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Motion Segmentation and Depth Ordering Using an
Occlusion Detector
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Abstract— We present a novel method for motion segmentation depth-retrieval algorithm (e.g., [13]) would also providepth
and depth ordering from a video sequence in general motion. ordering. However, full 3D reconstruction is usually onkagtical
We first compute motion segmentation based on differential i static scenes, and it relies on accurate geometric adiliior
properties of the spatio-temporal domain, and scale-spacite- \pioh remains a hard task. In this work we present a method

gration. Given a motion boundary, we describe two algorithns to : . . -
determine depth ordering from two- and three-frame sequenes. to compute depth ordering from occlusion cues without eipli

A remarkable characteristic of our method is its ability compute ~ SC€ne reconstruction. The most important characterigtiouo
depth ordering from only two frames. The segmentation and method is its ability compute depth ordering from only two
depth ordering algorithms are shown to give good results on 6 frames.

real sequences taken in general motion. We use synthetic @ato The problem of depth ordering is similar to figure/ground

show robustness to high levels of noise and illumination cliges; egreqgation, an issue which has been studied extensivelyein
we also include cases where no intensity edge exists at thecontext of Gestalt psvcholo Manv possible spatial cuas m
location of the motion boundary, or when no parametric motim psy 9y- y p P ey

model can describe the data. Finally, we describe psychophigal Contribute to figure perception from a single image, inabgdi
experiments showing that people, like our algorithm, can cmpute ~ convexity[25], junctions[27], and familiar configurations[26]).
depth ordering from only two frames, even when the boundary However, depth ordering from a single image may be subjectiv

between the layers is not visible in a single frame. and prone to ambiguities, whereas motion gives a very paiverf
Index Terms— Computer vision, Video analysis, Motion, Depth and usually unambiguous cue.
cues, Segmentation Given an image sequence, the accretion and deletion ofréextu

elements [11], as well as tttommon fatef texture and edge [5],
[36], have long been recognized as cues for depth orderinegrer
are several methods for depth ordering from three framesooe,m
T HE goal in motion-based segmentation is to partition imag%gg_, by tracking disappearing texture elements [20],captlow
in a video sequence into segments of coherent motiom"ng [24], detecting T-junctions in space-time [1], [22hatching

There are two main approaches: some assume a global paamett moetion of surface and boundary [4], [6], [31] and locaiian
motion model and segment the image according to the paraneig errors in flow computation w.r.t. monocular segmentafi2ih
of the model (e.g., [12], [23], [24], [34]), whereas otheEs@me  owever, as we claim in Section 5, when given only two
piecewise smooth motion and identify the boundaries alofgmes it is impossible to determine depth ordering frontiom
motion discontinuities (e.g., [3], [13], [21], [33]). Theesond 4jone, without additional assumptions or prior knowledgbis
approach is potentially more general, and it lies at the lmse g pecause the motion of pixels that become occluded cannot
our proposed method here. S . ~ be determined, and thus they may belong to either side of the

Motion discontinuities can be identified by clustering avre motion edge, leading to more than one valid order assignment
ously computed motion field. The problem is that such disnont  one solution would be to assume that the occluded pixelsigelo
ities are found at exactly those locations where the coniputaf ;5 he layer that is more similar in appearance: i.e., detem
the motion field is least reliable: since all optical flow aifoms depth ordering by matching the motion of color and motion
rely on the analysis of a region around a point (even if onlyyqes [32]. However, color edges are often unreliable assdg

to compute first-order derivatives), the optical flow must bgeiween layers, since the figure and ground may have similar
continuous within the region to support reliable compotatiThis  -5ors.

chicken-and-egg problem, which can be addressed in differe

ways (e.g., [24], [34]), makes motion segmentation paldity

challenging. On the other hand, the successful computaifon 1.1. Motion Segmentation

motion discontinuities can be useful for a number of apfibees,  Our work is based on the extraction of motion boundaries,

including motion computation (by highlighting those ared®re \yhich are definedbcally as boundaries between different motions

the computation should be considered unreliable) and bbjggince many real video sequences do not obey any global motio

segmentation from multiple cues. Here we propose a motigindel). Several methods rely on color or texture edges I8, [

segmentation method that does not require a reliable dfkva  30], which can be combined with alpha matting to produce

to begin with. precise results [35]. In this work we restrict ourselves to s
Having segmented the image, we next want to determine tfigions which do not rely on such spatial cues, which are not

occlusion order of objects in the image, as the first step in 3kways present at motion boundaries. This is further mtstiva

scene understanding and object recognition. In principley by humans’ ability to segment objects from motion alone .(e.g
The authors are with the School of Computer Science and Eegin in random dot kinematograms), and by the need to avoid over-

ing, the Hebrew University of Jerusalem, 91904 Jerusalamel. E-mail: S€gmentation Of_ObjeCts whose appearance includes V_"J‘W'Dg
{doronf,daphn@cs.huji.ac.il. and textures. Finally, we only consider local propertiestie

1. INTRODUCTION



temporal profile of motion, in order to be able to deal withrpai is often unable to detect boundaries where certain degersra
of frames or stereo pairs (but see, for example, [29], [35]).  exist locally. This is solved by a cross-scale scheme pteden

In our approach, originally reported in [7], we start by ddas Section 2.2. Finally, closed contours are extracted ussgjiancy
ering the video sequence as a spatio-temporal intensittibm measure and a simple heuristic to overcome small gaps,esse
where the goal is to extract information from this spatioyeral in Section 2.3. See also Appendix Il for some implementation
structure. Video sequences have highly regular temporat-st issues.
ture, with regions of coherent motion forming continuoubetu
like structures. These structures break where there isusiotl, 2.1. Occlusion Detector
creating spatio-temporal corner-like features. Usingfiedintial
operator that detects such features, we develop an algotiat

extracts motion boundaries. t. We refer to the average of the second moment matrix over a

