting position and
focal length. The clips order was randomized and the entire
procedure lasted about an hour. We encouraged participants
to rate the clips according to their perceived, inner and
subjective emotion.

B. Phase 1: Database Construction

We defined the following criteria which should be met by
a suitable database of video clips:

1) Duration. Clips must be relatively short in order to:
(i) avoid eliciting several distinct emotions at different
times of the clip, and (ii) make the use of many clips
in a single experimental session possible. That being
said, the clips should be long enough to elicit a strong
clear emotional response.

2) Diversity. Clips should be taken from a variety of
domains to reduce the effect of individual variability.
Clearly the database should not contain only clips of
cute cats in action or incredible soccer tricks, but a
balanced mixture.

3) Familiarity. Clips should be such that uninformed
viewers are not likely to be familiar with them while
still being publicly available. Moreover, in order to be
as universal as possible the clips should not contain
any significant dialogue.

Over 110 clips were initially selected from online video
sources. We attempted to achieve a diverse set of unfa-
miliar clips, and therefore focused on lightly viewed ones.
We excluded clips that might offend participants by way
of pornography or brutal violence (following the YouTube
Community Guidelines). Eventually 36 clips were selected.
These clips were manually curtailed to remove irrelevant
content, scaled to fit a 1440 x 900 resolution, and balanced
to achieve identical sound volume.

The familiarity scale indicated that all 36 clips were suffi-
ciently unfamiliar to our subjects (p < .0001) irrespective
of gender. The remaining 4 scales of Valence, Arousal,
Likability and Rewatch were used to emotionally tag the

TABLE I: Average, median, std and range for the 4 VALR
scores over all clips.

average median std min max

Valence 3.04 3.21 1.00 1.23 4.42

Arousal 3.08 3.02 0.65 1.73 4.19

Likability 2.02 2.04 0.56 1.12 2.92

Rewatch 1.73 1.75 0.44 1.08 2.54

clips for the next phase of the study. The subjective scores of
all raters were averaged for each clip; the average, median,
standard deviation and range for each scale across all clips
can be found in Fig. 4 and Table I.

Rate reliability: As can be seen in Table II, ratings on all
scales showed high inter-rater agreement with an average
Intra-Correlation Coefficient (ICC) of 0.945. In addition,
there were strong correlations between several scales, most
notably Valence-Likability (Pearson R = 0.92), Valence-
Rewatch (R = 0.87) and Likability-Rewatch (R = 0.94).
Interestingly, no significant correlation was found between
Arousal and Likability (R = −0.23) or between Arousal and
Rewatch (R = −0.04). A small negative correlation was
found between Valence and Arousal (R = −0.40), possibly
because clips with extremely high V-A values that mostly
included pornographic content were excluded. Almost no
clips had low ratings for both Valence and Arousal, probably
because melancholic clips tended to elicit high arousal.

C. Phase 2: Collecting data for affect recognition

18 of the 36 clips were selected from the database; aiming
for a diverse corpus, we chose clips whose elicited response
spanned the spectrum of VALR as uniformly as possible.

Fig. 4: Distribution of 4 subjective scores over all tested clips,
where Valence and Arousal define the two main axes, also
summarized in histogram form above and to the right of the
plot. Size and color correspond respectively to the remaining
2 scores of Rewatch and Likability.



TABLE II: Inter-rater agreement (ICC) on clips ratings.

Score Lower Bound Upper Bound

Valence .975 .961 .958

Arousal .926 .886 .957

Likability .954 .930 .973

Rewatch .927 .888 .975

The facial activity of each participant was recorded during
the entire procedure, using an RGB −D camera (Carmine
1.09). Participants were informed of being recorded and
signed a consent form. Most of the participants (21 of the
26) reported that they were not affected by the recording,
and that in fact they had forgotten about being recorded.
Moreover, the subjective reports in the second phase on all
4 scales had a very similar distribution to the reports in
the first phase (Valence (R = .98, p < .0001), Arousal
(R = .90, p < .0001), Likability (R = .97, p < .0001),
Rewatch (R = .95, p < .0001)). We therefore believe that
the video affect tagging obtained in phase 1 remain a reliable
predictor of the emotional response elicited in phase 2 as
well.

III. PREDICTION MODELS

Below we describe our approach to affect prediction. In
Section III-A we describe the features used to represent each
RGB-D recording clip. In Section III-B,III-C we describe the
prediction algorithm and how it was used to construct the 3
different prediction models.

