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Abstract. We present a novel method for the detection of motion boundaries in
a video sequence based on differential properties of the spatio-temporal domain.
Regarding the video sequence as a 3D spatio-temporal function, we consider the
second moment matrix of its gradients (averaged over a local window), and show
that the eigenvalues of this matrix can be used to detect occlusions and motion
discontinuities. Since these cannot always be determined locally (due to false
corners and the aperture problem), a scale-space approach is used for extracting
the location of motion boundaries. A closed contour is then constructed from the
most salient boundary fragments, to provide the final segmentation. The method
is shown to give good results on pairs of real images taken in general motion. We
use synthetic data to show its robustness to high levels of noise and illumination
changes; we also include cases where no intensity edge exists at the location of
the motion boundary, or when no parametric motion model can describe the data.

1 Introduction

Motion-based segmentation involves the partitioning of images in a video sequence into
segments of coherent motion. There are two main approaches to motion segmentation:
one may assume a global parametric motion model and segment the image according to
the parameters of the model (e.g., [5,14,15,20]), or one may assume piecewise smooth
motion and identify the boundaries along motion discontinuities (e.g., [1, 6, 13, 19]).

In this work we focus on the extraction of motion boundaries, which are defined
locally as boundaries between different motions (since many real video sequences do
not obey any global motion model). In addition, we restrict ourselves to solutions which
do not rely on the existence of color or texture boundaries between the moving object
and the background while computing motion boundaries (but see, for example, [2, 6,
18]). This is motivated by humans’ ability to segment objects from motion alone (e.g.,
in random dot stereograms), and by the need to avoid over-segmentation of objects
whose appearance includes varying color and textures. Finally, we only consider local
properties of the motion profile, in order to be able to deal with pairs of frames or stereo
pairs (but see, for example, [17]).

Motion boundaries can be computed by clustering a previously computed motion
field (e.g., [15, 20]). The problem is that motion discontinuities are found on exactly
those locations where the motion field computation is least reliable: since all optical
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flow algorithms rely on the analysis of a region around a point (even if only to compute
first order derivatives), the optical flow must be continuous within the region to support
reliable computation. This chicken-and-egg problem, which is characteristic (though
to a lesser extent) of the computation of intensity edges and some related problems,
makes motion segmentation particularly challenging. On the other hand, the successful
computation of motion discontinuities can be useful for a number of applications, in-
cluding motion computation (by highlighting those areas where the computation should
be considered unreliable) and object segmentation from multiple cues.

In our approach we start by considering the video sequence as a spatio-temporal
intensity function, where the goal is to extract information from this spatio-temporal
structure. Video sequences have highly regular temporal structure, with regions of co-
herent motion forming continuous tube-like structures. These structures break where
there is occlusion, creating spatio-temporal corner-like features. Using a differential
operator that detects such features, we develop an algorithm that extracts motion bound-
aries.

Specifically, our algorithm is based on the occlusion detector described in Section 2.
This operator is used to extract a motion boundary at any given scale, as described in
Section 3. Since different scales may be appropriate for different parts of the image,
a cross-scale optimal boundary is computed, based on the response of the detector.
Finally, a closed contour is built along the most salient boundary fragments to provide
the final segmentation. In Section 4 we analyze the behavior of the detector. Some
experimental results are described in Section 5 using two challenging sequences of
real images (see, e.g., Fig. 8). We include a number of synthetic examples which are
particularly difficult for some commonly used algorithms, in order to demonstrate the
robustness of our method. Results from other algorithms, whose implementation was
made available by the authors, are provided for comparison.

2 Occlusion Detector

Regarding the video sequence as a spatio-temporal intensity function, let I(x, y, t) de-
note the intensity at pixel (x, y) in frame t. We refer to the average of the second mo-
ment matrix over a neighborhood ω around a pixel as the Gradient Structure Tensor

G(x, y, t) ≡
∑

ω

∇I (∇I)T =
∑

ω





I2
x IxIy IxIt

IxIy I2
y IyIt

IxIt IyIt I2
t



 (1)

