
On The Power of Curriculum Learning in Training Deep Networks

Guy Hacohen 1 2 Daphna Weinshall 1

Abstract
Training neural networks is traditionally done
by providing a sequence of random mini-batches
sampled uniformly from the entire training data.
In this work, we analyze the effect of curriculum
learning, which involves the non-uniform sam-
pling of mini-batches, on the training of deep net-
works, and specifically CNNs trained for image
recognition. To employ curriculum learning, the
training algorithm must resolve 2 problems: (i)
sort the training examples by difficulty; (ii) com-
pute a series of mini-batches that exhibit an in-
creasing level of difficulty. We address challenge
(i) using two methods: transfer learning from
some competitive “teacher” network, and boot-
strapping. In our empirical evaluation, both meth-
ods show similar benefits in terms of increased
learning speed and improved final performance
on test data. We address challenge (ii) by inves-
tigating different pacing functions to guide the
sampling. The empirical investigation includes
a variety of network architectures, using images
from CIFAR-10, CIFAR-100 and subsets of Ima-
geNet. We conclude with a novel theoretical anal-
ysis of curriculum learning, where we show how
it effectively modifies the optimization landscape.
We then define the concept of an ideal curriculum,
and show that under mild conditions it does not
change the corresponding global minimum of the
optimization function.

1. Introduction
In order to teach complex tasks, teachers are often required
to create a curriculum. A curriculum imposes some order
on the concepts that constitute the final task, an order which

1School of Computer Science and Engineering, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel 2Edmond and
Lily Safra Center for Brain Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel. Correspondence to: Guy
Hacohen <guy.hacohen@mail.huji.ac.il>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

typically reflects their complexity. The student is then grad-
ually introduced to these concepts by increasing complexity,
in order to allow her to exploit previously learned concepts
and thus ease the abstraction of new ones. But the use of a
curriculum is not limited to complex tasks. When teaching
a binary classification task, for example, teachers tend to
present typical examples first, followed by the more ambigu-
ous examples (Avrahami et al., 1997).

In many traditional machine learning paradigms, a target
function is estimated by a learner (the “student”) using a
set of training labeled examples (provided by the “teacher”).
The field of curriculum learning (CL), which is motivated
by the idea of a curriculum in human learning, attempts at
imposing some structure on the training set. Such structure
essentially relies on a notion of “easy” and “hard” exam-
ples, and utilizes this distinction in order to teach the learner
how to generalize easier examples before harder ones. Em-
pirically, the use of CL has been shown to accelerate and
improve the learning process (e.g. Selfridge et al., 1985;
Bengio et al., 2009) in many machine learning paradigms.

When establishing a curriculum for human students, teach-
ers need to address two challenges: (i) Arrange the material
in a way that reflects difficulty or complexity, a knowledge
which goes beyond what is available in the training set in
most machine learning paradigms. (ii) Attend to the pace
by which the material is presented – going over the sim-
ple ideas too fast may lead to more confusion than benefit,
while moving along too slowly may lead to boredom and
unproductive learning (Hunkins & Ornstein, 2016). In this
paper, we study how these principles can be beneficial when
the learner is a neural network.

In order to address the first challenge, Weinshall et al. (2018)
introduced the idea of curriculum learning by transfer. The
idea is to sort the training examples based on the perfor-
mance of a pre-trained network on a larger dataset, fine-
tuned to the dataset at hand. This approach was shown to
improve both the speed of convergence and final accuracy
for convolutional neural networks, while not requiring the
manual labeling of training data by difficulty.

In our work, we address both challenges. We begin by de-
composing CL into two separate - but closely related - sub-
tasks and their corresponding functions. The first, termed
scoring function, determines the “difficulty” or “complexity”



Curriculum Learning in Deep Networks

of each example in the data. The scoring function makes
it possible to sort the training examples by difficulty, and
present to the network the easier (and presumably simpler)
examples first. Scoring is done based on transfer learning
as in Weinshall et al. (2018), or bootstrapping as explained
below. The second function, termed pacing function, deter-
mines the pace by which data is presented to the network.
The pace may depend on both the data itself and the learner.

We show that the use of different pacing functions can indi-
rectly affect hyper-parameters of the neural network, remi-
niscent of increased learning rate. As Weinshall et al. (2018)
did not employ parameter tuning in their empirical study, the
improvement they report might be explained by the use of
inappropriate learning rates. As part of our work, we repeat
their experimental paradigm while optimizing the network’s
hyper-parameters (with and without cross-validation), show-
ing improvement in both the speed of convergence and final
accuracy in a more reliable way. We then extend these
results and report experiments on larger datasets and archi-
tectures, which are more commonly used as benchmarks.

We continue by analyzing several scoring and pacing func-
tions, investigating their inter-dependency and presenting
ways to combine them in order to achieve faster learning
and better generalization. The main challenge is, arguably,
how to obtain an effective scoring function without addi-
tional labeling of the data. To this end we investigate two
approaches, each providing a different estimator for the
target scoring function: (i) Knowledge transfer as in (Wein-
shall et al., 2018), based on transfer learning from networks
trained on the large and versatile Imagenet dataset. (ii)
Bootstrapping based on self-tutoring - we train the network
without curriculum, then use the resulting classifier to rank
the training data in order to train the same network again
from scratch. Unlike curriculum by transfer, bootstrapping
does not require access to any additional resources. Both
scoring functions maintain the required property that prefers
points with a lower loss with respect to the target hypothesis.
The aforementioned functions are shown in Section 3 to
speed up learning and improve the generalization of CNNs.

We investigate three pacing functions. (i) Fixed exponential
pacing presents the learner initially with a small percentage
of the data, increasing the amount exponentially every fixed
number of learning iterations. (ii) Varied exponential pacing
allows the number of iterations in each step to vary as well.
(iii) Single-step pacing is a simplified version of the first
protocol, where mini-batches are initially sampled from the
easiest examples (a fixed fraction), and then from the whole
data as usual. In our empirical setup, the three functions
have comparable performance.

In Section 4 we conclude with a theoretical analysis of the
effects of curriculum learning on the objective function of
neural networks. We show that curriculum learning modifies

the optimization landscape, making it steeper while main-
taining the same global minimum of the original problem.
This analysis provides a framework by which apparently
conflicting heuristics for the dynamic sampling of training
points can coexist and be beneficial, including SPL, boost-
ing and hard data mining, as discussed under previous work.