A. Facial activity extraction

Previous work in this field calculated facial features either
by extracting raw movement of the face without relating
to specific facial muscles (e.g. [20]), or by extracting the
activity level of a single or a few muscles (e.g. [18], [21]).
In this work we extracted the intensity signals of over 60 AUs
and facial gestures; this set was further analyzed manually
to evaluate tracking accuracy and noise levels. Eventually
51 AUs were selected to represent each frame in the clip
for further analysis and learning, including eyes, brows, lips,
jaw and chin movements (see example in Fig. 5).

Fig. 5: Facial response (middle row) to video clip (illustrated
in the top row), and the time varying intensity of AU12.

(a) (b)

Fig. 6: (a) Quantized AU signal (K = 4), and (b) its
corresponding transition matrix. The number of frames
labeled 0,1,2,3 is 6,3,5,5 respectively. It follows that
ActivationRatio = 13

19 , ActivationLength = 7
19 and

ActivationLevel = 1.473, and ChangeRatio = 6
18 ,

SlowChangeRatio = 4
18 , FastChangeRatio = 2

18 .

Using this intensity level representation, which provided
a time series of vectors in R51, we computed higher order
features representing the facial expression more concisely.
This set of features can be divided into 4 types: Moments,
Discrete States, Dynamic and Miscellaneous.

• Moments. The first 4 moments (mean, variance, skew-
ness and kurtosis) were calculated for each AU in each
facial video recording.

• Discrete State Features. For each AU separately, the
raw intensity signal was quantized over time using K-
Means (K = 4), and the following four facial activity
characteristic features were computed (see Fig. 6 for an
example):

– Activation Ratio: Proportion of frames with any
AU activation.

– Activation Length: Mean number of frames for
which there was continuous AU activation.

– Activation Level: Mean intensity of AU activation.
– Activation Average Volume: Mean activation level

of all AUs, computed once for each facial response
video.

• Dynamic Features. A transition matrix M was gener-
ated, measuring the number of transitions between the
different levels described above, and the following three
features were calculated for each AU based on M (see
Fig. 6 for an example):

– Change Ratio: Proportion of transitions.
– Slow Change Ratio: Proportion of 1-quantum

changes.
– Fast Change Ratio: Proportion of 2 or more quan-

tum changes.
• Miscellaneous Features, including the number of

smiles and blinks in each facial response2.

B. Highlight Period

In most clips, during most of the viewing time, partici-
pants’ facial activity showed almost no emotional response.

2The number of smiles was calculated by counting peaks in the signals
of both lip corners, where peak was defined as a local maximum higher by
at least 0.75 as compared to its neighboring points. The amount of blinks
was calculated in a similar manner, with a threshold of 0.2.



Fig. 7: Illustration of the two-step prediction algorithm.

We therefore computed facial activity features from the AU
signals only during the time frame of each facial recording
during which facial activity was significant. We implemented
a model that localized the highlight period solely from the
viewer’s facial expression, in a technique that was blind to
the video clip.

Specifically, for each participant and clip, our model
received 51 AU intensity levels for the whole clip’s duration.
The method isolated the activity of the most informative AUs
(namely, smiles, blinks, mouth dimples, lips stretches and
mouth frowns), and then localized the 6-seconds window in
which these AUs achieved maximal average intensity and
variance. This window was fixed as the highlight period;
excluding moments, all features were subsequently computed
based only on the highlight period. Notice that for some clip
Ci, the highlight period can be different for different subjects
(although its duration was fixed at 6 seconds).

C. Prediction algorithm (continuous score)

Our algorithm predicts an affective score (in VALR terms)
when given as input a facial expression recording, repre-
sented by a vector in Rd feature space (d = 462). Since
the number of participants in our study was only 26, a clear
case of small sample, the full vector representation – if used
for model learning – would inevitably lead to overfit and
poor prediction power. We therefore started by significantly
reducing the dimensionality of the initial representation of
each facial activity recording using PCA. Our final method
employed a two-step prediction algorithm (see illustration in
Fig. 7), as follows:

1) First step. After the highlight period of each clip
was detected (for each subject), it was divided into n
fixed size overlapping segments. A feature vector was
calculated for each segment, and a linear regression
model (f1) was trained to predict the 4-dimensional
affective scores vector of each segment.

2) Second step. Two indicators (mean and standard
deviation) of the set of predictions over all segments in
the clip were calculated, and another linear regression
model (f2) was trained to predict the 4-dimensional
affective scores from these indicators.