This matrix has been invoked before in the analysis of local structure properties.
In [7], eigenvalues of G were used for detecting spatio-temporal interest points. In [12]
it was suggested that the eigenvalues of G can indicate spatio-temporal properties of
the video sequence and can be used for motion segmentation. The idea behind this is
reminiscent of the Harris corner detector [3], as it detects 3D “corners” and “edges”
in the spatio-temporal domain. Here we take a closer look and develop this idea into a
motion segmentation algorithm.
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(a) (b) (c) (d)

Fig. 1. Random dots example. A shape is moving sideways, where both the shape and the back-
ground are covered by a random pattern of black and white dots. It is impossible to identify the
moving object from each of the two frames (a) and (b) (a stereo pair) alone. The occlusion de-
tector (c) (higher values of λ are darker) shows the outline of the object very clearly. Compare to
the ground truth (d).

Specifically, if the optical flow in ω is (vx, vy) and the brightness constancy as-
sumption [4] holds, then

G · (vx, vy, 1)T = 0 (2)

Hence, 0 is an eigenvalue of G. Since G is positive-semidefinite, we can use the small-
est eigenvalue of G as a measure of deviation from the assumptions above, which leads
to the following definition:

Definition 1. Let λ(x, y, t) denote the smallest eigenvalue of the Gradient Structure
Tensor G(x, y, t). The operator λ is the occlusion detector.1

We do not normalize λ with respect to the other eigenvalues of G (as in [12]), since it
may amplify noise.

In order to provide rotational symmetry and avoid aliasing due to the summation
over the neighborhood ω, we define ω to denote a Gaussian window, and the operation
∑

ω in (1) stands for the convolution with a Gaussian. Since we do not assume tem-
poral coherence of motion, the Gaussian window is restricted to the spatial domain, as
explained in Section 3.

Figure 1 demonstrates the detector results on a simple synthetic example. In this
example there are no intensity or texture cues to indicate the boundaries of the moving
object, and it can only be detected using motion cues. The value of λ, shown in Fig. 1c,
is low in regions of smooth motion and high values of λ describe the boundary of the
moving object accurately.

2.1 Velocity-Adapted Detector

The values of ∇I , and hence of λ, are invariant to translation transformations on I .
Additionally, for any rotation matrix R,

|λI −G| = |R||λI −G||RT | = |λI −
∑

ω

(R∇I)(R∇I)T |

1 Note that the values of λ at each pixel can be evaluated directly using Cardano’s formula.
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(a) (b) (c) (d)

Fig. 2. False λ response. The same example as in Fig. 1: (a) with 20% white noise; (b) with illu-
mination change of 5%; (c) with the object rotating by 20◦; (d) with both object and background
patterns deformed smoothly.

(I is the identity matrix) and therefore the values of λ are also invariant to the rotation
of I . The issue of scale invariance will be discussed in Section 3.

While rotational invariance is desirable in the spatial domain, non-spatial rotations
in the spatio-temporal domain have no physical meaning. It is preferable to have invari-
ance to spatially-fixed shear transformations, which correspond to 2D relative transla-
tional motion between the camera and the scene. As suggested in [9] by the reference
of Galilean diagonalization, one can use the velocity-adapted matrix G̃ given by

G̃ =





G11 G12 0
G21 G22 0
0 0 λT



 where λT =
det(G)

det(G∗)
(3)

(Gij denote the entries of G, and G
∗ denotes the 2 × 2 upper-left submatrix of G

containing only spatial information).

Definition 2. The operator λT is the velocity-adapted occlusion detector.

To justify this definition, observe that G̃ is also invariant to translation and spatial
rotation. The entry λT is an eigenvalue of G̃, and it has been suggested that it encodes
the temporal variation, being the “residue” unexplained by pure-spatial information.

In practice, λT gives results similar to λ, though it has certain advantages, as dis-
cussed in Section 4. In the remainder of the paper we use λ to denote either operator,
unless stated otherwise.

2.2 Detector Effectiveness

High values of λ indicate significant deviation from (2), which is often due to the exis-
tence of a motion boundary. Other sources of large deviations include changes in illu-
mination (violation of the brightness constancy assumption), or when the motion varies
spatially (motion is not constant in ω). However, often these events lead to smaller λ
values as compared to motion boundaries (see Fig. 2), in which case the boundary re-
sponse can be distinguished from a false response by thresholding.

