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Abstract

In the domain of semi-supervised learning (SSL), the con-
ventional approach involves training a learner with a limited
amount of labeled data alongside a substantial volume of unla-
beled data, both drawn from the same underlying distribution.
However, for deep learning models, this standard practice
may not yield optimal results. In this research, we propose
an alternative perspective, suggesting that distributions that
are more readily separable could offer superior benefits to the
learner as compared to the original distribution. To achieve
this, we present PruneSSL, a practical technique for selec-
tively removing examples from the original unlabeled dataset
to enhance its separability. We present an empirical study,
showing that although PruneSSL reduces the quantity of avail-
able training data for the learner, it significantly improves the
performance of various competitive SSL algorithms, thereby
achieving state-of-the-art results across several image classifi-
cation tasks.

1 Introduction
In recent years, extensive research has centered around the
domain of deep semi-supervised learning (SSL), showcasing
remarkable effectiveness across various domains. This suc-
cess largely arises from the abundance of unlabeled data, in
contrast with labeled data whose collection usually demands
costly human annotation. Accordingly, most of the previous
works focused on the creation and improvement of optimiza-
tion algorithms that can utilize both labeled and unlabeled
data. Differently, we focus on improving SSL performance
by manipulating the unlabeled data directly.

Traditionally, SSL paradigms assume that both labeled and
unlabeled data stem from the same underlying distribution.
This is a reasonable assumption – when there is a significant
disparity between the unlabeled and labeled data, the learn-
ing model may learn the wrong dependencies across these
datasets. Consequently, this misalignment can lead to errors
in generalization, ultimately mitigating the advantages that
could otherwise be gained from incorporating unlabeled data.

Our investigation indicates that reliance on this assump-
tion may not be optimal in the context of SSL. In particular,
we demonstrate that modifying the distribution of unlabeled
examples to enhance their distinctiveness boosts the perfor-
mances of numerous deep SSL algorithms. With this objec-
tive, we present PruneSSL, a systematic approach designed

to identify and prune unlabeled instances that undermine
separability within the unlabeled dataset, thereby boosting
overall performance.

More specifically, instances are considered to undermine
the separability of the dataset if, given some meaningful em-
bedding of the dataset and its corresponding labeling function,
simple classifiers fail to accurately classify these instances
when trained on the complete dataset. Clearly, executing this
process directly on the unlabeled dataset is unfeasible due
to the absence of labels. Consequently, the challenge lies in
devising a technique capable of identifying these instances
without relying on a labeling function.

Our proposed method, called PruneSSL, starts by employ-
ing a deep representation task over the unlabeled data, re-
sulting in a meaningful embedding space. Subsequently, it
calculates pseudo-labels for the unlabeled data using a deep-
clustering algorithm or k-means within the embedding space.
Equipped with both the embedding space and the pseudo
labels, PruneSSL trains a simple classifier on the data and
prunes instances that elicit the lowest levels of confidence
from the classifier.

To illustrate this concept, we present a step-by-step vi-
sualization of each stage of PruneSSL in Fig. 1, utilizing a
binary subset extracted from CIFAR-10. The figure shows a
comparison between random instance pruning from the unla-
beled dataset and the PruneSSL approach. For visualization
purposes, the data is projected into a 2-dimensional space
using t-SNE. Note that this projection serves exclusively for
visualization purposes, as all computations occur within the
original embedding space. Evidently, even in the projected
space, the resulting data exhibits increased separation, as the
2 clusters in this case are more distinct. The exact details of
this experiment are described in Section 3.

The inherent modularity of PruneSSL presents clear ad-
vantages as well as potential drawbacks. On the positive
side, this modularity facilitates seamless integration of up-
coming developments in both self-representation and pseudo-
labeling tasks. Moreover, the framework readily adapts to
diverse domain-specific challenges by tailoring the repre-
sentation task accordingly. However, a notable drawback of
PruneSSL lies in its reliance on the effectiveness of both the
self-representation task and the pseudo-labeling process.

