In Proc. 10th IEEE International Conference of Computer Vision, Beijing, October 2005.

Realtime | BR with Omnidirectional Crossed-Slits Projection

Doron Feldman

Daphna Weinshall

School of Computer Science & Engeineering, Hebrew university, Jerusalem, Isragl 91904
{doronf, daphna} @cs.huji.ac.il

Abstract

The Crossed-Slits (X-Slits) projection can be used to gen-
erate new views of a scene from a sequence of perspective
images. Compared with other image-based rendering (IBR)
techniques, X-Slits image generation is simple and requires
a relatively small number of input images, which makes it
suitable for realtime IBR. In this paper we extend this model
to omnidirectional cameras and a circular slit. We show
how it can be used for realtime image-based rendering of
omnidirectional images, and how to optimize it for speed
and quality. We analyze the inherent geometric distortions
of the circular X-Slits projection, and describe a normal-
ization mechanism to reduce distortions, creating a realis-
tic virtual environment. Essentially the same mechanism is
used to augment the X-Slits images with artificial objects,
when using standard graphics tools which assume perspec-
tive projection.

1. Introduction

New view generation is an emerging application which can
benefit from both image-based techniques and graphics.
The traditional approach to new view generation is to ren-
der a 3D model of the scene from different viewpoints. Un-
less the model is known apriori, this approach requires the
recovery of the scene structure, which is a hard task. More-
over, the realistic synthesis of optical effects such as specu-
larity, reflections and transparency is an involved problem.

Another recent approach, called Image-Based Render-
ing (IBR), advocates the use of raw images instead of 3D
models. New views of the scene are generated based on a
sequence of images, without a model of the scene, by sam-
pling light rays. If the set of input images is dense, then the
rays necessary for the synthesized image can be sampled
from the input images, without knowledge about the scene
and without attention to optical effects. However, the in-
put images must be very precisely calibrated, and together
should contain all possible rays of the scene.

The set of all rays, as the plenoptic function [1], can be
reasonably represented as a four-dimensional function. Us-
ing the full plenoptic function would require a very large
amount of input data to produce synthetic views with good

quality. The amount of data can be reduced using infor-
mation about the scene or with some restrictions on the
viewer’s movement [4,6-9]. However, a much larger re-
duction (from 4D to 3D) can be obtained by using X-Slits
camera models.

A Crossed-Slits camera [15] is defined as a camera
where all rays intersect in two lines (“slits™) (rather than one
point, as in the perspective projection model). Each scene
point defines a plane with each of the slits, and the inter-
section of these planes is a line which passes through the
point and both slits — hence, each scene point has a single
ray passing through it.

The Crossed-Slits projection model offers another
method for image-based rendering. If, rather than gener-
ating perspective new views of the scene, we can settle for
X-Slits views, we can do IBR with a much smaller plenop-
tic function. Specifically, in [15] the input is taken from a
perspective camera moving sideways along a line, and thus
only a 3D subset of the 4D plenoptic function is sampled —
all rays that intersect the camera path. X-Slits views of the
scene can be rendered, with the horizontal slit at the input
camera path, and the vertical “virtual” slit moving with the
viewer. Generating X-Slits images from an input sequence
is now a simple matter of mosaicing strips of pixels, so it
can be done very efficiently. Although the images are not
perspective, the sense of depth and occlusions is realistic
and appealing.

In order to create a complete virtual environment, it is
necessary to have rays in all directions, which leads to the
choice of a circular camera path and panoramic perspective
cameras (see Fig. 1). We describe a setup in which a cali-
brated panoramic camera rotates off-axis in a circular path,
so the set of rays thus collected is sufficient for generating
X-Slits views with the vertical slit at any location inside the
circle [3,11-14]. This is described in Section 2.