Spe_C|f|ca_IIy, our _algorlthm IS based on the occlusion derectneighborhoodu around a pixel as th&radient Structure Tensor
described in Section 2.1. This operator is used to extract a

motion boundary at any given scale, as described in Sectiin 2 I3 LI, LI
Since different scales may be appropriate for differentspaf G(z,y,t) = ZVI v’ = Z LI, I Iy (1)
the image, a cross-scale optimal boundary is computed,dbase w w Il Iyl T7

on th_e response of the de.tector. At the end, a closed con.tourrhis matrix has been invoked before in the analysis of local
is built along the most salient boundary fragments to pmv'dstructure properties. In [14], eigenvalues Gf were used for

tme ”f |nal_ segm:entatlon. The a(ljgonthlrjn d"YaSS evglua;ed Or_;dthrﬁgtecting spatio-temporal interest points. In [18] it waggested
challenging real sequences, as described in Section 3.0/l that the eigenvalues & can indicate spatio-temporal properties

a number of synthetic examplt_es Whi(.:h are particularly diftic of the video sequence and can be used for motion segmenta-
for some commonly used algorithms, in order to demonstrae Y%on. The idea behind this is reminiscent of the Harris corne

robustness of our method. Some Results from other algmithn&etector [9], as it detects 3D “corners” and “edges” in thatisp

Who§e |mplementat|9n was made.avanatljle by the authors, ?é?nporal domain. Here we take a closer look and develop this
provided for comparison. Finally, in Section 4 we analyze tndea into a motion segmentation algorithm

behavior and mathematical properties of the algorithm. Specifically, if the optical flow inw is (vs,v,) and the
brightness constancy assumption [10] holds, then

G- (vz,vy, DT =0 2)

Regarding the video sequence as a spatio-temporal intensit
function, let/(z,y,t) denote the intensity at pixék, y) in frame

1.2. Depth Ordering

A few recent papers explicity model occlusion based on
matching, or lack thereof [13], [35], which can be used teinf Hence,0 is an eigenvalue oG SinceG is positive-semidefinite.,
depth ordering. In this work we introduce a novel low-levabc W€ can use the smallest eigenvalueGfas a measure of devi-
that indicates depth order. ation from the assumptions above, which leads to the foligwi

Our computational approach to the problem of ordinal depfgfinition: _
from two frames utilizes the principle of common fate of tet ~ Definition 1. Let A(z,y,t) denote the smallest eigenvalue of
and boundary, though without attempting to extract the bagy the Gradient Structure TensoG(z,y,t). The operator is the
explicitly. The spatio-temporal partial derivatives inchaframe ©cclusion detectot _ . .
are affected by both the motion of the layers (i.e., theitue), We do_not norm_allza_ with respect to_the other elgenvalqes
and the motion of the motion boundary. When using our ocstusi ©f G (as in [18]), since it may amplify noise. In order to provide
detector, which relies on these derivatives, a bias towsnds rotational symmetry and avoid aliasing due to the summatien
occluded side appears. The bias depends on the density H¥pneighborhood;, we definew to denote a Gaussian window,
between the two layers (this bias disappears when the lagees and the operatiory ", in (1) stands for the convolution with a
the same local density). Moreover, when measuring this ipias Gussian. Since we do not assume temporal coherence ofrnotio
scale space, it can be seen to increase as the scale is eutread’® Gaussian window is restricted to the spatial domain.

From this observation we derive an algorithm in Section 5.1, Figure 1 demonstrates the detector results on a simpleetjnth
which computes the ordinal depth of two layers based on t§&@mPle. In this example there are no intensity or textugs da
trend of the bias in scale-space. With some minor modifinatio indicate the boundaries of the moving object, and it can daly
we show in Section 5.2 that the same algorithm can be appliggtected using motion cues. The valuerpshown in Fig. 1c, is
to three-frame sequences, without relying on local difiegs of OW in regions of smooth motion, and high values otiescribe
density between the layers. The algorithms are shown toperf the boundary of the moving object accurately. .
well on real sequences. The performance of the algorithms is! "€ values ofv7, and hence of, are invariant to translation
compared to the performance of human subjects on two- afsgnsformations or. Additionally, for any rotation matrixR,
three-frame sequences of random-dot textures of varyingige
and to an ideal observer model in Section 6. AL — G| = |R(M\I — G)RT| = (Al — Z(RVI)(RVI)T

w

2. SEGMENTATION ALGORITHM (I is the identity matrix) and therefore the values ofare also

. . . . invariant to the rotation off. The issue of scale invariance is
The motion segmentation algorithm we present is based on a

differential operator defined in Section 2.1 that is appliedhe discussed in Appendix 1.
video sequence and responds at motion b(_)unqa”es- Wh_de thitnote that the values of at each pixel can be evaluated directly using
operator is shown to detect motion boundaries in many citsesgardano’s formula.
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Fig. 1. Random dots example. A shape is moving sideways, avheth Fig. 2. False\ response. The same example as in Fig. 1: (a) @b
the shape and the background are covered by a random pattblack and  white noise; (b) with illumination change of 5%, (c) with tlebject rotating
white dots. It is impossible to identify the moving objeabrfr each of the two by 2¢°; (d) with both object and background patterns deformed shiypo

frames (a) and (b) (a stereo pair) alone. The occlusion tetéc) (higher
values of)\ are darker) shows the outline of the object very clearly. Garma

to the ground truth (d). linear background

/ uniform background

Velocity-adapted detectorAlthough rotational invariance is
_«— same—color backgrounc

desirable in the spatial domain, non-spatial rotationfiéspatio-

temporal domain have no physical meaning. It is preferable t

have invariance to spatially-fixed shear transformatiomsich o _ _

correspond to 2D relative translational motion betweerctraera Fig. 3. Areas where the detector is likely to give low values despite the
. . existence of a local motion boundary.

and the scene. As suggested in [15] by the referendgaldean

diagonalization one can use the velocity-adapted matsgiven

by areas where the occluding object and its background areeof th
G111 G 0 same color, areas where the background is uniform in cotaf, a
5 11 12 det(G) i A A i
G=1| Gy Gas O where Ap=-—>/  (3) areas w-here the backgrounq texture is uniform in the dcmcq:i‘
0 0 A det(G*) the motion (Fig. 3). In the first case the rank @fis 0, and in

the other cases the rank 6f may bel or 2, depending on the
(Gy; denote the entries df, andG™ denotes the x 2 upper-left  appearance of the occluding object (recall that hdetector is

submatrix ofG containing only spatial information). high when the rank ofG is 3). In these cases, the background
Definition 2: The operator\r is the velocity-adapted occlu- may be interpreted as part of the moving object, since nafeat
sion detector in the background appear to vanish due to occlusion.