Previous work. Imposing a curriculum in order to speed
up learning is widely used in the context of human learning
and animal training (Skinner, 1958; Pavlov, 2010; Krueger
& Dayan, 2009). In many application areas, it is a common
practice to introduce concepts in ascending order of diffi-
culty, as judged by either the human teacher or in a problem
dependent manner (e.g. Murphy et al., 2008; Zaremba &
Sutskever, 2014; Amodei et al., 2016). With the rebirth of
deep learning and its emerging role as a powerful learning
paradigm in many applications, the use of CL to control the
order by which examples are presented to neural networks
during training is receiving increased attention (Graves et al.,
2016; 2017; Florensa et al., 2017).

In a closely related line of work, a pair of teacher and student
networks are trained simultaneously, where mini-batches
for the student network are sampled dynamically by the
teacher, based on the student’s output at each time point. As
opposed to our method, here the curriculum is based on the
current hypothesis of the student, while achieving improved
performance for corrupted (Jiang et al., 2018) or smaller
(Fan et al., 2018) datasets. Improvement in generalization
over the original dataset has not been shown.

In some machine learning paradigms, which are related to
CL but differ from it in an essential manner, mini-batches are
likewise sampled dynamically. Specifically, in Self-Paced
Learning (SPL- Kumar et al., 2010), boosting (Freund et al.,
1996), hard example mining (Shrivastava et al., 2016) and
even active learning (Schein & Ungar, 2007), mini-batches
are sampled at each time point based on the ranking of
the training examples by their difficulty with respect to the
current hypothesis of the model. Thus they differ from
CL, which relies on the ranking of training points by their
difficulty with respect to some target hypothesis.

Confusingly, based on the same ephemeral ranking, SPL
advocates the use of easier training examples first, while the
other approaches prefer to use the harder examples. Still, all
approaches show benefit under different empirical settings
(Chang et al., 2017; Zhang et al., 2017). This discrepancy
is analyzed in Weinshall et al. (2018), where it is shown
that while it is beneficial to prefer easier points with respect
to the target hypothesis as advocated by CL, it is at the
same time beneficial to prefer the more difficult points with
respect to the current hypothesis in agreement with hard
data mining and boosting, but contrary to SPL. In contrast,
our theoretical analysis (Section 4) is consistent with both
heuristics being beneficial under different circumstances.



Curriculum Learning in Deep Networks

2. Curriculum Learning
Curriculum learning as investigated here deals with the ques-
tion of how to use prior knowledge about the difficulty of
the training examples, in order to sample each mini-batch
non-uniformly and thus boost the rate of learning and the
accuracy of the final classifier. The paradigm of CL is based
on the intuition that it helps the learning process when the
learner is presented with simple concepts first.

2.1. Notations and Definitions

Let X = {Xi}Ni=1 = {(xi, yi)}Ni=1 denote the data, where
xi ∈ Rd denotes a single data point and yi ∈ [K] its cor-
responding label. Let hϑ : Rd → [K] denote the target
classifier (or learner), and mini-batch B ⊆ X denote a sub-
set of X. In the most common training procedure, which is
a robust variant of Stochastic Gradient Descent (SGD), hϑ
is trained sequentially when given as input a sequence of
mini-batches [B1, ...,BM ] (Shalev-Shwartz & Ben-David,
2014). The common approach – denoted henceforth vanilla
– samples each mini-batch Bi uniformly from X. Both in
the common approach and in our work, the size of each
mini-batch remains constant, to be considered as a hyper-
parameter defining the learner.

We measure the difficulty of example (xi, yi) by its minimal
loss with respect to the set of optimal hypotheses under con-
sideration. We define a scoring function to be any function
f : X→ R, and say that example (xi, yi) is more difficult
than example (xj , yj) if f (xi, yi) > f (xj , yj). Choos-
ing f is the main challenge of CL, as it encodes the prior
knowledge of the teacher.

We define a pacing function gϑ : [M ] → [N ], which may
depend on the learner hϑ. The pacing function is used to
determine a sequence of subsets X′

1, ...,X
′

M ⊆ X, of size
|X′

i| = gϑ(i), from which {Bi}Mi=1 are sampled uniformly.
In CL the i-th subset X′

i includes the first gϑ(i) elements of
the training data when sorted by the scoring function f in
ascending order. Although the choice of the subset can be
encoded in the distribution each Bi is sampled from, adding
a pacing function simplifies the exposition and analysis.

2.2. Curriculum Learning Method

Together, each scoring function f and pacing function gϑ
define a curriculum. Any learning algorithm which uses the
ensuing sequence [Bi]

M
i=1 is a curriculum learning algo-

rithm. We note that in order to avoid bias when picking
a subset of the N examples for some N , it is important to
keep the sample balanced with the same number of exam-
ples from each class as in the training set. Pseudo-code for
the CL algorithm is given in Alg. 1.

In order to narrow down the specific effects of using a

Algorithm 1 Curriculum learning method

Input: pacing function gϑ, scoring function f , data X.
Output: sequence of mini-batches

[
B′

1, ...,B
′

M

]
.

sort X according to f , in ascending order
result← []
for all i = 1, ...,M do
size← gϑ(i)
X′

i ← X [1, ..., size]

uniformly sample B′

i from X′

append B′

i to result
end for
return result

scoring function based on ascending difficulty level, we
examine two control conditions. Specifically, we define 2
additional scoring functions and corresponding algorithms:
(i) The anti-curriculum algorithm uses the scoring func-
tion f ′ = −f , where the training examples are sorted in
descending order of difficulty; thus harder examples are
sampled before easier ones. (ii) The random-curriculum
algorithm (henceforth denoted random) uses a scoring
function where the training examples are randomly scored.

2.3. Scoring and Pacing Functions

We evaluate two scoring functions: (i) Transfer scoring
function, computed as follows: First, we take the Inception
network (Szegedy et al., 2016) pre-trained on the ImageNet
dataset (Deng et al., 2009) and run each training image
through it, using the activation levels of its penultimate layer
as a feature vector (Caruana, 1995). Second, we use these
features to train a classifier and use its confidence score
as the scoring function for each image1. (ii) Self-taught
scoring function, computed as follows: First, we train the
network using uniformly sampled mini-batches (the vanilla
method). Second, we compute this network’s confidence
score for each image to define a scoring function2.