Since X-Slits images are not perspective, they may ap-
pear distorted (as analyzed in [5]). The main difference
between X-Slits images and perspective images is that in
the former the aspect ratio of fronto-parallel surfaces is not
preserved, but rather it depends on depth. Thus scene ob-
jects may appear elongated or condensed depending on their
depth and the virtual slit’s location. This can be reduced by
normalization — the image is transformed so as to cancel

Figure 1: Spherical images. (a) An image from the input
sequence, as acquired with a panoramic lens. (b) The
same image in latitude-longitude representation of a
hemisphere. (c) An output spherical image.

these distortions for all objects on a chosen surface; as long
as this surface crudely approximates the scene structure, the
amount of distortions decreases. Essentially, normalization
provides a compromise between model-based and image-
based rendering: we render based on a partial set of in-
put rays, but approximate a perspective view using a coarse
model of the scene. This is discussed in Section 3.

The distortion analysis can be used for image augmen-
tation. Since IBR scenes are static, it is often desirable to
add virtual objects to the scene. When doing so, the ob-
jects must be rendered by the same projection model as the
image-based background, in order for them to blend into the
scene. In Section 4 we show how to modify the geometry
of the augmented objects to follow the distortions of the X-
Slits projection. This allows us to use perspective rendering
tools to augment the images, and still obtain consistent and
compelling scenes.

The supplementary material includes a walkthrough
video sequence demonstrating an image-based virtual en-
vironment with an augmented object.

2. Omnidirectional X-Slits Mosaicing

We adopt here the circular X-Slits camera model, in which
one of the slits is a circle in the X — Z plane, and the second

is a linear slit in the Y direction. In this case, each scene
point defines a plane with the linear slit, which intersects
the circular slit at two points, and thus each scene point has
two rays. Of the two intersections with the circular slit, we
choose the one that is closer to the scene point, and the cor-
responding ray is defined to be the unique ray through the
scene point (this is the “outgoing” ray, emanating out of the
circular slit). To complete the definition of the circular X-
Slits camera model, we choose the image surface to be the
sphere at infinity, meaning that the correspondence between
aray and a point in the image is defined only by the azimuth
and elevation angles. Such an image is onmidirectional, as
rays in all directions are imaged.

The input camera is a central camera, thus all the rays
captured by the camera pass through a single point (its
center of projection). Unlike regular perspective cameras
which sample these rays on a planar rectangle (the image
plane), our input central cameras sample the rays on a hemi-
sphere at the center of projection of each camera. Generat-
ing a new omnidirectional X-Slits view of the scene consists
of generating a spherical view from a chosen slit location,
i.e., an image of the rays passing through a virtual slit as
they intersect a sphere centered at a point on the slit.

The path of the input camera is assumed to be a circle of
radius 1 in the X — Z plane. The virtual slit is a vertical line
passing through the point e = (z., 0, z.), which is defined
to be the location of the virtual “eye”. With this definition,
moving around the scene is a matter of moving the virtual
slit and generating the X-Slits image corresponding to each
new position. The new view at each slit location is sam-
pled on the output sphere, centered around the virtual eye
e. By definition, each input pixel corresponds to an input
ray, that passes through one of the input camera positions
on the camera path.

Omnidirectional X-Slits rendering is done, as in the lin-
ear case, by means of mosaicing. Strips are taken from each
input image, and stitched together into a new image. The
strips are selected according to the location of the virtual
eye, and the result is a X-Slits image that looks as if it were
taken from that location.

Specifically, given a virtual slit location, we need to de-
termine which rays we should sample from which input
camera. Each input camera center c defines a plane I, with
the virtual slit; all the rays on this plane pass through the
virtual slit and a point on the circular slit (the camera center
c). Thus this plane includes all the rays that are sampled
from camera ¢ (no other ray through c will be used at the
current virtual slit location). The intersection of II. with the
input camera hemisphere is a meridian (see Fig. 2a). Thus,
each input camera contributes a strip of rays that lies on an
input meridian.

The sampled strip is pasted as a strip on the output
sphere. Since, by definition, II. passes through the cen-

virtual
dit

Figure 2: Omnidirectional X-Slits mosaicing.
(@) Overview: the rays passing through the virtual
slit and the input camera center form a plane of rays,
which intersects the input hemisphere in a meridian.
(b) Top view: determining which strip of pixels is
sampled from which input image.

ter of the output sphere e, its intersection with the output
sphere is also a meridian. Note, however, that the sampled
rays intersect the camera center c, and not the center of the
output sphere e.