Several parameters controlled the final representation of
each facial expression clip, including the number of seg-
ments, the length of each segment, the overlap between the
segments, the final PCA dimension and whether PCA was
done over each feature type or over all features combined.
The values of these parameters were determined using cross-
validation: given a training set of l points, the training and

prediction process was repeated l times, each time using l−1
points to train the model and predict the value of the left out
point. The set of parameters which achieved the best results
over these l cross validation repetitions was used to construct
the facial expression representation of all data points.

D. Binary prediction

We note that our prediction method provides a continuous
score, while the viewer’s subjective report is given using a
discrete scale. Similarly, the media is tagged using a contin-
uous scale (as these are average ratings). This discrepancy
may affect the correlation between the scores, which is how
we measure success. In addition, often what is needed in
real-life applications is a discrete binary prediction rather
than a continuous score, in order to indicate, for example,
whether the viewer liked a video clip (or not). We therefore
generated an additional binary score from the continuous
scores produced by our method, using the mean predicted
score as a threshold. To measure success, we binarized the
continuous media tag in the same manner, using as threshold
the mean media tag.

E. predictive models

We learned three different models that shared the afore-
mentioned mechanism but varied in their prior knowledge
and target: the first two models were trained to predict
the clip’s affective rating as stored in the database (IMT),
while the third was trained to predict the viewer’s subjective
affective state for each individual (AP).

• Implicit media tagging of unseen clips (IMT-1). This
model was built using the facial expressions of a single
viewer. Given the facial response of this viewer to a
new clip, the model predicts the clip’s affective score.

• Implicit media tagging of unseen clips via multiple
viewers (IMT-2). Given the facial response of a set of
familiar viewers to a new clip, the model predicts the
clip’s affective score. Generalizing the first model, this
second model predicts the new clip’s affective score by
averaging over the predictions of all viewers.

• Viewer’s affect prediction for an unseen clip (AP-1).
This model was built using the facial expressions of a
single viewer. Given the facial response of this viewer
to a new clip, the model predicts the viewer’s subjective
affective state.

IV. RESULTS AND ANALYSIS

To evaluate the predictive power of our models, we divided
the set of recordings following a Leave-One-Out procedure.
Specifically, we trained each model based on n − 1 clips
(n = 18) and tested our prediction on the clip which was left
out. The results are described in Section IV-A. In Section IV-
B we analyze the relative importance of the different feature
types (moments, discrete state features, dynamic features and
miscellaneous features). Finally, in Section IV-C we analyze
the localization of the highlight period.



Fig. 8: Correlation example between predicted and actual
ratings of a single viewer’s valence score (R=0.791).

A. Learning Performance

Learning performance was evaluated by Pearson’s R be-
tween the actual VALR scores and the models’ predicted
ones (see example in Fig. 8). Table III shows the average
VALR results over all clips and viewers (all correlations are
significant with p < 0.0001).

TABLE III: Mean (and std) of Pearson’s R between the
predicted and actual scores for the 3 prediction models.

Valence Arousal Likability Rewatch

IMT-1 .752 (.14) .728 (.07) .637 (.22) .661 (.15)

IMT-2 .948 (.22) .874 (.22) .951 (.17) .953 (.19)

AP-1 .661 (.17) .638 (.19) .380 (.16) .574 (.19)

Binary predictions were evaluated by measuring accuracy.
Since the scores around the mean are rather ambiguous, we
eliminated from further analysis the clips whose original tag
was uncertain. This included clips with scores in the range
µ± σ, where µ denotes the average score over all clips and
σ its standard deviation, thus eliminating 15% on average of
all data points. The results can be found in Table IV.

B. Relative Importance of Features

We analyzed the relative importance of the different facial
features for IMT-1, observing that different facial features
contributed more or less, depending on the affective scale
being predicted. The contribution weight of each set of
features was calculated by training the models as described
above using only a single type of features at each time, and
computing the corresponding success rate. These weights
were subsequently normalized, see results in Fig. 9. We see
that for IMT-1 the prediction of Valence relied on all 4 feature
types (including moments, discrete state features, dynamic

TABLE IV: Accuracy (std) of the derived binary measures.