Low values of λ do not necessarily indicate that the motion in ω is uniform. The
rank of G is affected by spatial structure as well as temporal structure, so λ may be
low even at motion boundaries, when certain spatial degeneracies exist. Specifically,
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linear background

uniform background

same−color background

Fig. 3. Areas where the λ detector is likely to give low values despite the existence of a local
motion boundary.

this occurs when there is local ambiguity, i.e., when the existence of a motion boundary
cannot be determined locally. This includes areas where the occluding object and its
background are of the same color, areas where the background is of uniform color, and
areas where the background texture is uniform in the direction of the motion (Fig. 3).
In the first case the rank of G is 0, and in the other cases the rank of G may be 1 or
2, depending on the appearance of the occluding object (recall that the λ detector is
high when the rank of G is 3). In these cases, the background may be interpreted as
part of the moving object, since no features in the background appear to vanish due to
occlusion.

The response of λ to occlusion occurs only where some background features be-
come occluded. Clearly boundary location cannot always be inferred based on local
information alone, and it is therefore necessary to integrate information across larger
areas of the image. This is done using scale-space techniques, as discussed in Section 3.

2.3 Temporal Aliasing

Since real video data is discrete, the partial derivatives in the definition of λ must be
estimated. This is done by convolving I with the partial derivatives of a 3-dimensional
Gaussian. Rotational invariance implies that the spatial variance in the X and Y di-
rections should be the same, and the kernel is therefore an ellipsoidal Gaussian with
spatial variance sxy and temporal variance st. Due to the distortion introduced by the
convolution, it is desirable that these values be small.

Estimating the temporal partial derivative from video presents a severe aliasing
problem. Since video frames represent data accumulated during short and sparse ex-
posure periods, and since a feature may move several pixels between two consecutive
frames, data is aliased in the temporal domain significantly more than in the spatial do-
main. We overcome this problem by taking advantage of the spatio-temporal structure
of video, as described next.

Suppose that the velocity in a certain region is v = (vx, vy), and therefore

I(x, y, t) = I(x − vxt, y − vyt, 0) (4)

The temporal derivative in t = 0 is given by

It = −vxIx − vyIy (5)
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In discrete video, It can be estimated by convolution in the T direction, which, due
to (4), is the same as convolution in the v direction of a subsample of I(x, y, 0) at
intervals of size |v|. In order to avoid aliasing due to undersampling while estimating
It, the Sampling Theorem requires I to be band-limited, so that its Fourier transform
vanishes beyond ± 1

2|v| . This can be achieved by smoothing with a spatial Gaussian.
However, smoothing poses a notable drawback, as it distorts the image data, causing
features to disappear, merge and blur.

An alternative approach, closely related to the concept of “warping” (e.g., [10]),
would be to take advantage of prior estimates of the optical flow. If a point is estimated
to move at velocity u = (ux, uy), we can use the convolution of I in the direction of
(ux, uy, 1) to estimate the directional derivative Iu and apply

It = Iu − uxIx − uyIy (6)

The convolution that yields Iu is equivalent to subsampling in the direction of
v − u, and thus the estimate of It is unaliased if the Fourier transform vanishes beyond
± 1

2|v−u| . This occurs when either the estimated velocity u is close to the real velocity
v, or the region is smooth. This is particularly important, as the estimation of optical
flow in smooth regions is often inaccurate. Also note that the spatial smoothness of u is
not required.

Note that temporal smoothing has no effect on the aliasing problem, and it is desir-
able to have as little temporal smoothing as possible.

3 Extraction of Motion Boundaries and Scale-Space Structure

Recall from Section 2.2 that λ does not respond to motion boundaries when the bound-
ary cannot be inferred locally (e.g., when the object and the background are of the same
color locally). While there may be no cues to indicate the location of the boundary in
a fine scale, in a coarser scale (i.e., in a larger neighborhood) there may be enough
information and λ may respond. Thus we incorporate multi-scale component in our
algorithm, in order to detect motion boundaries that are not detectable at fine scales.

In order to define the notion of scale in our algorithm, note that the evaluation of
λ involves Gaussian convolutions in two different stages – during the estimation of the
partial derivatives, and when taking the average over the neighborhood ω. In both cases,
larger Gaussians lead to coarser structures, and we shall refer to the size of the Gaussian
as the scale. In this work we will only consider the spatial scale.