It follows from the discussion above that meridians from
the input cameras are pasted as meridians in the output cam-
eras. Hence, it would be beneficial to use an image repre-
sentation that is based on latitude and longitude (Fig. 1b,c).
In this representation, the coordinates of a pixel are its lon-
gitude and latitude on the sphere, so each meridian on the
sphere is a column in the image. Generating omnidirec-
tional X-Slits images becomes a matter of mosaicing verti-
cal strips, as in linear X-Slits.

We now wish to determine which strip is sampled from
which input camera. Given a vertical slit passing through
e, let us define the polar coordinates d = /a2 + 22,
0. = arctan Z=. As can be seen from Fig. 2b (and triangle
geometry), for every 6,., the strip to paste at the 6, meridian
of the output sphere should be taken from the 6; meridian
of the input camera at .., where

0; = arcsin(dsin(f, — 6,))
6. = 6,—6; &)

false location

slit

(@) (b)

Figure 3: (a) Distortion: the object is seen at a different
elevation angle from the input camera and from the vir-
tual eye. (b) Normalization: cancelling out distortion by
correcting the elevation angle of the input ray, using a
normalization surface.

3. Distortion

We shall now analyze the nature of X-Slits distortions,
caused by the absence of a single center of projection.
Specifically, we will compare between X-Slits images cor-
responding to the model described above, and the regu-
lar perspective image corresponding to an omnidirectional
camera centered at e.

Recall that the plane of rays II. determined by (1) is the
same as if it were perspective projection, but the rays within
the plane do not intersect in e, but rather in the input cam-
era centers, which are different for each plane II.. A scene
point p that is seen at some elevation angle ¢,. by the input
camera, would be seen at a different elevation angle ¢ by
the virtual eye e (see Fig. 3a). Without correcting the eleva-
tion angle of each ray, p would appear shifted vertically at
a false location (Fig. 4a).

In order to cancel out this distortion, we need to deter-
mine the correct elevation angle for each input ray, estimat-
ing how the scene point would have been seen from e. This
would produce a correct perspective view of the scene, but it
requires a dense and accurate knowledge of the 3D structure
of the scene.

When accurate depth information is not available or hard
to obtain, we can still produce appealing images by using a
coarse estimation of depth. In general, we define a nor-
malization surface, which crudely approximates the scene
structure, and use it to reproject the rays before pasting them
into the mosaic. This allows us to generate images that look
compelling, without relying on an elusive depth map. The
normalization procedure is described next.

3.1. Normalization

In general, normalization is done by intersecting each sam-
pled ray with the normalization surface, and reprojecting
this intersection through the virtual camera center e. Given
an input ray of azimuth 6,. and elevation ¢,., the input cam-
era’s position on the circle (denoted 6..) is determined by
(1), see Fig. 2. The sampled ray is defined as ¢ + Ar, where
c = (—siné,,0,cosf.)” denotes the input camera loca-
tion and r = (—sin6, cos ¢,.,sin ¢,., cos b, cos ¢,.)* de-
notes the ray direction (see Fig. 3b). Given a normalization
surface expressed implicitly as N(p) = 0, the intersection
isat min{A\|N(c + Ar) =0, > 0}.

To begin with, let us consider the case of a spherical nor-
malization surface. Thus, N (z,vy, z) = 22 + 3% + 22 — R?,
where R is the radius of the normalization sphere. Substi-
tuting ¢ + Ar in IV produces

Mrfr+2xac+cfe-R*=0)

Solving for A > 0 yields the intersection of the ray with
Nat A = -k +Vk2?2+ R?2 — 1, where k = cos ¢, cos ;.
From Fig. 3b one can see that the ray should be reprojected
through the virtual camera center at an elevation angle of

Asin ¢,

* t A A
¢, = arc an)\cosqu i

®)

where | = cosf; + dcos(f, — 0. —) is the distance be-
tween the slit and the input camera (see Fig. 2b). Note that
unnormalized omnidirectional X-Slits images correspond to
R — o0.