To justify this definition, observe thaf is also invariant to
translation and spatial rotation. The enfy is an eigenvalue of . . )

G, and it has been suggested that it encodes the temporal vafig EXtraction of Motion Boundaries and Scale Space Siract
tion, being the “residue” unexplained by pure-spatial infation. ~ The response of\ to occlusion occurs only where some
In practice,\r gives results similar ta\,, though it has certain background features become occluded. Clearly boundaagitwc

advantages, as discussed in Section 4. Throughout this pape cannot always be inferred on the basis of local informatione

use\ to denote either operator, unless stated otherwise. However, while there may be no cues to indicate the locatfon o
Detector effectivenessHigh values of\ indicate significant the boundary at a fine scale, there may be enough informatian a

deviation from (2), which is often due to the existence of @iom coarser scale (i.e., in a larger neighborhood) anday respond.

boundary. Other sources of large deviations include chamge Thus we incorporate a multi-scale element in our algoritimm,

illumination (violation of the brightness constancy asgtion), order to detect motion boundaries that are not detectabiimeat

or when the motion varies spatially (motion is not constant). scales.

However, often these events lead to smallealues as compared Defining scale: In order to define the notion of scale in

with motion boundaries (see Fig. 2), in which case the boyndsour algorithm, note that the evaluation afinvolves Gaussian

response can be distinguished from a false response (g.g..cbnvolutions in two different stages — during the estinatad

thresholding). the partial derivatives, and when taking the average over th
Low values of A do not necessarily indicate that the motiomeighborhoodw. In both cases, larger Gaussians lead to coarser

in w is uniform. The rank ofG is affected by spatial structure structures, and we refer to the size of the Gaussian aschle

as well as temporal structure, somay be low even at motion In this work we only consider the spatial scale. As we show in

boundaries, when certain spatial degeneracies existifispdly, Appendix |, these two scales are related, and we define a dinifie

this occurs when there is local ambiguity, i.e., when thetexice scale dimension, and a scaling-invariant operafét at any scale

of a motion boundary cannot be determined locally. Thisides s > 0, using scale-normalization.
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Fig. 5. Saliency measure. (a) All boundaries extracted ftben random
r" dots example with illumination changes (Fig. 2b); intepsibdes\ response.
' (b) The most salient closed contour.
.

Different boundaries are extracted at different scaledjres
scale boundaries may often split because of the absence of

(© (d) local information, and coarse-scale boundaries may desappr
Fig. 4. Checkerboard example: (a) A frame from the sequetideand merge. Since these may occur at different parts of the image a
(©) ShOt\_N tlhe EthOHSfe of at fllef;f (STy =1) afgjd Cc:a'rsteS(”!t = 20) SC?leﬁ hdifferent scales, we need to construct a scale-adapteddaoyn
respectively. e Tine scal only responds at Intensity edges (wnic : . . e
appear as discrete “bursts”), whereas the entire contousilsle at the coarse by se_lect_lng dlfferent_ scales for different localities (as[16]).
scale, though with considerable distortion. (d) shows thal fiontour selected Considering the multi-scale boundary surface as the uniail o
by integrating over scales. ridges inA(®) for s € (0,00), we want to find a cross-scale

boundary where\(*) is maximal. This can be expressed as

The notion of scale has been studied extensively for festure As = 0 )
such as edges and blobs. As with these features, differant- st Ass < 0
tures can be found at different scales. The responsetofnoise, Vsing the scale derivatives of

VC\;hI(t:}:] Catu oci::urdlnl flne,;r si:.ale.s, IS Supfressed In (ltoar;rzssca Combining (4) and (5) defines the finatoss-scale motion
n the other hand, localization IS poor at coarse scales fn boundary It is a curve in the three-dimensional space Y —S,

boundaries may break and merge. ) ; : ) .
. . L . . defined by the intersection of the two surfaces defined reisp
Figure 4 illustrates this idea — at fine scale (Fig. 4bdesponds y . B
. . by these 2 sets of equations.
only at discrete locations, because the background cenefst
regions with constant color, and the occlusion can only be
detected where there are color variations in the backgrolmd 2.3. Boundary Completion

the coarser scale (Fig. 4c), the neighborhood of every aynd  As stated above) also has some false responses which lead to
point contains gradients in several directions and the #aynis  the selection of false boundary fragments. It is therefe®essary
detected continuously. to define a saliency criterion, which is used to select thetmos
Image features, such as edges, typically shift and becomgeresting boundaries. Since we regarés a measure of local
distorted at coarse scales. The scale space structure ‘iﬂ’rmoboundary strength, for each connected set of boundary uoiat
boundary edges (and in particular our occlusion detectas hyefine thesaliency measuréo be the sum of the value of

its own particular biases in coarse scales. As discusse®tn Szjong the boundary, as in [16]. This measure may be sensitive
tion 4, motion boundaries at coarse scales are shifted tioithe to fragmentation of the boundary’ SO in our implementatim w

occluded side, i.e., the occluding objects becomes “thicke  tglerate small gaps.
addition, it can be shown that the bias is stronger when tisesie Finally, segmentation is achieved by searching for closed
large intensity difference between the object and the back®l, contours with high saliency and small gaps using a simple
and it increases with scale. heuristic method. Since the extracted boundaries are lysual
Estimating derivatives in the temporal domain is prone tgmost complete, this heuristic gives good results (see Fig
aliasing. See Appendix Il for implementation details, utthg The algorithm starts by finding a closed region with high
elimination of aliasing and estimation from only two frames  gajiency. The detected edges are thickened so as to bridge ov
Boundary extraction in scal_e spacé’:mce_)\ is compute_d by small gaps (5 pixels are typically sufficient), thus segriment
taking the average over a neighborhood, its response isséiff the image into regions. For each such region, the saliency of
We want to extract a ridge curve whekeis strongest. This can jis pordering edges is summed and the most salient region is
be defined locally as points whepeis maximal in the direction gg|acted. Finally, considering only those edges that botie
of the maximal principal curvature, which can be expressd agg|ecied region, we employ a simple heuristic method to ecinn
Azy(A2 = A2) = Aady(Aaz — Ayy) = 0 the motion boundary fragments into a continuous boundati wi
Az +Ayy) - (()\zz—)\yy)()\g—A§)+4)\1AyAzy) < 0 (4 maximal saliency and minimal gaps.
My — 22z Ay day + Aidar < 0

Thus, at every scale, the values of\ and its derivatives
are computed, and the ridge can be extracted. For reasons dh our experiments we applied our algorithm to a few sets of
numerical stability, the derivatives of*) are computed with the real and synthetic image pairs. The running time of the MABLA
same Gaussian smoothingused for computing\(*), at each implementation fo56x 192 images is approximately 70 seconds,
scale. and is roughly linear in the number of pixels.