The notion of scale has been studied extensively for features such as edges and
blobs. As with these features, different structures can be found at different scales. The
response of λ to noise, which can occur in finer scales, is suppressed in coarser scales.
On the other hand, localization is poor at coarse scales and motion boundaries may
break and merge.

Figure 4 illustrates this idea – at fine scale (Fig. 4b), λ responds only at discrete
locations, because the background consists of regions with constant color, and the oc-
clusion can be detected only where there are color variations in the background. In the
coarser scale (Fig. 4c), the neighborhood of every boundary point contains gradients in
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(a) (b) (c) (d)

Fig. 4. Checkerboard example: (a) A frame from the sequence; (b) and (c) show the response of
λ at fine (sxy = 1) and coarse (sxy = 10) scales respectively. At the fine scale, λ only responds
at intensity edges (which appear like discrete “bursts”), while the entire contour is visible at the
coarse scale, alas with considerable distortion. (d) shows the final contour selected by integrating
over scales.

several directions and the boundary is detected continuously. In Section 3.2 we describe
a method to combine data from multiple scales.

Image features, such as edges, typically shift and become distorted at coarse scales.
The scale space structure of motion boundary edges (and in particular our occlusion de-
tector) has its own particular biases in coarse scales. As discussed in Section 4, motion
boundaries at coarse scales are shifted towards the occluded side, i.e., the occluding ob-
jects becomes “thicker”. In addition, it can be shown that the bias is stronger when there
is a large intensity difference between the object and the background, and it increases
with scale.

3.1 Scale Normalization

One problem with multi-scale analysis is that derivatives decrease with scale. Indeed, if
0 ≤ I ≤ 1, then

|Ix|, |Iy | ≤
1

√

2πsxy

(7)

when smoothing with a Gaussian of variance sxy. This well-known problem can be
handled by scale normalization, as proposed in [8]. Scale normalization is done by
defining the scale-normalized partial derivatives

I(sxy)
x =

√
sxy · ∂

∂x
(gsxy

∗ I) and I(sxy)
y =

√
sxy · ∂

∂y
(gsxy

∗ I) (8)

where gsxy
∗ stands for convolution with a Gaussian with variance sxy. Thus I

(sxy)
x and

I
(sxy)
y are used in the evaluation of λ instead of Ix and Iy. Note that scale normalization

does not violate the assumptions leading to the definition of λ in Section 2.
One important property of scale normalization is that λ becomes invariant to spatial

scaling of I . This means that λ gives comparable values for a video sequence in different
resolutions.

To see this, let us scale I by α, and define

J(x, y, t) = I(x/α, y/α, t) (9)
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Substituting (9) into (8) yields

J
(α2sxy)
x (αx, αy, t) = I

(sxy)
x (x, y, t)

J
(α2sxy)
y (αx, αy, t) = I

(sxy)
y (x, y, t)

(10)

Let sω denote the variance of the Gaussian window ω, and let G
(sxy ,sω)[I ] denote

the second moment matrix defined in (1), with the scales of differentiation and averag-
ing sxy and sω, respectively. From (10) it follows that

(

G
(sxy ,sω)[I ]

)

(x, y, t) =
(

G
(α2sxy ,α2sω)[J ]

)

(αx, αy, t) (11)

That is to say, if J is a scaling by α of I , then the value of λ at (x, y, t) in I at scales
sxy, sω will be the same as at the corresponding point in J at scales α2sxy, α2sω.

For our purpose of computing a good occlusion detector, it follows from (11) that
as long as our computation scans all scales in scale space, the result does not depend on
the image resolution.

Note that in order for λ to be scale-invariant, it follows from (11) that sω must be
proportional to sxy, as in [7]. In our implementation we use s ≡ sxy = sω, which
defines a single scale s. We denote the λ evaluated at scale s as λ(s).