Valence Arousal Likability Rewatch

IMT-1 71% (.21%) 56% (.25%) 68% (.18%) 73% (.18%)

IMT-2 94% (.21%) 90% (.20%) 91% (.23%) 91% (.24%)

AP-1 70% (.24%) 53% (.41%) 49% (.37%) 49% (.55%)

(a) Valence (b) Arousal

(c) Likability (d) Rewatch

Fig. 9: The relative contribution of features to IMT-1.

features and miscellaneous features), while the prediction of
Arousal didn’t use the miscellaneous features at all, but relied
heavily on the dynamical aspects of the facial expression.
Similarly, the prediction of Likability utilized mostly the
miscellaneous features, and did not use moments features at
all. In isolation, prediction with only miscellaneous features
achieved correlation of R = 0.275 with the Likability score,
and R = 0.287 with the rewatch score.

For comparison, we analyzed the relative importance of
the different facial features for the analogous affect pre-
diction algorithm AP-1. As can be seen in Fig. 10, the
distribution is similar in both models, except that relative
importance of the dynamical features is consistently higher
in affect prediction (+11.75% on average).

(a) Valence (b) Arousal

(c) Likability (d) Rewatch

Fig. 10: The relative contribution of features to AP-1.

C. Localization of Highlight Period

We also analyzed the localization of the response highlight
period (HP) within the clip. Although this period was com-
puted bottom-up from the facial recording of each individual
viewer and without access to the observed video clip, the
correspondence between subjects was notably high (ICC =



.941). Not surprisingly, the beginning of the period was
usually found a few seconds before the clip’s end, and in
some clips it lasted after the clip ended (specifically in 8 out
of the 18 clips). Yet the HP localization clearly depended,
in a reliable manner across viewers, on the viewed clip.
For example, when viewing a car safety clip, the average
HP started 14 seconds before its end, probably because a
highly unpleasant violent sequence of car crashes had began
a second earlier. We may conclude that the HP tends to
focus around the clip’s end most of the time and with very
high agreement between viewers, but clip-specific analysis
is preferable in order to localize it more precisely. The
distribution of HPs is presented in Fig. 11.

Fig. 11: Histogram of HPs relative to the clips’ end time,
which marks the origin of the X−axis (µ = −7.22, σ =
4.14).

D. Discussion of results

Our prediction results (Section IV-A), obtained by the
most powerful media tagging (IMT-2) model, are much better
than those obtained by published state-of-the-art methods
(e.g. [11]), and specifically the ability to tag media in VALR
terms with accuracy rates ranging around 90% (Table IV) is
unprecedented. That being said, it is important to note that
our results were obtained using a newly composed database;
since previous methods are for the most part not publicly
available, it is not possible to evaluate their performance on
this new database. While the difficulty of the tasks used in
the evaluation of earlier methods does not seem to be higher
than our benchmark task, this observation should be further
verified. Finally, we note that these methods did not have
access to our training data.

Our results notably show that media tagging (IMT) models
achieve higher success rates than the affect prediction (AP-1)
model. In particular, although IMT-1 and AP-1 both predict
an affective score when given a single (familiar) viewer’s
facial response to a new clip, the first yielded noticeably
higher success rates (average difference between methods
µ = .131). These results imply that it is easier (and more
reliable) to predict the expected affective score from the
viewer’s facial expressions than it is to predict the viewer’s
own reported score. This observation is rather surprising,
as the opposite may seem more plausible – that one’s facial
behavior will be better matched with her subjective emotional
score than the score averaged over many different viewers.

TABLE V: Mean error of all viewers subjective scores and
the predictions of AP-1, IMT-1 and IMT-2.

Valence Arousal Likability Rewatch

AP-1 .265 .370 .388 .371

IMT-1 .214 .262 .325 .341

IMT-2 .179 .239 .295 .306

Moreover, although seemingly AP-1 yields rather accurate
predictions of affect, further inspection reveals that the
predicted media tag is an even better predictor of individual
affect. This is shown in Table V, which gives the mean error
(ME) between the actual subjective affect scores and the
predictions given by the 3 methods: AP-1, IMT-1 and IMT-
2; clearly IMT-2 is most accurate, and AP-1 least accurate.
Thus, if the media tags are known, it’s preferable to train
a model to predict these tags (IMT-1) and rely on this
model alone, rather than on a model trained to predict the
viewer’s subjective scores. Moreover, if other viewers’ data
is also available, the predictions of IMT-2 give even more
accurate predictors of the viewer’s subjective scores. Thus,
the AP-1 model is only valuable when it is not possible to
perform non-specific media tagging of the viewed clip, e.g.,
in situations when it is not known what the viewer is looking
at (as in most real life situations, like an interview).