3. EXPERIMENTAL RESULTS
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Fig. 6. Results on real sequences. The cup (top) and flowetd(e)i examples are stereo pairs, and the octopus sequeoiten{p is a dynamic scene.
(a) One of the frames. (b) The most salient edge detected bglgarithm (with the area of the segment highlighted). (en@y edges in the optical flow.
(d) Edges from a MRF-based segmentation algorithm (Kolmmgand Zabih [13]).

We compared our algorithm with the most prominent motionsing graph cuts [30].
segmentation approaches, wherever code was availableedio b The octopus example in Figure 6 shows our algorithm’s perfor
with, we establish the baseline result by segmenting thizapt mance on a video sequence with a dynamic scene, featuring non
flow. Such a segmentation lies at the heart of some more elborrigid motion and illumination changes. The octopus and e r
segmentation methods, such as [24]. We used a robust argow have similar color and texture, and thus spatial e
reliable implementation of the Lucas-Kanade algorithm],[&Rd  is unreliable (note in particular the triangle-shapedextipn near
segmented it using a variety of edge operators, includingn€a the octopus’ head, which is in fact a background feature).
and various anisotropic diffusion methods and clusterirghods In Fig. 7, a large amount of noise was added to the synthetic
(e.g., [34]), presenting the best results for each example. checkerboard sequence, causing numerous optical flowagitim

One influential motion segmentation approach is based emors. The magnitude of the flow estimation error is oftezatgr
Markov Random Fields [13] (and is therefore related to thgaan the true flow (Fig. 7b), particularly around the centdfrthe
more traditional regularization based approaches [199geCfor squares, making segmentation based directly on the ogtival
two variants of this approach is available on the web by thempossible. Results of our algorithm and MRF-based methied a
respective authors [13], [30], and we could therefore usgrthalso shown.
code to establish credible comparisons. We note, howelat, t The main weakness of many MRF-based methods is their
in both cases the publicly available code can only work witfeliance on spatial coherence, which leads to failure when n
rectified images. Therefore, in order to obtain fair congms, spatial edge coincides with the motion edge. This is dermatest
we compared our results with the results of these algoritmfis  on the random dots example in Fig. 8a,b where such methods
with rectified image pairs, when possible. have no spatial support and therefore fail. Fig. 8c,d detnates

The cup and flower examples in Figure 6 demonstrate oour algorithm’s advantage when no global motion model can be
algorithm’s performance on a stereo pair. The most salieiom assumed. In this example, the texture of both the movingctbje
boundary is shown in Fig. 6b superimposed on the first inpand the background undergo smooth non-linear deformafibe.
image. Fig. 6c illustrates the baseline result - the edgethef results of applying [34] show that when motion varies smiyoth
optical flow. Fig. 6d illustrates the best MRF-based segatemt within an object, global model methods fail.
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Fig. 9. Results on a random dots example with small motion /&f pixel
per frame (a), and with larger motion dfpixels per frame (b).

(© (d)

Fig. 7. Checkerboard example wi#3% white noise. (a) One of the frames;
(b) Lucas-Kanade optical flow magnitude; (c¢) MRF-based ssdaiion;
(d) The most salient contour found by our algorithm.

Fig. 10. Results on the synthetic Yosemite sequence.

wherem is thematting mapWe assume w.l.0.g. that the occlusion
edge is perpendicular to the axis and that at frame= 0 it is at
%EM z = 0. We further assume that the occlusion edge is a Gaussian-
EI By smoothed line, san is of the formms, (z) = [*__ gs, (u)du (we
(b) denote the Gaussian function with variances gs).
If the motions ofi* andi? are(v;,v;) and(vz, v) respectively,

then the video volume is given by
I(z,y,t) = ll(x—v;t,y—vzllt) C(1=m(z—vit)) +
lz(m—v%uy—vit) -m(z—v2t) (7)

Note that the motion ofn is the same as the motion &, since
(d) it is the occluding layer.

Fig. 8. Random dots example (see Fig. 1). WAti#% white noise: (a) MRF- kDenotlng & the kVIdeO & volume  of . each layer_ as
based segmentation; (b) The most salient contour found byatyorithm. I (x,,t) = 1" (z — vzt,y —vyt), the gradient of the video
With smooth non-linear deformation: (c) Segmentation assg affine motion volume is given by

using an implementation of [34]; (d) The most salient contfmund by our

algorithm. VI = (1—m)-VI'+m -VI?+(I* =1 gs, -n (8)

wheren = (1,0, —v2)”. Note thatn is perpendicular in space-

Figure 9 demonstrates how our algorithm works with very slofime to the occlusion edgé, 1,0)” and to the motion vector
motion. As long as there are features in the background that = (v7,vj,1)"; i.e., n is the normal to the plane in the video
become occluded, our algorithm can detect the motion baynd&Pace formed by the motion of the occlusion edge.
even at sub-pixel motion. Figure 9a shows results for a semue Therefore, VI is composed of the matting ov1', vI?,
where the foreground object moves hy2 pixel. Al MRF- and a component that depends oh— I'. Note thatvr' is
based algorithms we applied failed to detect the foregrabject Perpendicular tos', whereas botv /> andn are perpendicular
altogether. Although the velocity in Fig. 9a is 8 times slotrean 0 v>. This means thav1 is composed of two components that
that in Fig. 9b, the values of in both cases are similar. are related to the occluding layer and only one that is relade

Figure 10 shows results on the synthetic Yosemite sequenti€ occluded layer.
which consists of a terrain with no occlusions that has rigikr ~ For scale space analysis we use the approximation
motion (in 2D), and a (;Ioud pattern.with iIIumirllation. chasge gx(f-m) =~ (g% f)-(g*m) )
The detector response is very weak in the terrain region tlaad

motion edge between the terrain and the sky is correctlyctirle Whereg is a Gaussian function and is an integral of a Gaussian
as defined above. Eq. (9) is an equality whfeis constant, and it

4. ANALYSIS provides a good approximation whehdoes not change rapidly

. nearx = 0 (in each layer separately).
In order to analyze the performance of the proposed techniqu Applying (9), the gradient estimated at scaledenoted by

we consider a video of two moving layet’, 12, where w.l.o.g. (s) :

5 . 1 . . VIY¥ =V (gs x 1), is
[* partially occludes*. A frame in the video sequence can be
written as VI®  x (1—mers) VI'® +mg e - VIO 4

T=1' (1=m)+12-m ) (1?9 —1") g ysom (10)