3.2 Boundary Extraction in Scale-Space

Since λ is computed by taking the average over a neighborhood, its response is diffuse.
We wish to extract a ridge curve where λ is strongest. This can be defined locally as
points where λ is maximal in the direction of the maximal principal curvature, which
can be expressed as







λxy(λ2
x − λ2

y) − λxλy(λxx − λyy) = 0
(λxx + λyy) ·

(

(λxx − λyy)(λ2
x − λ2

y) + 4λxλyλxy

)

< 0
λ2

xλyy − 2λxλyλxy + λ2
yλxx < 0

(12)

Thus, at every scale s, the values of λ and its derivatives are computed, and the ridge
can be extracted. For reasons of numerical stability, at each scale s the derivatives of
λ(s) are computed with the same Gaussian smoothing s.

Different boundaries are extracted at different scales, as fine-scale boundaries may
often split because of the absence of local information, and coarse-scale boundaries may
disappear or merge. Since these may occur at different parts of the image at different
scales, we wish to select different scales for boundary extraction at different localities
(as in [8]). Considering the multi-scale boundary surface as the union of all ridges in
λ(s) for s ∈ (0,∞), we wish to find a cross-scale boundary where λ(s) is maximal.
This can be expressed as

{

λs = 0
λss < 0

(13)

using the scale-derivatives of λ.
Combining (12) and (13) defines the final cross-scale motion boundary. It is a curve

in the three-dimensional space X−Y−S, defined by the intersection of the two surfaces
defined respectively by these 2 sets of equations.
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(a) (b)

Fig. 5. Saliency measure. (a) All boundaries extracted from the random dots example with illu-
mination changes (Fig. 2b); intensity codes λ response. (b) The most salient closed contour.

3.3 Segmentation

As stated above, λ also has some false responses which lead to the selection of false
boundary fragments. It is therefore necessary to define a saliency criterion, which is
used to select the most interesting boundaries. Since we regard λ as a measure of local
boundary strength, for each connected set of boundary points we define the saliency
measure to be the sum of the value of λ along the boundary, as in [8]. This measure
may be sensitive to fragmentation of the boundary, so in our implementation we tolerate
small gaps.

Finally, segmentation is achieved by searching for closed contours with high saliency
and small gaps. We employ a simple greedy heuristic to connect the motion boundary
fragments into a continuous boundary with maximal saliency and minimal gaps. Since
the extracted boundaries are usually almost complete, this heuristic gives good results
(see Fig. 5).

4 Analysis

In order to analyze the performance of the proposed technique, we consider a video of
two moving layers l1, l2, where w.l.o.g. l2 partially occludes l1. A frame in the video
sequence can be written as

I = l1 · (1 − α) + l2 · α (14)

where α is the matting map.
We assume w.l.o.g. that the occlusion edge is perpendicular to the X axis and that

at frame t = 0 it is at x = 0. We further assume that the occlusion edge is a Gaussian-
smoothed line, so α is of the form αs0

(x) =
∫ x

−∞
gs0

(u)du (we denote the Gaussian
function with variance s as gs).

If the motions of l1 and l2 are (v1
x, v1

y) and (v2
x, v2

y) respectively, then the video
volume is given by

I(x, y, t) = l1(x−v1
xt, y−v1

yt)·(1−α(x−v2
xt)) + l2(x−v2

xt, y−v2
yt)·α(x−v2

xt) (15)

Note that the motion of α is the same as the motion of l2, since it is the occluding layer.
Denoting the video volume of each layer as Ik(x, y, t) = lk(x − vk

xt, y − vk
y t), the

gradient of the video volume is given by

∇I = (1 − α) · ∇I1 + α · ∇I2 + (I2 − I1) · gs0
· n (16)
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where n = (1, 0,−v2
x)T . Note that n is perpendicular in space-time to the occlusion

edge (0, 1, 0)T and to the motion vector v
2 = (v2

x, v2
y , 1)T , i.e., n is the normal of the

plane in the video space formed by the motion of the occlusion edge.
Therefore, ∇I is composed of the matting of ∇I1, ∇I2, and a component that

depends on I2 − I1. Note that ∇I1 is perpendicular to v
1, while both ∇I2 and n

are perpendicular to v
2. This means that ∇I is composed of two components that are

related to the occluding layer and only one that is related to the occluded layer.
For scale-space analysis we use the approximation

g ∗ (f · α) ≈ (g ∗ f) · (g ∗ α) (17)

where g is a Gaussian function and α is an integral of a Gaussian as defined above.
Eq. (17) is an equality when f is constant, and it provides a good approximation when
f does not change rapidly near x = 0 (in each layer separately).