In Section 3 we present the outcome of our empirical in-
vestigation, demonstrating the effectiveness of PruneSSL.
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(a) PruneSSL (b) Random sample

Figure 1: Flowchart of PruneSSL. In (a), we provide a step-by-step visual representation of how PruneSSL operates on the binary
CIFAR-10 dataset. To aid visualization, each step is projected onto a 2-dimensional space using t-SNE. PruneSSL starts with an
unsupervised representation task, followed by pseudo-labeling denoted in yellow and purple. Subsequently, a simple classifier is
trained on the data, assigning confidence levels to each example – darker shades of blue indicate higher confidence. Finally,
examples with low confidence are pruned from the data, with the orange-blue color scheme corresponding to actual labels. In
contrast, (b) displays pruning using a random function. Evidently, PruneSSL results in a distribution that is more separable.

Despite its reduction of the unlabeled dataset’s size, we find
that a diverse array of SSL algorithms gain significant per-
formance boosts when trained with the pruned unlabeled
set, compared to training with the entire unlabeled dataset.
Notably, these advantages are even more pronounced when
replacing the pseudo-labeling process with an oracle possess-
ing knowledge of the actual unlabeled dataset labels. These
results demonstrate the validity of the idea behind PruneSSL.

In Section 3.1, we describe the results of an ablation study,
designed to assess the significance of each component within
the PruneSSL algorithm, as well as the varying influence
of several hyperparameters. Our findings reveal a consistent
trend: PruneSSL consistently produces comparable qualita-
tive outcomes across a diverse range of embedding spaces
and pseudo-labeling techniques. Additionally, our analysis
highlights an interesting discovery — while an optimal value
exists for the number of instances to be pruned, this param-
eter displays robustness, enabling the use of an extensive
array of values with comparable effectiveness. Finally, we
report that the benefits of PruneSSL increase as the size of
the labeled set decreases.

Our approach bears a close connection to the fundamental
cluster assumption of SSL (Chapelle et al., 2006). This as-
sumption states that in order for any semi-supervised learning
framework to work, even outside the realm of deep learning,
the algorithm must assume that the data have inherent cluster
structure, and thus, instances falling into the same cluster
have the same class label. A direct result of this assump-
tion is that the decision boundary of SSL algorithms should
avoid intersecting high-density regions of the data. Instead, it
should reside within low-density regions, thereby preserving
the data’s cluster structure. By enhancing the separability of
unlabeled data, our method guides various SSL algorithms
away from solutions that might traverse high-density regions.
This ultimately enhances the performance of deep SSL tech-
niques in a broader context.

Related work
In classical machine learning, training with unlabeled data
could potentially lead to performance degradation Chawla

and Karakoulas (2005); Yang and Priebe (2011); Li and Zhou
(2014). This phenomenon was primarily attributed to the
manifold and cluster assumptions: unlabeled data is expected
to be helpful only if it lies on a low-dimension manifold, and
if similar classes are clustered together Chapelle et al. (2006);
Singh et al. (2008). In contrast, the use of unlabeled data
in deep learning is generally regarded as beneficial across
most scenarios (Yang et al., 2022). This divergence could be
attributed to deep learning’s exceptional capacity (Johnson
et al., 2016) to map data into spaces where both the manifold
and cluster assumptions hold. This paper demonstrates the
mutual benefits that can be harnessed between classical ma-
chine learning insights and deep learning. While unlabeled
data generally helps deep learning, forcing it to better uphold
the cluster assumption can further help the performance of
deep models.

Our study diverges from previous art by focusing on alter-
ing the unlabeled data directly, rather than modifying the al-
gorithms that use it. While numerous works draw inspiration
from the cluster assumption, they often drive the separation
boundary to reside in less dense regions of the unlabeled data
via algorithmic optimizations (Chapelle and Zien, 2005; Ruiz
et al., 2010; Verma et al., 2022). In contrast, our approach
modifies the unlabeled data itself, implicitly encouraging SSL
algorithms to adhere to the cluster assumption more closely.
It’s important to highlight that many methods assume a shared
distribution between labeled and unlabeled sets (Ouali et al.,
2020; Oliver et al., 2018; Berthelot et al., 2019; Li et al.,
2020). Therefore, our method can be used in combination
with these other methods, to boost their performance.