4.1. Velocity-Adapted Occlusion Detectoy z < Tmaz and ”@—; < 0 whenz > xmaz. From (17) it follows

We assume the 2D gradients in each layer are distributdt zmaz < 0, which means that the detected edge location is
isotropically, in the sense that the mean gradient Burthermore, biased towards the occluded layer.
we assume that they are uncorrelated. Thus, using (8) and/€9)
can write the gradient structure tensor defined in (1) as 4.2. Occlusion Detectoh

Behavior analysis of the smallest eigenvalués harder. Thus

c® ~ g (1_55211 T -
g ¥ { (=g s) VI(VI) we make the further assumption that= {? along the edge. Then

m2, 4 VIAVIHT + P—1Y)? . g2 .nnT) we can omit the last term in (11) and get
2 1 2n 12
~ hy-M'+hy M?+hs-nn” (11) G = all-m)™ +cem™M (18)
where Calculating the eigenvalue of (18), the following can bevafo
1 0 ok o The smallest eigenvalue @ is given by
x
MF = 0 1 ok (12) a1t (a= Vaz =) (19)
—of —vp (05 + (vy)? 2
where
and
2 1,2 2 22
= 1 —
hi = e (1—msgtsis,)’ ¢ ( m);l'glv | +1m 022”2 |
hy = cp-m2iers, (13) b = (I-m)ymicellv: —v7
hs = € Gst(sots)/2 « )\ has a single local maximum.
sotlsots)/ o If c1||v]|? = c2||v?||?, then ) is maximal atz = 0 — where
The coefficients ¢ = ((1*-1")?) /\/4x(s+s0) and the edge is located.
o = <|\vz’“||2>/2 describe the distribution of intensities in o If ¢;||v}]|? > c2|v?||%, then ) is maximal at some: > 0,
the layers. . . and vice-versa,; in other words, the detected edge locagion i
Then, the velocity-adapted occlusion detector from (3) lsan biased towards the layer with lower intensity variance and
shown to be smaller absolute motion.
N (vl —v2)? (v —v2)? (14) The biasing effect towards the occluded layer is not evident
T

1/h1 +1/(ha +h3)  1/h1+1/hs due to the particular assumption we have made, althoughst wa

Maximum: In the general case, the expression above is hapgserved in our experiments. Note thats affected by absolute
to analyze. Simulations show thag typically has a single local Velocity, unlike the velocity-adapted operator.
maximum. Although it may have two local maxima, this only
happens whery, > 9-¢; ande > 180 - ¢; for s > 1, and the 4.3. Discussion
second local maximum is usually very subtle. Therefore,abr ~ The analysis we have presented, albeit approximate and lim-
practical purposes, it can be assumed thathas a single local jted to an idealized model, explains properties of the aioh

maximum. o _ detectors that are observed with real sequences in a muar wid
_Bias due to texturein the limit c — 0 (i.e., both layers have scope. Assuming that the occlusion edge is linear appragsna
similar intensities) A\, becomes the local behavior of smooth edges (or any edge in coarse)scal
_ _ and empirical evidence suggests that the behavior o
(vh —02)? + (v} — v2)? d irical evid ts that the behavior of thectiet
T= er(l—m)2 +‘ 1/62‘mg (15) at_ corners is glso similar. Finally, a_ss_uming thqt the ed@d&igped
. . . . . with the Y axis clearly does not limit generality, due to taa
Differentiating for m yields that\r is maximal atzmaez such . .
that invariance. S _ . .
In general, the distribution of intensity gradients alsesloot
— ver 6) significantly affect the properties discussed above, atjhcstrong
m(Tmaz) = 5 (16) S AN
Ver+ e features may affect localization in their vicinity. Everotlyh we

and thuszmaz > 0 <= ¢ > co, Which means that the have analyzed the biases due to texture and due to occlusion

location of the detected edge is biased towards the laydr wieparately, clearly they may occur together.

lower intensity variance. The magnitude of the bias varsishleen One important aspect of motion segmentation that was not

c1 = ¢, and it is proportional toy/s + sg + sw, therefore it addressed in this analysis is the mutual effect of diffeesides,

vanishes at fine scales. possibly from different objects, on each other. Edges shift
Bias due to occlusionin the case where > 0 andc; = ¢  coarser scales and ultimately merge, which limits the appllity

(i.e., both layers have the same intensity variance), tiiectidl of this approach at coarse scales.

edge location is biased towards the occluded layer. To deg th

we substituter = 0 in the derivative of\r 5. DEPTHORDERING
dAr (x=0) = —(vl —v2)? We now present t_wo algorithms for dt_etermin_ing ordingl depth
dx (50 +5+50) - (VewTs0F5/c + V2 e1) based on the occlusion detector defined in Section 2.1, ediner

two frames or three frames.

When only two frames are available, it is impossible to infer
Since A7 is always positive, has a single local maximum.., order of depth from motion alone, without additional asstiomns
and vanishes att — oo, it follows that ‘{;\—IT > 0 when or prior knowledge. Consider a pair of images of a video seqgee

<0 a7
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Fig. 11. Two-frame occlusion problem. Two of the pixels iarfret; do not
correspond to any pixel imz due to occlusion, and they may belong either 7 1
to the right (a) or the left (b) layer. I
B .
[}
8 -6
(or a stereo pair) that contain the motion of two layers where <
one partially occludes the other. As illustrated in Fig. fikels 8
that appear in one frame and become occluded in the other may 10 ‘ ‘ ‘ ‘
belong to either of the layers. Whichever layer they belomg t 0 >0 B B
is the occluded layer, and since their interframe corredeonce (b)

cannot be determined, both interpretations are equalig.v@lur
two-frame algorithm, described in Section 5.1, is basedhan tFi%. 1|2.) (@) Theﬂt])ia:_s of tge Ioga;ion-OfEmaﬁimMS) asptgefurr;iqgon otf
H H H H i s (Scale) on a synthetic ranaom-aot pair. Each curve re| Serieren
Efo;nepr??:etT:;;?SefnIfhae (5\2_;282/ small) difference tirisity value_z of<(I2 — I{)2> ranging from0 (t?)p) t00.2 (bottom). (b) The bias as
: predicted based on (14).

The situation when more than two frames are available is

considerably different. Although there may be two intetatiens

to a two-frame sequence, additional frames can be used ¢o rul

out false interpretations. With a slight modification, olgasithm

can be applied to three frames even when the two layers have th

same intensity on the average, and achieve better lodalzaee

Section 5.2.

(@) (b)

5.1. Two-Frame Algorithm Fig. 13. Random dots example with 20% density differencevéen

. . . .. foreground and background: the edgerifis superimposed on the response
Given the scenario described above and generalizing (8), Qﬁ X at scales — 5 with an occluding (a) and occluded (b) segment

space-time gradient af is given by

—_— 1 . — 2 . 2 — 1 . . .