Applying (17), the gradient estimated at scale s, denoted by ∇I (s) = ∇(gs ∗ I), is

∇I(s) ≈ (1−αs0+s) · ∇I1(s) + αs0+s · ∇I2(s) + (I2(s)−I1(s)) · gs0+s · n (18)

4.1 Velocity-Adapted Occlusion Detector λT

We assume the 2D gradients in each layer are distributed isotropically, in the sense that
the mean gradient is 0. Furthermore, we assume that they are uncorrelated. Thus, using
(16) and (17), we can write the gradient structure tensor defined in (1) as

G
(s) = gsω

∗
(

(1−α)2∇I1(∇I1)T + α2∇I2(∇I2)T + (I2−I1)2 · g2
s0

· nn
T
)

≈ h1 ·M1 + h2 ·M2 + h3 · nn
T (19)

where

M
k ≡





1 0 −vk
x

0 1 −vk
y

−vk
x − vk

y (vk
x)2 + (vk

y )2



 and
h1 = c1 · (1 − αs+s0+sω

)2

h2 = c2 · α2
s+s0+sω

h3 = c · gsω+(s+s0)/2

(20)

The constants ck = var(‖∇lk‖)/2 and c = var(l2 − l1)/
√

4π(s + s0) describe the
distribution of intensities in the layers.

Then, the velocity-adapted occlusion detector from (3) can be shown to be

λT =
(v1

x − v2
x)2

1/h1 + 1/(h2 + h3)
+

(v1
y − v2

y)2

1/h1 + 1/h2
(21)

From the expression above, we can draw the following conclusions:

– λT has a single local maximum.
– In the special case where c1 = c2 (i.e., both layers have the same intensity variance)

and c → 0 (i.e., both layers have similar intensities), λT is maximal at x = 0.
– In the limit c → 0, λT is maximal when α(x) =

3
√

c1/(
3
√

c1 +
3
√

c2), which means
that the detected edge location is biased towards the layer with lower intensity
variance. The magnitude of the bias is proportional to

√
s + s0 + sω.

– If only c1 = c2 is assumed, then dλT

dx (x = 0) < 0, therefore λT is maximal at
a negative x, which means that the detected edge location is biased towards the
occluded layer.
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4.2 Occlusion Detector λ

Behavior analysis of the smallest eigenvalue λ is harder. Thus we make the further
assumption that l1 = l2 along the edge. Then we can omit the last term in (19) and get

G = c1(1 − α)2M1 + c2α2
M

2 (22)

Calculating the eigenvalue of (22), the following can be shown:

– The smallest eigenvalue of G is given by

λ =
1

2

(

a −
√

a2 − 4b
)

where
a = (1 − α)2c1‖v1‖2 + α2c2‖v2‖2

b = (1 − α)2α2c1c2‖v1 − v
2‖2 (23)

– λ has a single local maximum.
– If c1‖v1‖2 = c2‖v2‖2, then λ is maximal at x = 0 — where the edge is located.
– If c1‖v1‖2 > c2‖v2‖2, then λ is maximal at some x > 0, and vice-versa; in other

words, the detected edge location is biased towards the layer with lower intensity
variance and smaller absolute motion.

The biasing effect of the occlusion relation is not evident due to the particular as-
sumption we have made, although it was observed in our experiments. Note that λ is
affected by absolute velocity, unlike the velocity-adapted operator λT .

5 Experimental Results

In our experiments we compared our algorithm with the most prominent motion seg-
mentation approaches, wherever code was available. To begin with, we establish the
baseline result by segmenting the optical flow. Such a segmentation lies at the heart of
some more elaborate segmentation methods, such as [15]. We used a robust and reliable
implementation of the Lucas-Kanade algorithm [10], and computed segmented it using
a variety of edge operators, including Canny and various anisotropic diffusion methods
and clustering methods (e.g., [20]), presenting the best results for each example.

One influential motion segmentation approach relies on graph cuts [6] (and is there-
fore related to the more traditional regularization based approaches [11]). Code for two
variants of this approach is available on the web by the respective authors [6,18], and we
could therefore use their code to establish credible comparisons. We note, however, that
in both cases the publicly available code can only work with rectified images. There-
fore, in order to obtain fair comparisons, we compared our results to the results of these
algorithms only with rectified image pairs, when possible.