Recently, the recognition that specific instances within
the unlabeled dataset can detrimentally impact the learning
process has gained prominence, influencing several semi-
supervised learning (SSL) strategies (Ren et al., 2020). For
instance, FixMatch (Sohn et al., 2020) introduced the concept
of integrating an unsupervised loss relying on pseudo-labels
assigned exclusively to unlabeled instances demonstrating
high model confidence. This approach effectively steers the
model to learn from a selective set of examples in the unla-
beled set, which dynamically evolves throughout the train-



(a) CIFAR-10 (b) CIFAR-100 (c) STL-10

Figure 2: Comparison of PruneSSL across various classification tasks. Each graph illustrates the average accuracy over 5
repetitions of FreeMatch during the entire learning process. The shaded region signifies the standard error for each plot. Notably,
it is observed that employing PruneSSL’s data pruning approach (depicted in orange) yields superior performance compared to
training with the original unlabeled data (illustrated in black). The green line represents PruneSSL’s performance when using an
oracle instead of the pseudo-labeling function. The blue line represents training with random pruning of the unlabeled dataset.

ing process. After the introduction of FixMatch, numerous
competitive methods have integrated akin selective strategies
(Zhang et al., 2021; Berthelot et al., 2022; Li et al., 2021;
Zheng et al., 2022; Fan et al., 2023; Jiang et al., 2023).

The primary distinction between the methods discussed
above and our approach lies in the utilization of examples
from the unlabeled set. In the reviewed methods, all unlabeled
examples have the potential to be employed, contingent upon
the confidence of the trained model. In contrast, since our
approach does not interfere with the optimization process of
SSL, examples that are pruned become unavailable to the
model irrespective of the model’s confidence in them.

Another line of relevant works draws inspiration from ad-
versarial attacks. In the context of attacking semi-supervised
methods, Carlini (2021); Shejwalkar et al. (2022) demon-
strated that introducing unlabeled examples that impair data
separability can negatively impact the performance of several
SSL algorithms. This corroborates our findings, underscoring
the advantageous nature of removing analogous examples
from the unlabeled set.

2 Method
We consider a K-class classification scenario within a semi-
supervised learning (SSL) framework. Here, X is the set of
all possible examples, and Y is their corresponding labels.
A semi-supervised learner denoted as f : X → Y is trained
using a set of labeled examples L ⊆ X × Y and unlabeled
set of examples U ⊆ X . As labeled examples are often more
expensive to obtain than unlabeled examples, traditionally the
labeled pool L is significantly smaller than the unlabeled pool
U . The empirical generalization error of f is its performance
on a labeled test set distinct from both L and U .

In many SSL scenarios, the labeled pool, unlabeled pool,
and the test set all originate from the same underlying data
distribution. In our experimental setup, we alter the distribu-
tion from which U is sampled. We observe that drawing U
from the same distribution as L may not be ideal for learning.
Specifically, our findings indicate that increasing the sepa-
rability of U , achieved by pruning hard examples from it,

significantly improves the learning of f .

Let U ′ ⊆ U denote a subset of the unlabeled pool U , ob-
tained by applying some pruning method. In our experimen-
tal setup, we explore three distinct unsupervised pool types:
(i) U ′

rand is obtained by uniformly and randomly removing
examples from U while preserving its original distribution.
(ii) U ′

prune is obtained by removing points as suggested by
PruneSSL, without relying on any labels of U to guide it. (iii)
U ′
oracle is similar to U ′

prune, but here the removal of points
by PruneSSL is guided by the true labels of U , rather than its
using an inferred pseudo-labeling function.

When constructing U ′
oracle and U ′

prune, our objective is to
generate distributions that exhibit enhanced separability as
compared to the original unlabeled pool U . To achieve this,
we outline a 4-step general protocol for the creation of these
unlabeled datasets:

1. Conduct a deep-representation task on U , resulting in an
embedding space in which the problem is more linearly
separated than in the original pixel space.

2. Obtain labels for the unsupervised pool U , using the real
labels for U ′

oracle and pseudo-labels for U ′
prune.

3. Train a simple classifier using the representation from step
(1) and the labels obtained in step (2).

4. Use the classifier’s confidence to determine which ex-
amples are hardest to classify, and prune them from the
unlabeled pool.

For a detailed algorithmic representation, please refer to
Alg. 1. Additionally, an illustrative visualization of this pro-
cess can be found in Fig. 1.



Figure 3: Different SSL algorithms trained with PruneSSL. Each group of bars depicts the mean final accuracy of 3 WRN
networks, trained with different SSL algorithms, on CIFAR-100, with 300 labeled examples (3 per class). PruneSSL improves all
the SSL methods, despite using a smaller unlabeled dataset.