VI = NI -(1=m)+VI"-m+ (" =1)Vm (20) pa g scaling invariance (31),
Observe that the expression above is a sum of three vectors —
two of them proportional to the gradients of the two layers] a
a_thlrd component that stems from the edge between the I_ayersrhus, if at scales; the maximum of\
Since the edge and the occluding layer have the same motion £o<
common fatg the gradient off is more affected by the motion
of the occluding layer than that of the occluded layer in area . :
transition between layers. This asymmetry is manifestealdims “1> “2 ¢ (d(sagned '(22§13)) do not vary between the scalesand
towards the occluded layer in the location of the detectetiamo 2+ thenA;*” ~ A, and the maximah for I at scales would
boundary, as derived from (14). also be aty/s2/s1 - . This means that the bias in the location of

We first note that this bias typically grows with scale. Tris imaximalA®*) is proportional to,/s, which means that not only is
because the components representing the gradients of agmh |the location biased towards the occluded side, but this dlss
are smoothed across the motion boundary into the other, laggr 97ows with scale. This property of is demonstrated in Fig. 12
the component that is due to the difference between theddger 0N & synthetic example of random dots. In real sequences, the
smoothed in both directions. Therefore. the effect of theéigno assumption that the intensity distribution is similar irifefient

of the occluding layer expands farther into the occludeeiags Scales is usually not satisfied. Nevertheless, the effestried
T is further smoothed. above is still observed qualitatively, and can be used tertehe

depth ordering.

This observation can be used to design a depth-ordering algo
rithm. Consider the ridge of A(**) and the response of(*2),
J(z,y,t) = I(x)o,y/o,t) (21) for scaless; < so. The direction ofvA(*2) = (AL2) A(™)) is

A =l 22
g @y, t) =X (z/o,y/0,) (22)

(Isl) is obtained at some

0, then at scale, the maximum ofASSQ) would be obtained
at \/sa2/s1 -« whenJ is a scaling ofl by sy/s;. If the values of

More specifically, consider the spatial scaling of a videby
o, namely



(d)

Fig. 14. Results on real sequences of three dynamic sca)g#) (The two frames. (c) Responsedoffrom Eq. (23)) coded as dark=negative, light=positive.
(d) Final layers detected by the algorithm with relative ttleppded as white=near, grey=middle, and black=far.

towards the ridge oh(*2), and therefore for each pixel alorg scales:
the vectorA(*2) indicates the direction of the bias af*2) w.r.t.

S2
A1) D=>"%" . vm (24)
Our algorithm starts by segmenting the two-frame sequence s=s1 z€dMm

using the segmentation algorithm described in Section 2ietd The response of (from Eq. (23)) on boundary pixels in real

an estimate of the matting map(x, y) (as defined in (6)). Since sequences is shown in Fig. 14c. In the bottom row, points on

the bias grows with scale, the ridgesift) at higher scales should the edge between the flower and the hand have positive values

be biased with respect to the edgeiaf Therefore, at points along with respect to the hand and negative values with respedteto t

the edge ofi, the direction ofVA should be towards the outsideflower. Relative depth is shown in Fig. 14d. The octopus in the

if the segment is the occluder, and towards the inside if it {gp row and flower in the bottom row are correctly detected

occluded (see Fig. 13). Defining as the occluders, while the hand is detected as occluding the

) background and as occluded by the flower. The scene viewed

d=VA-Vim (23) through the window of the old ruin in the middle row is corigct

we expect thail < 0 if the segment is the occluder, add> 0 gletected as occluded. Note that the inte_rnal frame of thnsiwv

if it is occluded. Thus, summing the value @falong a contour IS (correctly) not detected, since there is no depth discoity

of the segment can determine which side of the contour is tifethis area.

occluder. )

Since the bias effect grows with scale, it is preferable aatse 9-2- Three-Frame Algorithm

small scales. On the other hand, higher scales distort thgem Recall that high values of\ occur in areas where there is

data and other nearby image features may interfere withdhev no smooth motion, i.e., at motion boundaries. At points with

of d. Therefore, we sum the value dfin several intermediate correspondence (due to occlusion), the partial derivativeuld
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t+1
Ar >0

A->0

t—1

Fig. 15. Three frames with pixel correspondence; pixeld ti@ve corre-
spondences betweenandt — 1 and have no correspondence betweéemd (a) (b)
t + 1 are located to the right of motion boundary pixels, indiogtihat the

right side is the occluded side. Fig. 16. Results of a real three-frame sequence (octopus@zafrom

Fig. 14): (a) Edges based ok,,;, (black) compared to the response of
Amaz (gray) — the response is stronger outside the edge, inulic#tiat the
segment is the occluding layer; (b) Edges based\gp,, (black) compared

have random values (with the exceptions that were discussed® edges based ok, (i.e., from two frames), showing that three frames give
Section 2.1), leading to a high value, even though these points®®tter localization.
are not strictly boundary points. These areas are adjaoetfiet
true motion boundary and theresponse would appear as a thick
boundary region. Based on two frames alone, it is impossible
to determine which side of the thick boundary is the true edge
which is equivalent to determining which side the occludeglp
belong to.

When three frames are available, we denote the response of
on frames(¢,t — 1) as A, and frameg¢,t + 1) as\y; t is the
reference frame in both cases. We define

Fig. 17. Two frames used in our experiment with density vagybetween
45% and 55%. The sequences used in the experiment are &vatathe web

Amin = min{A_, Ay} and Amaz = max{A_, A4 {25) at http://ww.cs. huji.ac.il/~daphna/ denps. htm #noti on.

Points on the true motion boundary are detected by botrand

At thusf/\ﬁ”"f > 0 at these %omts. Zo'mﬁ that are not og:cludeﬂ\n additional advantage of the three-frame algorithm istdvet
in any of the frames are not detected Iythus Ayi, ~ 0. There |50 ajisation of the segment boundary, as occluded pixets ar
exist points that are occluded in- 1 and not in¢t + 1 and vice distinguished from boundary pixels

versa, and in these pOim_Sm“ ~ 0 and Amaz > 0. Figure 16a shows the edges based)gg,, and \mqz from
Therefore, the true motion boundary can be detected as¢de gf, e frames of the octopus sequence. Khe. edge is outside

where A,nin > 0. The regions where.,i, ~ 0 and Amaz >0 he Amin €dge, indicating that the segment is the occluder. The

belpng to the occluded 'a¥e“ and the reIaFion between the)?,%m-based edge gives better localization of the motion boyndar
regions and the boundary yields depth ordering,

Fio. 15 as illtesdrén (compared to the two-frame result), as shown in Fig. 16b.
ig. 15.