The pacing function can be any function gϑ : [M ] → [N ].
However, we limit ourselves to monotonically increasing
functions so that the likelihood of the easier examples can
only decrease. For simplicity, gϑ is further limited to stair-
case functions. Thus each pacing function is defined by
the following hyper-parameters, where step denotes all
the learning iterations during which gϑ remains constant:
step length - the number of iterations in each step; in-
crease - an exponential factor used to increase the size of
the data used for sampling mini-batches in each step; start-

1Similar results are obtained when using different confidence
scores (e.g, the classifier’s margin), different classifiers (e.g, linear
SVM), and different teacher networks (e.g, VGG-16 (Simonyan &
Zisserman, 2014) or ResNet (He et al., 2016)), see Appendix A.

2Self-taught can be used repeatedly, see Appendix B.



Curriculum Learning in Deep Networks

ing percent - the fraction of the data in the initial step. An
illustration of these parameters can be seen in Fig. 1.

Figure 1. Illustration of the 3 pacing functions used below, showing
the different hyper-parameters that define each of them (see text).
The values of the hyper-parameters used in this illustration were
chosen arbitrarily, for illustration only.

We evaluate three pacing functions: (i) Fixed exponential
pacing has a fixed step length, and exponentially increasing
data size in each step. Formally, it is given by:

gϑ(i) = min
(
starting percent · incb

i
step length c, 1

)
·N

(ii) Varied exponential pacing is the same as (i), while allow-
ing step length to vary. This method adds additional hyper-
parameters, but removes the need to re-tune the learning
rate parameters (see Appendix A). (iii) Single step pacing
entails the simplification of the staircase function into a step
function, resulting in fewer hyper-parameters. Formally:

gϑ(i) = starting percent1[i<step length] ·N

3. Empirical Evaluation
Methodology.3 We define 6 test cases: Case 1 replicates
the experimental design described in (Weinshall et al., 2018),
by using the same dataset and network architecture. The
dataset is the “small mammals” super-class4 of CIFAR-100
(Krizhevsky & Hinton, 2009) - a subset of 3000 images from
CIFAR-100, divided into 5 classes. The neural network is a
moderate size hand-crafted convolutional network, whose
architecture details can be found in Appendix C. Cases
2 and 3 adopt the same architecture while extending the
datasets to the entire CIFAR-10 and CIFAR-100 datasets.
Cases 4 and 5 use a well known public-domain VGG-based
architecture5 (Simonyan & Zisserman, 2014; Liu & Deng,
2015), to classify the CIFAR-10 and CIFAR-100 datasets.
Case 6 adopts the same architecture as cases 1-3, trained
with a subset of 7 classes of cats (see Appendix C) from the
ImageNet dataset.

3All the code used in the paper is available at
https://github.com/GuyHacohen/curriculum learning

4Other super-classes achieve similar results, see Appendix A.
5Code available at https://github.com/geifmany/cifar-vgg.

Hyper-parameter tuning. As in all empirical studies in-
volving deep learning, the results are quite sensitive to the
values of the hyper-parameters, hence parameter tuning is re-
quired. In practice, in order to reduce the computation time
of parameter tuning, in the curriculum conditions, we per-
formed first grid-search on the curriculum hyper-parameters,
followed by a second grid-search on the learning rate pa-
rameters, thus avoiding the need to tune a large number of
parameters at once. In the non-curriculum conditions, a full
1-stage grid-search was performed. In addition, we varied
only the first 2 step length instances in the varied exponen-
tial pacing condition. Accordingly, fixed exponential pacing,
varied exponential pacing and single step pacing define 3, 5
and 2 new hyper-parameters respectively, henceforth called
the pacing hyper-parameters.

With CL, the use of a pacing function affects the optimal val-
ues of other hyper-parameters, the learning rate in particular.
Specifically, the pacing function significantly reduces the
size of the dataset at the beginning of the learning, which has
the concomitant effect of increasing the effective learning
rate at that time. As a result, for a fair comparison, when us-
ing the fixed exponential or the single step pacing functions,
the learning rate must be tuned separately for every test
condition. This tuning is missing in Weinshall et al. (2018),
whose results may therefore be tainted by their arbitrary
choice of learning rate. Using the varied exponential pacing
function can overcome the need for learning rate re-tuning,
while adding 2 hyper-parameters (see Appendix A).

As traditionally done (e.g Simonyan & Zisserman, 2014;
Szegedy et al., 2016; He et al., 2016), we set an initial learn-
ing rate and decrease it exponentially every fixed number of
iterations. This method gives rise to 3 learning rate hyper-
parameters which require tuning: (i) the initial learning rate;
(ii) the factor by which the learning rate is decreased; (iii)
the length of each step with constant learning rate6.

Cross-validation. In grid search, parameters are chosen
based on performance on the test set. To avoid contami-
nation of the conclusions, all results were cross-validated,
wherein the hyper-parameters are chosen based on perfor-
mance on a validation set before being used on the test
set. For more details on the steps we took to ensure a fair
comparison when employing a grid search, see Appendix B.

3.1. Curriculum by Transfer

Case 1: A moderate size network is trained to distinguish
5 classes from CIFAR-100, which are members of the same
super-class as defined in the original dataset. Results are
shown in Fig. 2. Curriculum learning is clearly and signifi-
cantly beneficial - learning starts faster, and converges to a
better solution. We observe that the performance of CL with

6Other tuning methods achieve similar results, see Appendix B.



Curriculum Learning in Deep Networks

a random scoring function is similar to vanilla, indicating
that the main reason for the improvement achieved by CL
is due to its beneficial transfer scoring function. In fact, al-
though tuned separately, the learning rate hyper-parameters
for both the random and the curriculum test conditions are
very similar, confirming that the improved performance is
due to the use of an effective transfer scoring function.

Figure 2. Results in case 1, with Inception-based transfer scoring
function and fixed exponential pacing function. Inset: bars indi-
cating the average final accuracy in each condition over the last
few iterations. Error bars indicate the STE (STandard Error of
the mean) after 50 repetitions. The curriculum method (in blue)
reaches higher accuracy faster, and converges to a better solution.

To check the robustness of these results, we repeated the
same empirical evaluation using different super-classes of
CIFAR-100, with similar results (see Appendix A). Interest-
ingly, we note that the observed advantage of CL is more
significant when the task is more difficult (i.e. lower vanilla
test accuracy). The reason may be that in easier problems
there is a sufficient number of easy examples in each mini-
batch even without CL. Although the results reported here
are based on transfer from the Inception network, we are
able to obtain the same results using scoring functions based
on transfer learning from other large networks, including
VGG-16 and ResNet, as shown in Appendix A.