Algorithm 1: PruneSSL
1: Input: Unlabeled set U , n = # examples in final unlabeled set

2: Output: U ′
prune ⊆ U

3: embedding_X← self_representation_task(U)
4: pseudo_labels← pseudo_labeling_task(U)
5: clf← simple_classifier.fit(embedding, pseudo_labels)
6: score← clf.confidence(embedding)
7: U ′

prune← n examples from U with highest score
8: return U ′

prune

In our work, we explored various alternatives for each
step outlined above, yielding consistent qualitative outcomes,
as elaborated in the subsequent section. Concerning embed-
ding methods, we employed self-representation tasks like
SimCLR (Chen et al., 2020) and transfer learning based on
the Inception network (Szegedy et al., 2015) trained on Ima-
geNet (Deng et al., 2009). In terms of the simple classifier,
we evaluated choices including a linear SVM, SVM with an
RBF kernel, or a small fully connected deep network. The
SVM’s confidence score was calculated based on the exam-
ples’ distance from the separating hyperplane, while for the
neural network, confidence was determined by the logit cor-
responding to the example’s label. These diverse approaches
consistently produced the same qualitative results, as shown
in the following section.

2.1 Technical details
In the experiments outlined in Section 3, our evaluation con-
sidered a range of SSL algorithms. To ensure a fair compar-
ison, we adopt the SSL evaluation environment crafted by
(Wang et al., 2022). This repository offers a diverse selec-
tion of SSL methods, all evaluated on the same underlying
architectures and datasets. We consider the following recent
SSL methods: Dash (Xu et al., 2021), FlexMatch (Zhang
et al., 2021), FreeMatch (Wang et al., 2023), RemixMatch
(Berthelot et al., 2020), SoftMatch (Chen et al., 2023), Uda
(Xie et al., 2020), SimMatch (Zheng et al., 2022), AdaMatch
(Berthelot et al., 2022), CoMatch (Li et al., 2021) and Cr-
Match (Fan et al., 2023). The specific architectures and hyper-

parameters used for each method are detailed below.

Datasets In the experiments below, we considered 4
datasets: CIFAR-10, CIFAR-100, STL-10 (Coates et al.,
2011), and a binary subset of CIFAR-10. When using STL-
10, we omitted the unlabeled split due to its inclusion of
out-of-distribution examples. The binary subset of CIFAR-
10 contained the examples from CIFAR-10 that belonged
to the cats and the airplanes classes. This dataset was used
due to its simplicity – while still containing real images, SSL
algorithms could learn with a small labeled set, even when
a small neural architecture was used, drastically reducing
its computational cost. This was needed, especially in the
ablation study, as state-of-the-art SSL methods are often com-
putationally demanding.

Architectures and hyper-parameters When training SSL
methods on CIFAR-10, CIFAR-100, and STL-10 datasets,
we employed the Wide-ResNet-28 (WRN) architecture
(Zagoruyko and Komodakis, 2016) as the underlying archi-
tecture, using 2 width factor, stochastic gradient descent opti-
mizer, 64 batch size, 0.03 learning rate, and 0.9 momentum.
We used 0.001 weight decay for CIFAR-10 and 5e-4 for
CIFAR-100 and STL-10. When training SSL methods on the
binary CIFAR-10, we used a small Vision-Transformer (ViT)
(Dosovitskiy et al., 2021), termed small-ViT. small-ViT has
6 depth, 3 attention heads, 96 width, 5e-4 learning rate, 0.9
momentum, 8 batch size, and was trained using AdamW.

When training SCAN, we used a ResNet-18 architecture
with Adam optimizer, learning rate of 1e-4, 0.9 momentum,
1e-4 weight decay, and 128 batch size. When training Sim-
CLR, we used ResNet-18 architecture, with Adam optimzier,
3e-4 learning rate, 256 batch size, and 1e-4 weight decay.

Empirically, we observed that while small-ViT achieves
significantly worse performance than SOTA architectures,
the qualitative results of every experiment remain the same
when small-ViT is replaced by WRN. All the experiments
were performed using Nvidia GeForce RTX 2080 GPUs.