Comparing the results reported in Fig. 9 and Fig. 10, we
hypothesize that the temporal aspects of viewers’ facial activ-
ity, while providing a good predictor for emotions in general,
can also be used to distinguish between different viewers.
This idea is in line with [17], where it was shown that
these aspects are the most discriminative when comparing
schizophrenia patients and healthy individuals.

V. SUMMARY AND DISCUSSION
The contribution of this work is two fold. First, we

generated a database of video clips which give rise to strong
predictable emotional responses, as verified by an empirical
study, and made it available to the community. Second
and more importantly, we described several algorithms that
can predict emotional response based on spontaneous facial
expressions, recorded by a single depth camera. Our method
provided fairly accurate predictions for 4 scores of affective
state: Valence, Arousal, Likability, and Rewatch (the desire
to watch again). We achieved high correlation between the
predicted scores and the affective tags assigned to the video.
Moreover, our models are based directly on the automatically
inferred activity of facial muscles over time, considering
dozens of muscles, in a method which is blind to the actual
video being watched by the subject (i.e. the model isn’t aware
of any of the stimuli details or attributes).

As expected, our results show that better prediction of
media tag can be achieved using a group of viewers rather
than a single viewer (compare the performance of the two
media tagging methods, IMT-1 which used a single viewer,
and IMT-2 which used a group of viewers). Hence, in real-
life systems, it’s preferable to rely on the facial behavior of
a group of known viewers, if possible.



When using facial expressions for automatic affect pre-
diction, we saw that it’s easier to predict the expected
affective state (i.e. implicit media tagging) than the viewer’s
reported affective state (i.e. affect prediction). Under the
assumption that the participants in this study attempted to
report their veridical emotional experience (as requested),
and that human facial expressions are more faithful to one’s
true emotional state than their verbal report, this result may
imply that media tags – as obtained by averaging over the
reports of many viewers – provide a better predictor of one’s
emotional response to the video than the viewer’s own report.
These findings may appear rather surprising, but they stand
in agreement with theories of emotional self-report bias.
This bias could arise from many factors, including cultural
stereotypes, or the wish to conform with the acceptable
expected response.

Interestingly, when computing the period of strongest
response in the viewing recordings, we saw high agreement
between the different viewers. This tells us that facial ex-
pressions by themselves may be used to find the emotional
peak of video clips, without the need of explicit report.

Further analysis revealed that different types of facial
features are useful for the prediction of different scores of
emotional state. For example, we saw that simply counting
the viewer’s smiles and blinks provided an inferior, yet
significantly correlated, prediction of Likability and Rewatch.
For commercial applications, these facial features can be
obtained from the laptop’s embedded camera. Furthermore,
we found that the dynamical aspects of facial expressions
contributed more to the prediction of viewers affective state
than to the prediction of media tags.

In conclusion, the staggering amount of videos currently
available poses many challenges to computer scientists and
engineers. Since every user can upload videos as he or
she desires, it becomes essential to be able to classify and
annotate these videos for accurate and quick retrieval, ease
of use, search engines and recommendation systems. It is
therefore essential to develop assistive technology for the
automatic tagging of video, by assigning descriptive labels
that aid indexing and cataloging. With emotional tagging,
we may want to predict the viewers’ expected emotional re-
sponse, to refine personal customization and to comprehend
the effect of the video on the users. Automatic analysis of
facial expressions, as demonstrated in this study, may be used
to advance the state of the art in these domains.

REFERENCES

[1] http://www.faceshift.com/.
[2] X. Bao, S. Fan, A. Varshavsky, K. Li, and R. Roy Choudhury. Your

reactions suggest you liked the movie: Automatic content rating via
reaction sensing. In Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing, pages 197–206.
ACM, 2013.

[3] S. A. Bargal, E. Barsoum, C. C. Ferrer, and C. Zhang. Emotion
recognition in the wild from videos using images. In Proceedings of
the 18th ACM International Conference on Multimodal Interaction,
pages 433–436. ACM, 2016.

[4] M. M. Bradley and P. J. Lang. Measuring emotion: the self-assessment
manikin and the semantic differential. Journal of behavior therapy and
experimental psychiatry, 25(1):49–59, 1994.

[5] S. Carvalho, J. Leite, S. Galdo-Álvarez, and Ó. F. Gonçalves. The
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