Cases 2 and 3: Similar empirical evaluation as in case
1, using the same moderate size network to classify two
benchmark datasets. The results for CIFAR-10 are shown in
Fig. 4b and for CIFAR-100 in Fig. 3. Like before, test accu-
racy with curriculum learning increases faster and reaches
better final performance in both cases, as compared to the
vanilla test condition. The beneficial effect of CL is larger
when classifying the more challenging CIFAR-100 dataset.

Cases 4 and 5: Similar empirical evaluation as in case
1, using a competitive public-domain architecture. Specifi-
cally, we use the Inception-based transfer scoring function
to train a VGG-based network (Liu & Deng, 2015) to clas-
sify the CIFAR-10 and CIFAR-100 datasets. Differently
from the previous cases, here we use the varied exponential
pacing function with a slightly reduced learning rate, as it

Figure 3. Results in case 3, CIFAR-100 dataset, with Inception-
based transfer scoring function and fixed exponential pacing func-
tion. Inset: zoom-in on the final iterations, for better visualization.
Error bars show STE after 5 repetitions.

(a) ImageNet Cats (b) Cifar10 (c) Cifar10 VGG (d) Cifar100 VGG

Figure 4. Curriculum by transfer learning. Bars indicate the aver-
age final accuracy, and error bars indicate the STE. We performed
25 repetitions in (a), 5 in (b) and 3 in (c,d). (a) Cats subset of Ima-
geNet. (b) CIFAR-10, trained on a small network. (c, d) CIFAR-10
and CIFAR-100 respectively, trained on the VGG network.

has the fewest hyper-parameters to tune since learning rate
parameters do not need to be re-tuned, an important factor
when training large networks. Results for CIFAR-10 are
shown in Fig. 4c and for CIFAR-100 in Fig. 4d; in both
cases, no data augmentation has been used. The results
show the same qualitative results as in the previous cases;
CL gives a smaller benefit, but the benefit is still significant.

Case 6: Similar to case 1, using the same moderate size
network to distinguish 7 classes of cats from the ImageNet
dataset (see Appendix C for details). The results are shown
in Fig. 4a. Again, the test accuracy in the curriculum test
condition increases faster and achieves better final perfor-
mance with curriculum, as compared to the vanilla test
condition.

3.2. Curriculum by Bootstrapping

The self-taught scoring function is based on the loss of train-
ing points with respect to the final hypothesis of a trained
network - the same network architecture pre-trained with-
out a curriculum. Using this scoring function, training is
re-started from scratch. Thus defined, curriculum by boot-
strapping may seem closely related to the idea of Self-Paced
Learning (SPL), an iterative procedure where higher weights
are given to training examples that have lower cost with re-



Curriculum Learning in Deep Networks

Figure 5. Results in case 1, with Inception-based transfer scoring
function and Single step pacing function. Inset: bars indicating the
average final accuracy in each condition over the last few iterations.
Error bars indicate the STE after 50 repetitions.

spect to the current hypothesis. There is, however, a very
important difference between the methods: SPL determines
the scoring function based on the loss with respect to the
current hypothesis (or network), while bootstrapping CL
scores each point by its loss with respect to the target hy-
pothesis. SPL, it appears, has not yet been introduced to
deep neural networks in a way that benefits accuracy.

To compare the self-taught scoring function and the self-
paced scoring function, we investigate their effect on CL
in the context of test case 1. Final accuracy results are
shown in Fig. 7 (the entire learning curves are depicted
in Appendix C, Fig. 12). As expected, we see that boot-
strapping CL improves test accuracy throughout the entire
learning session. On the other hand, CL training using
the self-paced scoring function decreases the test accuracy
throughout. This decrease is more prominent at the begin-
ning of the learning, where most of the beneficial effects of
the curriculum are observed, suggesting that the self-paced
scoring function can significantly delay learning.

3.3. Alternative Pacing Functions

Single step pacing. Curriculum learning can be costly,
and it affects the entire learning protocol via the pacing
function. At the same time, we observed empirically that
the main effect of the procedure seems to have taken place
at the beginning of training. This may be due, in part,
to the fact that the proposed scoring function f is based
on transfer from another network trained on a different
dataset, which only approximates the unknown ideal scoring
function. Possibly, since the scoring function is based on
one local minimum in a complex optimization landscape
which contains many local minima, the score given by f
is more reliable for low scoring (easy) examples than high
scoring (difficult) examples, which may be in the vicinity of
a different local minimum.

Once again we evaluate case 1, using the transfer scoring
function and the single step pacing function. We see im-

provement in test accuracy in the curriculum test condition,
which resembles the improvement achieved using the expo-
nential pacing. Results are shown in Fig. 5. It is important
to note that this pacing function ignores most of the prior
knowledge provided by the scoring function, as it only uses
a small percent of the easiest examples, and yet it achieves
competitive results. Seemingly, in our empirical setup, most
of the power of CL lies at the beginning of training.

3.4. Analysis of Scoring Function

In order to analyze the effects of transfer based scoring
functions, we turn to analyze the gradients of the network’s
weights w.r.t the empirical loss. We evaluate the gradients
using a pre-trained vanilla network in the context of case 1.
First, for each method and each scoring function, we collect
the subset of points used to sample the first mini-batch
according to the pacing function gϑ(1)7. For comparison,
we also consider the set of all training points, which are used
to compute the exact gradient of the empirical loss in batch
learning using GD. We then compute the corresponding set
of gradients for the training points in each of these subsets of
training points, treating each layer’s parameters as a single
vector, and subsequently estimate the gradients’ mean and
total variance8. We use these measurements to evaluate the
coherence of the gradients in the first mini-batch of each
scoring function. The Euclidean distance between the mean
gradient in the different conditions is used to estimate the
similarity between the different scoring functions, based
on the average preferred gradient. We compare the set of
gradients defined by using three transfer scoring functions,
which differ in the teacher network used for scoring the
points: ’VGG-16’, ’ResNet’, and ’Inception’. We include in
the comparison the gradients of the random scoring function
denoted ’Random’, and the gradients of the whole batch of
training data denoted ’All’. Results are shown in Fig. 6.

(a) Distances between mean gradients. (b) Total variance.

Figure 6. (a) Distance between the mean gradient direction of pre-
ferred examples under different scoring functions. Each bar corre-
sponds to a pair of mean gradients in two different conditions, see
text. (b) The total variance of each set of gradients.

We see in Fig. 6a - blue bars - that the average gradient

7In this experiment gϑ(1) is set such that it corresponds to 10%
of the data or 250 examples. This number was set arbitrarily, with
similar qualitative results obtained for other choices.