2.2 Implementation choices for PruneSSL
Unless explicitly stated otherwise, the implementation of
PruneSSL on CIFAR-10, CIFAR-100, or STL-10, employed
SimCLR as the feature space. Subsequently, pseudo-labels
were derived using SCAN, followed by RBF-SVM as the
simple classifier. When running PruneSSL on the binary
CIFAR-10, we used k-means instead of SCAN to obtain
pseudo-labels. In all datasets, PruneSSL pruned 40% of the
data, keeping in the unlabeled set 60% of the examples. For
CIFAR-10 and STL-10, we used 40 labels for L and 300
examples For CIFAR-100. In all cases, all classes had the
same number of examples in the labeled pool L.

3 Empirical Evaluation
PruneSSL enhances SSL algorithms on different datasets.
Fig. 2 illustrates a performance comparison of FreeMatch us-
ing different sets of unlabeled data: U ′

prune, U ′
oracle, U ′

rand,
and the complete unlabeled set U . This evaluation is con-
ducted on CIFAR-10, CIFAR-100, and STL-10 datasets, uti-
lizing a competitive WRN architecture. Across all datasets, it
is evident that while U ′

rand exhibits slightly inferior perfor-
mance as compared to the entire unlabeled dataset U , both
U ′
prune and U ′

oracle showcase significantly improved results.
Despite the fact that U , U ′

rand, and U ′
oracle maintain class

balance, this balance is not maintained in U ′
prune due to

the absence of labels during its construction. Remarkably,
even with this class imbalance, U ′

prune still surpasses the
performance of U ′

rand. As expected, U ′
oracle outperforms

U ′
prune, indicating that potential improvements in the pseudo-

labeling function hold promise for advancing PruneSSL’s
performance in the future.

PruneSSL improves different SSL methods. The results
depicted in Fig. 2 extend beyond the FreeMatch algorithm. In
the experiments depicted in Fig. 3, we focus on CIFAR-100
and perform the same experiment as Fig. 2, but with a wide
variety of SSL algorithms. For each algorithm, we plot the
mean final accuracy of 3 repetitions using U ′

oracle, U ′
prune

and the entire unlabeled set U . Analogous to the findings
observed with FreeMatch, all the considered SSL algorithms
show the same qualitative results – training with PruneSSL
significantly improves the learning, despite its using fewer
unlabeled datapoints. Since the methods are vastly different
from each other, such results indicate that potential improve-
ments in the SSL algorithms in the future can also advance
the performance of PruneSSL.

3.1 Ablation study
In this section, we check the significance of the specific selec-
tions done by PruneSSL. Our investigation reveals a notable
degree of robustness in the results. Diverse choices exhibit
analogous qualitative trends and provide similar benefits.

Different deep representation feature spaces can achieve
comparable qualitative results. In Fig. 4a, we train FreeMatch
on CIFAR-100 and contrast multiple variations of PruneSSL
against training with the complete unlabeled dataset. These
PruneSSL variations diverge in the embedding part of the
algorithm. We explore the following deep-representation

spaces: (i) SimCLR (as in Fig. 2); (ii) the penultimate layer of
an Inception network, pre-trained on ImageNet; and (iii) the
pixel-space of the images, without any embedding.

The deep representation spaces being compared have
different characteristics: SimCLR is a contrastive-learning-
based self-representation task, which is optimized specifically
to get a meaningful representation space. On the other hand,
the penultimate layer of Inception is initially tailored for a
stand-alone classification task, later employed here in a man-
ner analogous to transfer learning. Despite these differences,
both representation spaces outperform training with the entire
unlabeled set U by a significant margin. This result demon-
strates the robustness of PruneSSL in incorporating a wide
range of representation spaces.

It’s worth noting that while various deep representation
spaces can be effective, not all representations are inherently
suitable for PruneSSL. As depicted in Fig. 4a, we see that
employing the pixel space as a representation yields worse
results than training with the entire unlabeled dataset.

Different pseudo labeling methods can achieve simi-
lar qualitative results. Illustrated in Fig. 4b, we conduct
FreeMatch training on the binary CIFAR-10 and contrast
two variants of PruneSSL against training with the complete
unlabeled dataset. These PruneSSL variants diverge in the
pseudo-labeling method. We consider using either SCAN
or k-means with k = 2 on the feature space. Both variants
outperform training with the entire unlabeled set U by a sig-
nificant margin, suggesting that PruneSSL can incorporate
different pseudo-labeling techniques.