This approach is closely related to [24], which also usesrinf
mation from the preceding frame to fill in missing informatio
with respect to the succeeding frame, and vice versa. Hesésth ~ The algorithms we have presented determine the depth order
done implicitly based on the response of the occlusion detec from two or three frames based on motion alone. They perform
only for the purpose of depth ordering and without first eotirgy Well even when monocular segmentation is impossible. Below

6. PSYCHOPHYSICALEXPERIMENTS

accurate optical flow. we show that human observers can also perform these tagks, wi
This principle can be implemented by slightly modifying th&omparable success.
two-frame algorithm as follows: In Section 6.1 we describe the 2-alternative forced choice

« Use )., for the segmentation to obtaif experiment, in which we presented subjects with random-dot
e ' sequences of two moving layers. In Section 6.2 and 6.3 we

Use in (23) to obtain the bias directios. i ; ;
¢ YR Amaw (23) , , _ . describe the results of experiments with two- and threevra
Using \,.;» for the segmentation gives better localization Ogequences respectively

the segment’s edge, since it responds only to the true edgee S

Amaz responds also to occluded regions, its profile is biased

towards the occluded side (as is the bias due to the intendiy}- Methods

gap), and thug < 0 if the segment is the occluder, add> 0 if In our experiments we presented subjects with sequences in

it is occluded. which two layers with random-dot textures, one partiallglad-
Unlike the bias due to intensity difference, the bias that isag the other, are moving horizontally in opposite directioThe

due to occluded pixels is not affected by scale. Note that mmundary between the layers is the middle vertical line, ted

intensity difference was assumed, so this bias can be ddteatensity of the dots varies across each layer along the motion

even when there is no intensity difference between the $ayeboundary. Figure 17 shows an example of such a sequence. Each

On the other hand, when there is an intensity differenceh batide was the occluder in half of the sequences, in randonr orde

effects contribute to the bias, boosting the correct assggm. (counter-balanced).
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Fig. 18. Results of experiments on human subjects: (a) Tamé sequences. Fig. 19. Performance of our algorithm on the experiment eeges: (a) Two-
(b) Three-frame sequences. frame sequences. (b) Three-frame sequences.
In each sequence, the density was characterized by some 100
density gapA, so that the density varied betweéh— A)/2 and %
(1+ A)/2 across each layer. Participants were instructed to click % 80
on the side (left or right) where they thought the occludes wa s 70
each sequence. The experiments were conducted in sesERMSs 0 ﬁ 60
presentations, with 3-6 sessions per participant for ed@reht 8 s
value of density gap. I
0 1‘0 ) 26 36 40
6.2. Two-Frame Sequences density gapA (%)

Seven volunteers participated in this experiment. In eaeh pFig. 20.  Performance of an ideal observer on two-frame éxjert
sentation, the two frames were displayed alternately ateagh S€duences.
3 frames/second. The density gap between the two frames was

0%, 5%, 10%, 15%, 20%, 40%. of the sequences, in contrast to the two-frame experiment in

For a density gap 0f0%, subjects selected correctly in r'earlywhich subjects performed no better than chance. The rearéts
100% of the sequences. For a density gapf, i.e., the density summarized in Fig. 18b.

was uniform across the whole frame, subjects selected atlyrre
in 50% of the sequences, i.e., no better than chance. This
consistent with the fact that both interpretations are Bywalid

in this case. The results are summarized in Fig. 18a.

For comparison, we applied our two-frame algorithm to th
same sequences. For density gaps of more 208 the success )
rate was nearlyl00%. As expected, when density was uniform, [n order to evaluate the results of the two-frame experimient
the success rate was% (in such sequences both interpretation@nd algorlthm, we c_:onS|der an |_deal observer that “knows’ th
are equally valid). The performance of the algorithm is swemmform of the distributions generating the sequences, bus do2
rized in Fig. 19a. know which side is the occluder. Letl;, H> denote the two
possible choices: “left-front” and “right-front”. For a\gn two-
frame sequencd, the probability that it was generated &&
is

Two volunteers participated in this experiment. In each pre Pr(H D) — Pr(I|H;) - Pr(H;)
sentation, a sequence was played back and forth at a rate of r(HslI) = S, Pr(I|Hy) - Pr(Hy)
10 frames/second. The density gap between the two frames was
0%, 10%, 20%, 40%. Results for three frames were much bettef/ €€
than those for two frames, as expected. In particular, fasresity Pr(I|H;) = H Pr(I(z,y,t)|H;) 27)
gap of 0% (uniform density), subjects selected correctly7ivs

. Our three-frame algorithm, applied to the same sequenegs, g
th& correct answer in nearly0% of the sequences, and even with
uniform density, its success rate we&% (see Fig.19b).

§.4. Two-Frame Sequences: Ideal Observer Analysis

6.3. Three-Frame Sequences

(26)

z,y,t
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Pr(I(z,y,t)|H;) and Pr(H;) are known to the ideal observer. APPENDIXI

Thus, for any givenI, the ideal observer can compute (26) SCALE NORMALIZATION

for i=1,2 , and then choose the most probable hypothesis.one problem with multi-scale analysis is that derivatives d
By sampling sequences, we estimated the probability ofecorr -rease with scale. Indeed. Gf< I < 1. then

choice at97.7% for A = 10% and 100% for A = 20%. This T

provides a theoretical upper bound on the performance of an |1z, | Iy] < _ (28)
observer in this task. \/ 2T szy

A less informed observer, that does not know the exact forwhen smoothing with a spatial Gaussian of variangg. This
of the distribution used to generate the data, may consitier well-known problem can be handled by scale normalizatien, a
possible videos in which the density of dots in each layeraies Proposed in [16]. Scale normalization is done by defining the
constant within a small region. Such an observer can comp&&ale-normalizegartial derivatives

the density in neighborhoods of occluded pixels with nearby Ja) ) 7
neighborhoods within either layer. For a neighborhood lwioft o) Y Sy g(gs‘“’ *1) (29)
16 pixels, such arad hocscheme chose correctly 8% of the Iy = VSzy- a—y(gszy 1)

sequences fon = 10%, and99.7% for A = 20% (see Fig. 20). \yhereg,, « stands for convolution with a Gaussian with variance

sey. ThusI{**v) and1$***) are used in the evaluation afinstead
of I, and I,. Note that scale normalization does not violate the
assumptions leading to the definition »fin Section 2.1.