8Total variance denotes the trace of the covariance matrix.



Curriculum Learning in Deep Networks

vectors, computed based on the 3 transfer scoring functions,
are quite similar to each other. This suggests that they are
pointing towards nearby local minima in parameters space.
We also see - green bar - that the average gradient vector
computed using a random subset of examples resembles
the exact empirical gradient computed using all the training
data. This suggests that a random subset provides a reason-
able estimate of the true empirical gradient. The picture
changes completely when we compute - red bars - the dis-
tance between the average gradient corresponding to one of
the 3 transfer scoring functions, and the average random gra-
dient or the empirical gradient. The large distances suggest
that CL by transfer stirs the weights towards different local
minima in parameter space as compared to vanilla training.

We see in Fig. 6b that the total variance for the 3 transfer
scoring functions is much smaller than the total variance of
some random subset of the whole training set. This intuitive
result demonstrates the difference between training with
easier examples and training with random examples, and
may – at least partially – explain the need for a different
learning rate when training with easier examples.

3.5. Summary of Results

Figure 7. Results in case 1, bars showing final accuracy in percent
for all test conditions. Error bars indicate STE after 50 repetitions.

Fig. 7 summarizes the main results presented in this section,
including: curriculum with an Inception-based scoring func-
tion for (i) fixed exponential pacing (denoted curriculum),
(ii) single step pacing, and (iii) varied exponential pacing. It
also shows curriculum with fixed exponential pacing for (iv)
self-taught scoring, and (v) self-paced scoring. In addition,
we plot the control conditions of vanilla, anti -curriculum,
and random. The bars depict the final accuracy in each
condition. All the curriculum conditions seem to improve
the learning accuracy throughout the entire learning ses-
sion while converging to similar performance, excluding the
self-paced scoring function which impairs learning. While
different conditions seem to improve the final accuracy in a
similar way, the results of curriculum by transfer are easier
to obtain, and are more robust (see Appendix C for details).

4. Theoretical Analysis
LetH denote a set of hypotheses hϑ defined by the vector
of hyper-parameters ϑ. Let Lϑ(Xi) denote the loss of hy-
pothesis hϑ when given example Xi. In order to compute
the best hypothesis hϑ̃ from the data, one commonly uses
the Empirical Risk Minimization (ERM) framework where9

L(ϑ) = Ê[Lϑ] =
1

N

N∑
i=1

Lϑ(Xi)

ϑ̃ = argmin
ϑ

L(ϑ)
(1)

L(ϑ) denotes the empirical loss given the observed data,
thus defining the Risk of choosing hypothesis hϑ. (1) can
be rewritten as follows:

ϑ̃ = argmin
ϑ

N∑
i=1

Lϑ(Xi) = argmax
ϑ

exp(−
N∑
i=1

Lϑ(Xi))

= argmax
ϑ

N∏
i=1

e−Lϑ(Xi) , argmax
ϑ

N∏
i=1

αP (ϑ|Xi
)

Thus ERM can be interpreted as Maximum Likelihood (ML)
estimation with probability defined by the loss function as
P (ϑ|X ) ∝ e−Lϑ(X).

The choice of loss Lϑ(X), and the choice of the estimation
framework used to select some optimal hypothesis hϑ̃, are
somewhat arbitrary. In a similar manner we may choose
to maximize the average Utility Uϑ(X) = e−Lϑ(X) of the
observed data, which is defined as follows

U(ϑ) = Ê[Uϑ] =
1

N

N∑
i=1

Uϑ(Xi) ,
1

N

N∑
i=1

e−Lϑ(Xi)

ϑ̃ = argmax
ϑ

U(ϑ)
(2)

The ERM formulation defined in (1) is different from the em-
pirical utility maximization formulation defined in (2). Both
formulations can be similarly justified from first principles.

The scoring function in curriculum learning effectively pro-
vides a Bayesian prior for data sampling. This can be for-
malized as follows:

Up(ϑ) = Êp[Uϑ] =

N∑
i=1

Uϑ(Xi)p(Xi) =

N∑
i=1

e−Lϑ(Xi)pi

ϑ̃ = argmax
ϑ

Up(ϑ) (3)

Above pi = p(Xi) denotes the induced prior probability,
which is determined by the scoring function and pacing func-
tion of the curriculum algorithm. Thus p(Xi) will always

9Â, for any operator A, denotes the empirical estimate of A.



Curriculum Learning in Deep Networks

be a non-increasing function of the difficulty level of Xi.
In our algorithm, p(Xi) =

1
M for M training points whose

difficulty score is below a certain threshold, and p(Xi) = 0
otherwise. The threshold is determined by the pacing func-
tion which drives a monotonic increase in the number of
points M , thus changing the optimization function in a cor-
responding manner.

From (3), Up(ϑ) is a function of ϑ which is determined by
the correlation between two random variables, Uϑ(X) and
p(X). We rewrite (3) as follows

Up(ϑ) =
N∑
i=1

(Uϑ(Xi)− Ê[Uϑ])(pi − Ê[p]) +N Ê[Uϑ]Ê[p]

= ˆCov[Uϑ, p] +N Ê[Uϑ]Ê[p] = U(ϑ) + ˆCov[Uϑ, p]

(4)

This proves the following result:

Proposition 1 The difference between the expected utility
when computed with and without prior p is the covariance
between the two random variables Uϑ(X) and p(X).

Curriculum learning changes the landscape of the optimiza-
tion function over the hyper-parameters ϑ from U(ϑ) to
Up(ϑ). Intuitively, (4) suggests that if the induced prior
probability p, which defines a random variable over the
input space p(X), is positively correlated with the optimal
utility Uϑ̃(X), and more so than with any other Uϑ(X),
then the gradients in the direction of the optimal parameter
ϑ̃ in the new optimization landscape may be overall steeper.

More precisely, assume that ϑ̃ maximizes the covariance
between pϑ(X) and the utility Uϑ(X), namely

argmax
ϑ

U(ϑ) = argmax
ϑ

ˆCov[Uϑ, p] = ϑ̃ (5)

Proposition 2 For any curriculum satisfying (5):

1. ϑ̃ = argmaxϑ U(ϑ) = argmaxϑ Up(ϑ)

2. Up(ϑ̃)− Up(ϑ) ≥ U(ϑ̃)− U(ϑ) ∀ϑ

Proof can be found in Appendix C. We conclude that when
assumption (5) holds, the modified optimization landscape
induced by curriculum learning has the same global opti-
mum ϑ̃ as the original problem. In addition, the modified
optimization function in the parameter space ϑ has the prop-
erty that the global maximum at ϑ̃ is more pronounced.