Changing the classifier. PruneSSL relies on the confidence
of a simple classifier to determine which examples should
be pruned. In all the aforementioned experiments, we em-
ployed an SVM with an RBF kernel due to its simplicity and
relatively good performance. Fig. 4c explores PruneSSL vari-
ants integrated with diverse classifiers, each exhibiting the
same qualitative behavior. We conducted FreeMatch training
on a binary subset of CIFAR-10, applying PruneSSL with
linear SVM, RBF-kernel SVM, and a small fully connected
neural network. Notably, while the RBF-kernel SVM yields
optimal performance, all three classifiers outperform training
with the entire unlabeled set U , suggesting that PruneSSL is
compatible with a diverse array of classifiers.

Manipulating the size of the labeled set L. The benefit of
pruning examples from U becomes more pronounced when
the size of the labeled set L is small. In Fig. 5, we present
the outcomes of FreeMatch training on the binary CIFAR-10,
employing varying sizes for the labeled set L. Evidently, as
the size of L increases, the advantage of PruneSSL decreases.
This result implies that pruning examples from U is more
effective when the labeled pool is smaller.

Manipulating the size of the unlabeled set U . While an
optimal number of examples for pruning exists, a broad spec-
trum of pruned example quantities can enhance SSL algo-
rithms. Highlighted in Fig. 6, we showcase the outcomes of
FreeMatch training on the binary CIFAR-10, incorporating
varying sizes for the unlabeled set U . Strikingly, across all
selections, a consistent qualitative trend emerges – U ′

oracle



(a) Different feature spaces (b) Different pseudo labeling (c) Different final classifiers

Figure 4: Evaluation of diverse choices at each stage of the PruneSSL Algorithm. PruneSSL begins by training a representation
space, followed by a pseudo-labeling function, and culminates by training a simple classifier that effectively prunes examples with
low confidence. In panel (a), we train FreeMatch on CIFAR-100, with PruneSSL variants based on either the representation space
achieved by training SimCLR or when using the penultimate layer of Inception pre-trained on ImageNet. In panel (b) we train
FreeMatch on the binary CIFAR-10 dataset, with PruneSSL variants based on either SCAN or k-means for the pseudo-labeling
function. In panel (c) we train FreeMatch on the binary CIFAR-10 dataset, with PruneSSL variants based on either linear SVM,
RBF kerneled SVM, or a small fully connected neural network. Across all three panels, we plot the mean of 5 repetitions, where
the shaded area denotes the standard error. We see that whatever method is eventually used in each step, training with the data
achieved by PruneSSL, despite being significantly smaller, is better than training with the entire unlabeled set. These results
demonstrate the adaptability of PruneSSL and its effectiveness.

Figure 5: Performance analysis of PruneSSL across various
sizes of the labeled set. The mean final accuracy of 5 networks
trained with FreeMatch on the binary CIFAR-10 dataset is
plotted in bar groups. Standard error bars are included. No-
tably, PruneSSL demonstrates more significant improvements
with smaller labeled datasets.

surpasses U ′
prune, which, in turn, outperforms U ′

rand. No-
tably, the best results are achieved when retaining 60% of the
data. Nevertheless, we note that a large array of other pruning
values also enhance the SSL algorithm performance.

Adding the pruned examples back to the data. A pos-
sible explanation for PruneSSL’s success might be drawn
from the realm of curriculum learning (Bengio et al., 2009;
Hacohen and Weinshall, 2019). In curriculum learning, a
learner is progressively trained on tasks of increasing com-
plexity. The underlying concept is that mastering simpler

Figure 6: Performance analysis of PruneSSL across vari-
ous sizes of the unlabeled set. The mean final accuracy of
5 networks trained with FreeMatch on the binary CIFAR-
10 dataset is plotted in bar groups. Standard error bars are
included. Remarkably, while PruneSSL achieves peak per-
formance at 60% data retention, diverse pruning levels can
consistently improve the performance of the SSL algorithm.

tasks facilitates the acquisition of more complex ones. This
parallel might hold here: pruning data could arguably make
the problem simpler, given the enhanced separability of the
unlabeled data. Once mastery over the easier version of the
task is achieved, reintroducing the entire unlabeled dataset
might prove advantageous.