Figure 6 demonstrates our algorithm on a stereo pair. The most salient motion
boundary is shown in Fig. 6b superimposed on the first input image. Fig. 6c illustrates
the baseline result - the edges of the optical flow. Although it is highly unstable in some
textureless areas, this does not affect our algorithm’s performance, as it is tolerant to
poor estimation of optical flow in such regions. Fig. 6d illustrates the best MRF-based
segmentation using graph cuts [18]. See also results in Fig. 7.

Figure 8 shows our algorithm’s performance on a video sequence with non-rigid
motion and illumination changes. The octopus and the reef below have similar color and
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(a) (b) (c) (d)

Fig. 6. Cup example. (a) The left image of a stereo pair. (b) Most salient edge detected by our
algorithm. (c) Edges in the horizontal component of the optical flow. (d) Edges from a graph cuts
segmentation algorithm [6].

(a) (b) (c) (d)

Fig. 7. Flower example. (a) The left image of a stereo pair. (b) Most salient closed contour de-
tected by our algorithm. (c) Edges in the optical flow. (d) Edges from a graph cuts segmentation
algorithm [6].

(a) (b) (c)

Fig. 8. Octopus example. (a) A frame from the sequence. (b) The most salient closed contour
detected by our algorithm. (c) Edges in the optical flow.

texture, and thus spatial coherence is unreliable (note in particular the triangle-shaped
projection near the octopus’ head, which is in fact a background feature). Although
optical flow is inaccurate at motion edges (Fig. 8c), this does not affect the quality of
the boundary extracted by our algorithm which uses it (Fig. 8b).

The tolerance to poor optical flow estimation is further demonstrated in Figure 9,
where a large amount of noise was added to the synthetic checkerboard sequence, caus-
ing numerous optical flow estimation errors. The magnitude of the flow estimation er-
ror is often greater than the true flow (Fig. 9b), particularly around the centers of the
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(a) (b) (c) (d)

Fig. 9. Checkerboard example with 25% white noise. (a) One of the frames; (b) Lucas-Kanade
optical flow magnitude; (c) Segmentation using graph cuts; (d) The most salient contour found
by our algorithm.

(a) (b) (c) (d)

Fig. 10. Random dots example (see Fig. 1). With 20% white noise: (a) Segmentation using graph
cuts; (b) The most salient contour found by our algorithm. With smooth non-linear deformation:
(c) Segmentation assuming affine motion using an implementation of [20]; (d) The most salient
contour found by our algorithm.

squares, making segmentation based directly on the optical flow impossible. Results of
the MRF-based method are also shown.

The main weakness of many MRF-based methods is the absence of spatial coher-
ence. This is demonstrated on the random dots example in Fig. 10a,b where such meth-
ods have no spatial support and therefore fail.

Fig. 10c,d demonstrates our algorithm’s advantage when no global motion model
can be assumed. In this example, the texture of both the moving object and the back-
ground undergo smooth non-linear deformation. The results of applying [20] show that
when motion varies smoothly within an object, global model methods fail.

6 Discussion

The occlusion detector we have presented is useful for extracting motion boundaries.
Since we do not make any assumption regarding the color or texture properties of ob-
jects, or about the geometric properties of the motion, our algorithm works well on
natural video sequences where these assumptions cannot be made.

Although our algorithm uses precomputed optical flow, it is only used for estimating
the derivatives, and motion properties are not inferred from it. The algorithm is there-
fore not sensitive to the quality of the optical flow estimation, especially in textureless
regions where optical flow estimation is hard.

The algorithm relies mainly on background features which disappear and reappear
as a result of occlusion. These features may be sparse and still indicate the location of
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motion boundaries, as the algorithm processes the data in multiple scales. As opposed
to algorithms that rely on motion estimation, our algorithm usually does not require any
texture on the occluding object.

Since occlusion is the main cue used by our algorithm, it works well when velocity
differences between moving objects are small, since features will still disappear due to
occlusion. Algorithms that rely on motion differences may find it hard to distinguish
between different objects in such cases.
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