We define an ideal curriculum to be the prior corresponding
to the optimal hypothesis (or one of them, if not unique):

pi =
e−Lϑ̃(Xi)

C
, C =

N∑
i=1

e−Lϑ̃(Xi)

From10 (4):

Up(ϑ) = U(ϑ) +
1

C
Cov[Uϑ, Uϑ̃]

The utility at the optimal point ϑ̃ in parameter space is:

Up(ϑ̃) = U(ϑ̃) +
1

C
Cov[Uϑ̃, Uϑ̃] = U(ϑ̃) +

1

C
Var[Uϑ̃]

(6)
In any other point

Up(ϑ) = U(ϑ) +
1

C
Cov[Uϑ, Uϑ̃]

≤ U(ϑ̃) + 1

C

√
Var[Uϑ]Var[Uϑ̃]

(7)

Note that if Var[Uϑ] = b ∀ϑ for some constant b, then
assumption (5) immediately follows from (7):

Up(ϑ) ≤ U(ϑ̃)+
1

C

√
b2 = Up(ϑ̃) =⇒ ϑ̃ = argmax

ϑ
Up(ϑ)

Therefore

Corollary 1 When using the ideal curriculum, Proposi-
tion 2 holds if the variance of the utility function is roughly
constant in the relevant range of plausible parameter values.

From (6) and (7) we can also conclude the following

Proposition 3 When using the ideal curriculum

Up(ϑ̃)−Up(ϑ) ≥ U(ϑ̃)−U(ϑ) ∀ϑ : Cov[Uϑ, Uϑ̃] ≤ Var[Uϑ̃]

This implies that the optimization landscape is modified
to amplify the difference between the optimal parameters
vector and all other parameter values whose covariance with
the optimal solution (the covariance is measured between
the induced prior vectors) is small, and specifically smaller
than the variance of the optimum. In particular, this includes
all parameters vectors which are uncorrelated (or negatively
correlated) with the selected optimal parameter vector.

Discussion: Training a network based on its current hy-
pothesis ϑt can be done in one of 2 ways: (i) using a prior
which is monotonically increasing with the current utility,
as suggested by self-paced learning; (ii) using a prior mono-
tonically decreasing with the current utility, as suggested
by hard data mining or boosting. Our analysis suggests
that as long as the curriculum is positively correlated with
the optimal utility, it can improve the learning; hence both
strategies can be effective in different settings. It may even
be possible to find a curriculum which is directly correlated
with the optimal utility, and that outperforms both methods.

10Henceforth we will assume that N → ∞, so that the estima-
tion symbol â can be omitted.



Curriculum Learning in Deep Networks

Appendix

A. Additional Empirical Results
CL with other CIFAR-100 super-classes. In Section 3
we present results when learning to discriminate the “small
mammals” super-class of CIFAR-100. Similar results can be
obtained for other super-classes of CIFAR-100. Each super-
class contains 3000 images, divided into 5 related classes
of CIFAR-100. Each class contains 600 images divided
into 500 train images and 100 test images. Specifically, we
tested our method on the super-classes of “people”, “insects”
and “aquatic mammals” and found that CL trained on these
different super-classes shows the same qualitative results.
We note once again that CL is more effective in the harder
tasks, namely, the super-classes containing classes that are
harder to discriminate (measured by lower vanilla accuracy).
As an example, Fig. 8 shows results using the “aquatic
mammals” super-class, which greatly resembles the results
we’ve seen when discriminating the “small mammals” super-
class (cf. Fig.7).

Figure 8. Results under the same conditions as in Fig. 7, using
instead the “aquatic mammals” CIFAR-100 super-class. Error bars
show STE after 50 iterations.

Transfer based scoring function. In the experiments de-
scribed in Section 3, when using the transfer scoring func-
tion defined in Section 2.3, we use the pre-trained In-
ception network available from https://github.com/Hvass-
Labs/TensorFlow-Tutorials. We normalized the data sim-
ilarly to the normalization done for the neural network,
resized it to 299 × 299, and ran it through the Inception
network. We then used the penultimate layer’s activations
as features for each training image, resulting in 2048 fea-
tures per image. Using these features, we trained a Radial
Basis Kernel (RBF) SVM (Scholkopf et al., 1997) and used
its confidence score to determine the difficulty of each im-
age. The confidence score of the SVM was provided by
sklearn.svm.libsvm.predict proba from Python’s Sklearn li-
brary and is based on cross-validation.

Choosing Inception as the teacher and RBF SVM as the
classifier was a reasonable arbitrary choice – the same qual-

itative results are obtained when using other large networks
trained on ImageNet as teachers, and other classifiers to
establish a confidence score. Specifically, we repeated the
experiments with a transfer scoring function based on the
pre-trained VGG-16 and ResNet networks, which are also
trained on Imagenet. The curriculum method using the trans-
fer scoring function and fixed exponential pacing function
are shown in Fig. 9a, demonstrating the same qualitative
results. Similarly, we used a linear SVM instead of the RBF
kernel SVM with similar results, as shown in Fig. 9b. We
note that the STE error bars are relatively large for the con-
trol conditions described above because we only repeated
these conditions 5 times each, instead of 50 as in the main
experiments.

(a) Three competitive networks trained on Imagenet.

(b) Two different classifiers.

Figure 9. Results in case 1. Comparing different variants of the
transfer scoring function. The inset bars show the final accuracy
of the learning curves. The error bars shows STE after 50 repe-
titions for the vanilla and Inception conditions with RBF kernel
SVM, and 5 repetitions for the ResNet, VGG-16 and the Linear
SVM conditions. (a) Comparing different teacher networks. (b)
Comparing different classifiers for the hardness score.

Varied exponential pacing. We define Varied exponen-
tial pacing similarly to fixed exponential pacing, only allow-
ing to change the step length for each step. Theoretically,
this method results in additional hyper-parameters equal to
the number of performed steps. In practice, to avoid an
unfeasible need to tune too many hyper-parameters, we vary
only the first two step length instances and fix the rest. This
is reasonable as most of the power of the curriculum lies in
the first few steps. Formally, Varied exponential pacing is



Curriculum Learning in Deep Networks

given by:

gϑ(i) =min
(
starting percent · increasez(i), 1

)
·N

z(i) =

#steps∑
k=1

1[i>step lengthk]

where starting percent and increase are the same as fixed
exponential pacing, while step length may vary in each
step. The total number of steps can be calculated from
starting percent and increase:

#step = d− logincrease(starting percent)e

This pacing function allows us to run a CL procedure with-
out the need for further tuning of learning rate. The ad-
ditional parameters added by this method control directly
the number of epochs the network trains on each dataset
size. If tuned correctly, this allows the pacing function to
mitigate most of the indirect effect on the learning rate, as
it can choose fewer epochs for data sizes which has a large
effective learning rate.