We conducted the following experiment: we pruned the
binary CIFAR-10 data according to PruneSSL and subjected
it to 100 epochs of FreeMatch training. Subsequently, the
pruned examples were reintegrated into the unlabeled dataset,



followed by an additional 100 epochs of training. We then
compared these results to those obtained when training the
model over 200 epochs using the complete unlabeled dataset,
without any pruning. The results are shown in Fig. 7.

Inspecting Fig. 7, we observe that the reintroduction of
pruned examples after several iterations does not yield learn-
ing benefits. Instead, upon reintegrating the pruned examples,
performance drops, converging to the same levels as training
without any pruning. These results imply that the pruned ex-
amples indeed have a negative impact on learning, indicative
of more than just increased difficulty. Conceivably, these ex-
amples lead SSL algorithms to choose suboptimal separation
boundaries.

Figure 7: Impact of reintroducing the pruned examples back
to the unlabeled set. We plot the mean accuracy of 5 networks,
trained with FreeMatch on the binary CIFAR-10 dataset.
The black line shows a 200-epoch training on full unlabeled
dataset, while the orange line shows PruneSSL (100 epochs)
followed by the full unlabeled dataset (100 epochs). The
dashed vertical line marks the reintroduction of pruned ex-
amples. The shaded area represents the standard error. We
see that reintroducing the pruned examples harms the perfor-
mance, suggesting that the pruned examples indeed have a
negative impact on SSL algorithms.

Discriminability vs coverage PruneSSL is designed to
amplify discriminability within unlabeled data, a tactic that
inadvertently leads to a more constrained coverage of the un-
labeled dataset, as certain parts of the distribution are pruned
completely. In this section, we compare PruneSSL and a
pruning technique that focuses on covering all parts of the
unlabeled distribution.

Coverage emerges as a pivotal concept in the active learn-
ing domain (Ren et al., 2021). In active learning, the learner
has access to a small set of labeled data and a large set of
unlabeled examples. The goal is to pick examples from the
unlabeled pool to be annotated so that the resulting labeled
set would be optimal for the learner’s performance. Several
active learning approaches underscore the merit of annotating
examples that cover the entire unlabeled dataset for the learn-
ers (Sener and Savarese, 2018; Kirsch et al., 2019; Mahmood
et al., 2022).

To cultivate a coverage-based pruning, we draw inspira-
tion from the work of Sener and Savarese (2018), replacing
PruneSSL’s pseudo-labeling with k-means clustering with
a large k to cover the data. This approach prunes instances
situated farthest from the cluster centroids, allowing the ad-
vantage of keeping examples from diverse parts of the distri-
bution, while also preserving representativeness, grounded in
their proximity to respective centroids.

In Fig. 8, we plot the results of applying this coverage-
oriented pruning technique to the binary CIFAR-10 dataset. A
comparison between the removal of instances selected via the
aforementioned method and random example removal reveals
diminished performance. This outcome aligns with our initial
hypothesis, as increasing the coverage of the unlabeled data
decreases its discriminability.

Figure 8: Coverage-focused pruning evaluation versus dis-
criminability. We plot the mean accuracy of 5 networks,
trained with FreeMatch on the binary CIFAR-10 dataset. The
shaded area represents the standard error. The green line illus-
trates coverage-driven pruning using k-means centroids (see
Section 3.1). Notably, compared to random pruning (blue), k-
means pruning exhibits inferior outcomes. This discrepancy
may stem from the coverage goal to represent all the areas in
the distribution, disproportionately representing obstructive
areas, thus negatively affecting data discriminability. Results
are shown for k = 50; diverse k values yield similar trends.

4 Summary and Discussion
In this paper, we propose a way to improve the unlabeled
dataset used in SSL algorithms by making it more separable.
Our practical approach called PruneSSL, focuses on prun-
ing examples that hinder the separability of the unlabeled
data, thus highlighting the inherent cluster structure of the
data. The paper presents a comprehensive empirical inves-
tigation, demonstrating that this pruning technique notably
enhances the performance of various competitive SSL algo-
rithms across a diverse range of image classification tasks.

The structure of PruneSSL involves a sequence of steps:
a self-representation task followed by pseudo-labeling, and
finally, a simple classifier. Through an in-depth analysis pre-
sented in the paper, we observe that each of these individual
components are adaptable to a different method, suggesting
that PruneSSL could accommodate future improvements in



each respective field. Testing the limits of its effectiveness,
we find that PruneSSL yields better results when the labeled
dataset is smaller and the data itself is more challenging.
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