One important property of scale normalization is thabe-
comes invariant to spatial scaling 6f This means thah gives
comparable values for a video sequence in different reésolsit
To see this, let us scaleby o, and define

7. SUMMARY AND DISCUSSION

The occlusion detector we have presented is useful for@xtra
ing motion boundaries. Since we do not make any assumptions J(z,y,t) = I(x)o,y/o,t) (30)
regarding the color or texture properties of objects, orualibe o ) )
geometric properties of the motion, our algorithm works lwefPubstituting (30) into (29) yields
on natural video sequences where such assumptions are often 2, .
violated | P VI a0y t) = VIC (@,y,0) (31)

The algorithm relies mainly on background features which Let(:’w Sd()enote the variance of the Gaussian windewand
disappear and reappear as a result of occlusion. Thesadsat{ft G'****’[I] denote the second moment matrix defined in (1),
may be sparse and still indicate the location of motion badieg, With the scale of differentiation.,, and scale of averaging..
as the algorithm processes the data in multiple scales. pssenl From (31) it follows that
to algorithms that rely on motion estimation, our algorithm (G(sxy,sw)[j]) (@, y.1) = (G(Uzsxyv"zs“’)[J]) (o0z,00,t) (32)
usually does not require any texture on the occluding object e e

Since occlusion is the main cue used by our algorithm, it workhat is to say, ifJ is a scaling byo of I, then the value of
well when velocity differences between moving objects anal A at (z,y,t) in I at scalessyy, su 2W||| b62 the same as at the
since features will still disappear due to occlusion. Algons corresponding point iV at scalesr“szy, 0 sw.

that rely on motion differences typically find it hard to diguish ~ For our purpose of computing a goamtclusion detectorit
between different objects in such cases. follows from (32) that as long as our computation scans alesc

.in scale space, the result does not depend on the imagetiesolu

We described a second algorlth_m, extending the OCCIUSIRE)te that in order for\ to be scale-invariant, it follows from
detector to compute the depth ordering between the layeossic (32) that s, must be proportional tes,, as in [14]. In our

the motion boundary. The algorithm was shown to give goq . . . .
o . L Implementation we use = sz, = s, Which defines a single

results on real sequences with different occlusion sedtiigith (s)

. . . Fcales. We denote the\ evaluated at scale as A\'?/.
only two frames, the algorithm relies on some (possibly §mal
difference in texture between the moving layers. Withous th
assumption, we face the well known inherent motion ambjguit
which states that depth ordering cannot be computed from two
frames and motion alone. II.1. Temporal Aliasing

APPENDIXII
IMPLEMENTATION ISSUES

Can humans use a similar heuristic to get around this inherenSince real video data is discrete, the partial derivativethe
ambiguity? We asked humans to rank the relative depth of twefinition of A\ must be estimated. This is done by convolvihg
moving layers in two or three frames. In our experimentsehewith the partial derivatives of a 3-dimensional GaussiantaR
was a difference in texture between the moving layers, baet thional invariance implies that the spatial variance in fieand
difference was set to be local and small, so that it could mot i directions should be the same, and the kernel is therefore
detected in a single frame as a distinct boundary betweetwilie an ellipsoidal Gaussian with spatial varianeg, and temporal
layers. Nevertheless, when presented to human subjectstiorn variances;. Due to the distortion introduced by the convolution,
this difference was sufficient for the detection of relatdepth. it is desirable that these values be small.

We showed that our algorithm can also utilize this smalkdéhce Estimating the temporal partial derivative from video gms
to detect relative depth, giving qualitatively similar uéis (cf. a severe aliasing problem. Since video frames represeiat dat
Fig. 18 and Fig. 19). accumulated during short and sparse exposure periodsijraredss
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feature may move several pixels between two consecutiveea (where xg, xg, and xg, denote convolutions with the spatial
data is aliased in the temporal domain significantly moren th&aussian and with it andY derivative respectively).
in the spatial domain. We overcome this problem by taking
advantage of the spatio-temporal structure of video, asrithesl ||.3. Application to Optical Flow
next.

Suppose that the velocity in a certain regiorvis= (vg,vy),
and therefore

It is well known that the computation of optical flow in
textureless regions and along straight lines (aperturbl@mg) is
ill-posed. When these situations occur, the rankGofs 0 and 1,
I(z,y,t) = I(x — vat, y — vyt,0) (33) respectively. These situations arise from spatial strecalone,
and can therefore be detected by the spatial 2D second moment
matrix (used, for example, in the Lucas-Kanade algorithii)[1

It = —vgly —vyly (34) in order to mark these regions as unreliable (as done in many

) ) ] o implementations). Optical flow is also unreliable at motimund-
In discrete video,/; can be estimated by convolution in 8 e which may be treated by the joint estimation of motiad
direction, which, due to (33), is the same as convolutiorhant segmentation [28], [33].
direction of a subsample df(x,y,0) at intervals of sizgv|. In These two cases can be treated jointly using the rankof
order to avoid aliasing due to undersampling while estinggt, Optical flow in regions whereank(G) # 2 can be estimated by
the Sampling Theorem requirdsto be band-limited, so that its filing from adjacent regions whereank(G) = 2. In a coarse-
Fourier transform vanishes beyo%. This can be achieved g fine algorithm, this should be done at each scale.
by smoothing with a spatial Gaussian. However, smoothirggpo
a notable drawback, as it distorts the image data, causatgrés ACKNOWLEDGMENT
to disappear, merge and blur. .

An :I'?ernative ?ipproach, closely related to the concept ofThIS resear_ch was supported by the EU under the DIRAC
“warping” (e.g., [17]), would be to take advantage of prio‘lntegrated project IST-027787.
estimates of the optical flow. If a point is estimated to move
at velocity u = (uz,uy), we can use the convolution dfin the

direction of (uz,uy, 1) to estimate the directional derivative, [1] N. Apostoloff, A. Fitzgibbon. Learning spatiotempor#junctions for
and apply occlusion detectionCVPR’05 553-559.
[2] L.Bergen and F. Meyer. A novel approach to depth ordeiingionocular
(35) image sequencesCVPR'0Q 11:536-541.
[3] M.J. Black, D.J. Fleet. Probabilistic Detection and dkimg of Motion
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The convolution that yield$,, is equivalent to subsampling |n[4] G. T. Chou. A Model of Figure-Ground Segregation from &g
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