Once again we evaluate case 1, fixing the learning rate
parameters to be the same as in the vanilla test condition,
while tuning the remaining hyper-parameters as described
in Section 2.3 using a grid search with cross-validation.
We see improvement in the accuracy throughout the entire
learning session, although smaller than the one observed
with fixed exponential pacing. However, decreasing the
learning rate of the vanilla by a small fraction and then
tuning the curriculum parameters achieves results which
are very similar to the fixed exponential pacing, suggesting
that this method can almost completely nullify the indirect
manipulation of the learning rate in the fixed exponential
pacing function. These results are shown in Fig. 10.

Figure 10. Comparing fixed exponential pacing to varied expo-
nential pacing in case 1, with Inception-based transfer scoring
function. Inset: bars indicating the average final accuracy in each
condition over the last few iterations. Error bars indicate the STE
after 50 repetitions.

Figure 11. Results in case 1, when using the AUC as the grid-
search optimization criteria. Bars showing final accuracy in percent
for all test conditions. Error bars indicate STE after 50 repetitions.

Figure 12. Self-taught learning vs. self-paced learning. Results
are in case 1 with the Inception-based transfer scoring function.
Inset: bars indicating the average final accuracy in each condition,
over the last few iterations. Error bars indicate the STE after 50
repetitions

B. Extended Discussion
Self-taught bootstrapping In principle, the self-taught
scoring function can be used repeatedly to boost the perfor-
mance of the network indefinitely: after training the network
using a curriculum, we can use its confidence score to de-
fine a new scoring function and retrain the network from
scratch. However, scoring functions created by repeating
this procedure tend to accumulate errors: once an example
is misclassified as being easy, this example will be shown
more often in subsequent iterations, making it more likely
to be considered easy. In practice, we did not observe any
benefit to repeated bootstrapping, and even observed an
impairment after a large number of repetitions.

Fair comparison in parameter tuning

When using the moderate size hand-crafted network (cases
1, 2, 3 and 6), learning rate tuning is done for the vanilla case
as well. In these cases, for the curriculum, anti-curriculum
and random test conditions, we perform a coarse grid search
for the pacing hyper-parameters as well as the learning rate
hyper-parameters, with an identical range of values for all
conditions. For the vanilla condition, there are no pacing



Curriculum Learning in Deep Networks

hyper-parameters. Therefore, we expand and refine the
range of learning rate hyper-parameters in the grid search,
such that the total number of parameter combinations for
each condition is approximately the same.

When using a public domain competitive network (case 4),
the published learning rate scheduling is used. Therefore we
employ the varied exponential pacing function without addi-
tional learning rate tuning and perform a coarse grid search
on the pacing hyper-parameters. To ensure a fair compar-
ison, we repeat the experiment with the vanilla condition
the same number of times as in the total number of exper-
iments done during grid search, choosing the best results.
The exact range of values that are used for each parameter
is given below in Appendix C. All prototypical results were
confirmed with cross-validation, showing similar qualitative
behavior as when using the coarse grid search.

Learning Rate Tuning

To control for the possibility that the results we report
are an artifact of the way the learning rate is being sched-
uled, which is indeed the method in common use, we test
other learning rate scheduling methods, and specifically
the method proposed by Smith (2017) which dynamically
changes the learning rate, increasing and decreasing it pe-
riodically in a cyclic manner. We have implemented and
tested this method using cases 2 and 3. The final results of
both the vanilla and curriculum conditions have improved,
suggesting that this method is superior to the naı̈ve expo-
nential decrease with grid search. Still, the main qualitative
advantage of the CL algorithm holds now as well - CL im-
proves the training accuracy during all stages of learning.
As before, the improvement is more significant when the
training dataset is harder. Results for case 3 (CIFAR-100)
are shown in Fig. 13.

Figure 13. Results under conditions similar to test case 3 as shown
in 3, using cyclic scheduling for the learning rate as proposed by
Smith (2017).

C. Methodology, additional details
Exponential Pacing Throughout this work, we use pac-
ing functions that increase the data size each step exponen-
tially. This is done in line with the customary change of
learning rate in an exponential manner.

Architecture Details The moderate-size neural network
we used for cases 1,2,3,6, is a convolutional neural network,
containing 8 convolutional layers with 32, 32, 64, 64, 128,
128, 256, 256 filters respectively. The first 6 layers have
filters of size 3× 3, and the last 2 layers have filters of size
2×2. Every second layer there is a 2×2 max-pooling layer
and a 0.25 dropout layer. After the convolutional layers,
the units are flattened, and there is a fully-connected layer
with 512 units followed by 0.5 dropout layer. The batch size
was 100. The output layer is a fully connected layer with
output units matching the number of classes in the dataset,
followed by a softmax layer. We trained the network using
the SGD optimizer, with cross-entropy loss. All the code
will be published upon acceptance.

Grid-search hyper-parameters When using grid search,
identical ranges of values are used for the curriculum, anti-
curriculum and random test conditions. Since vanilla con-
tains fewer parameters to tune – as it has no pacing pa-
rameters – we used a finer and broader search range. The
range of parameters was similar between different scoring
functions and pacing functions and was determined by the
architecture and dataset. The range of parameters for case
1: (i) initial learning rate: 0.1 ∼ 0.01; (ii) learning rate
exponential decrease 2 ∼ 1.1; (iii) learning rate step size
200 ∼ 800; (iv) step size 20 ∼ 400, for both varied and
fixed; (v) increase 1.1 ∼ 3; (vi) starting percent 4% ∼ 15%
(note that 4% is in the size of a single mini-batch). For cases
2, 3 the ranges is wider since the dataset is larger: (i) initial
learning rate: 0.2 ∼ 0.05; (ii) learning rate exponential de-
crease 2 ∼ 1.1; (iii) learning rate step size 200 ∼ 800; (iv)
step size 100 ∼ 2000, for both varied and fixed; (v) increase
1.1 ∼ 3; (vi) starting percent 0.4% ∼ 15%. For cases 4,
5, the learning rate parameters are left as publicly deter-
mined, while the initial learning rate has been decreased
by 10% from 0.1 to 0.09. The pacing parameter ranges
are: (i) step size 50 ∼ 2500, for both varied and fixed; (ii)
increase 1.1 ∼ 2; (iii) starting percent 2% ∼ 20%. For
case 6: (i) initial learning rate: 0.2 ∼ 0.01; (ii) learning rate
exponential decrease 3 ∼ 1.05; (iii) learning rate step size
300 ∼ 5000; (iv) step size 50 ∼ 400; (v) increase 1.9; (vi)
starting percent 2% ∼ 15%.

ImageNet Dataset Details In case 6, we used a subset of
the ImageNet dataset ILSVRC 2012. We used 7 classes of
cats, which obtained by picking all the hyponyms of the cat
synset that appeared in the dataset. The 7 cat classes were:



Curriculum Learning in Deep Networks

’Egyptian cat’, ’Persian cat’, ’cougar, puma, catamount,
mountain lion, painter, panther, Felis concolor’, ’tiger cat’,
’Siamese cat, Siamese’, ’tabby, tabby cat’, ’lynx, catamount’.
All images were resized to size 56 × 56 for faster perfor-
mance. All classes contained 1300 train images and 50 test
images. The dataset mean was normalized to 0 mean and
STD 1 for each channel separately.

Robustness Of Results The learning curves are shown in
Fig. 7 were obtained by searching for the parameters that
maximize the final accuracy. This procedure only takes into
account a few data points, which makes it less robust. In
Fig. 11 we plot the bars of the final accuracy of the learn-
ing curves obtained by searching for the parameters that
maximize the Area Under the Learning Curve. AUC is pos-
itively correlated with high final performance while being
more robust. Comparing the different conditions using this
maximization criterion gives similar qualitative results - the
performance in all the curriculum conditions is still signifi-
cantly higher than the control conditions. However, now the
curriculum based on the Inception-based scoring function
with fixed exponential pacing achieves performance that is
significantly higher than the other curriculum methods, in
evidence that it is more robust.

Theoretical Section Proof for proposition 2:

Proof Claim 1 follows directly from (5), while for claim 2:

Up(ϑ̃)− Up(ϑ) = Up(ϑ̃)− U(ϑ)− ˆCov[Uϑ, p]

≥ Up(ϑ̃)− U(ϑ)− ˆCov[Uϑ̃, p] = U(ϑ̃)− U(ϑ)

Acknowledgements
This work was supported in part by a grant from the Is-
rael Science Foundation (ISF), MAFAT Center for Deep
Learning, and the Gatsby Charitable Foundations.

References
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,

Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,
Q., Chen, G., et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International
Conference on Machine Learning, pp. 173–182, 2016.

Avrahami, J., Kareev, Y., Bogot, Y., Caspi, R., Dunaevsky,
S., and Lerner, S. Teaching by examples: Implications
for the process of category acquisition. The Quarterly
Journal of Experimental Psychology: Section A, 50(3):
586–606, 1997.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48.
ACM, 2009.

Caruana, R. Learning many related tasks at the same time
with backpropagation. In Advances in neural information
processing systems, pp. 657–664, 1995.

Chang, H.-S., Learned-Miller, E., and McCallum, A. Active
bias: Training more accurate neural networks by empha-
sizing high variance samples. In Advances in Neural
Information Processing Systems, pp. 1002–1012, 2017.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 248–255. Ieee, 2009.

Fan, Y., Tian, F., Qin, T., Li, X.-Y., and Liu, T.-Y. Learn-
ing to teach. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=HJewuJWCZ.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Conference on Robot Learning, pp.
482–495, 2017.

Freund, Y., Schapire, R. E., et al. Experiments with a new
boosting algorithm. In Icml, volume 96, pp. 148–156.
Citeseer, 1996.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471, 2016.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. Automated curriculum learning for
neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 1311–
1320. JMLR. org, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hunkins, F. P. and Ornstein, A. C. Curriculum: Foundations,
principles, and issues. Pearson Education, 2016.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Men-
tornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In International
Conference on Machine Learning, pp. 2309–2318, 2018.

https://openreview.net/forum?id=HJewuJWCZ
https://openreview.net/forum?id=HJewuJWCZ


Curriculum Learning in Deep Networks

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Krueger, K. A. and Dayan, P. Flexible shaping: How learn-
ing in small steps helps. Cognition, 110(3):380–394,
2009.

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Advances in Neural
Information Processing Systems, pp. 1189–1197, 2010.

Liu, S. and Deng, W. Very deep convolutional neural net-
work based image classification using small training sam-
ple size. In Pattern Recognition (ACPR), 2015 3rd IAPR
Asian Conference on, pp. 730–734. IEEE, 2015.

Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini,
P., Choset, H., and Erkmen, A. M. Search and rescue
robotics. In Springer handbook of robotics, pp. 1151–
1173. Springer, 2008.

Pavlov, P. I. Conditioned reflexes: an investigation of the
physiological activity of the cerebral cortex. Annals of
neurosciences, 17(3):136, 2010.

Schein, A. I. and Ungar, L. H. Active learning for logistic
regression: an evaluation. Machine Learning, 68(3):235–
265, 2007.

Scholkopf, B., Sung, K.-K., Burges, C. J., Girosi, F., Niyogi,
P., Poggio, T., and Vapnik, V. Comparing support vector
machines with gaussian kernels to radial basis function
classifiers. IEEE transactions on Signal Processing, 45
(11):2758–2765, 1997.

Selfridge, O. G., Sutton, R. S., and Barto, A. G. Training
and tracking in robotics. In IJCAI, pp. 670–672, 1985.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shrivastava, A., Gupta, A., and Girshick, R. Training region-
based object detectors with online hard example mining.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 761–769, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Skinner, B. F. Reinforcement today. American Psychologist,
13(3):94, 1958.

Smith, L. N. Cyclical learning rates for training neural
networks. In Applications of Computer Vision (WACV),
2017 IEEE Winter Conference on, pp. 464–472. IEEE,
2017.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Weinshall, D., Cohen, G., and Amir, D. Curriculum learn-
ing by transfer learning: Theory and experiments with
deep networks. In International Conference on Machine
Learning (ICML), volume 36, 2018.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

Zhang, D., Yang, L., Meng, D., Xu, D., and Han, J. Spftn: A
self-paced fine-tuning network for segmenting objects in
weakly labelled videos. In IEEE CVPR, pp. 4429–4437,
2017.