Normalization onto a sphere is appropriate for scenes
that lie at a relatively constant distance from the viewer,
e.g., a room viewed from its center. If the room is elon-
gated, however, the sphere provides a poor approximation
of the scene’s structure (Fig. 4b). In this case, normalizing
onto an ellipsoid may be more appropriate.

For an ellipsoid, let us redefine ¢ and r as homogeneous
coordinates in 73 with the forth coordinate set to 1 and 0,
respectively, and let N(p) = p? Qp where Q is the 4 x 4
matrix that describes the ellipsoid (or any quadric, for that
matter). The intersection is thenat A\ = —k + vk2 —m
where

c’'Qr _ c’Qc

r’'Qr rTQr

and the ray is reprojected according to (3). Fig. 4c provides
an illustrative example, and some comparisons between the
different normalization methods.

In general, one can use an estimated sparse depth map
to construct a general normalization surface, and use ray
tracing techniques to reproject the rays.

= @)

3.2. Measuring distortions

Since the normalization surface gives only a crude approx-
imation of the scene structure, it is not likely to eliminate
all distortions, and in some cases it may even introduce new
distortions.

~ Scene object
normalization
surface

distorféd < virtual
object dit

camera path Vg/téjaj

virtual
dit

(b)

Figure 5: Distortion under normalization. (a) Overview:
when the normalization surface is incorrect, reprojec-
tion makes the object appear shifted vertically. (b) Side
view: the aspect ratio distortion as it is related to the
distances between the input camera, the virtual eye, the
normalization surface and the object.

We measure distortions in X-Slits images by the change
in aspect ratio. In perspective projection, aspect ratio is pre-
served, and any rectangle in the scene that is parallel to the
image plane would be projected into a rectangle with the
same proportions between width and height. In X-Slits pro-
jection, this is usually not the case.

Normalization corrects this problem for objects that are
on the normalization surface, since they are projected as if
they were perspective. As we will show below, the farther
an object is from the normalization surface, the more dis-
torted its aspect ratio would be.

More formally, consider a point p on an object in the
scene. We would like to estimate the aspect ratio distortion

Figure 4: Normalization — a view of the synthesized scene without normalization (a), and with normalization using a
sphere (b) and an ellipsoid (c). Note how the aspect ratio is different for objects at different depths in the spherical

case. See video sequences in the supplementary material.

in a neighborhood around p in a normalized X-Slits image,
when p is not on the normalization surface.

The point p and its neighborhood is captured by rays
passing through the input cameras. These rays intersect the
normalization surface N at py, and are reprojected during
normalization (Fig. 5a). This normalization is correct only
for a point p on V; otherwise the object appears to be in a
false location.

As we shall see, aspect ratio distortion is not necessarily
constant, so we will estimate the local aspect ratio distor-
tion at p. Assume that the normalization surface around
pn is parallel to the object surface around p. Denote the
plane that contains the virtual slit and the ray through p by
IL, (Fig. 5b shows a view of II,). If the length on II, of
the patch around p is Ap, and the length of the patch as
it is projected on N is Apy, then it follows from triangle
similarity that

Ap dey
Apn den

®)

where d., is the distance on II, between c and the plane
tangent to the object at p, and d. is the distance between
c and the plane tangent to V at p . For the same reason, if
Ap* is the length of the false object, then

Ap* _ % den

— : 6
Ap dcp deN ()

Since the X-Slits projection is perspective in the horizon-
tal direction and only introduces distortions in the vertical
direction, and since normalization also deals only with the
vertical direction, there is no change in the horizontal direc-
tion in the way the patch around p is projected. Therefore,
the ratio p is the aspect ratio distortion that point p under-
goes when projected with a X-Slits projection normalized
by surface N (note the resemblance to the result in [15]).

Denoting the distance between the normalization surface
and p as D (hence dey = dep + D and dey = dep + D),
when the the virtual eye is behind the camera path (i.e.,

dep > dep), the aspect ratio grows with D: when D is pos-
itive — the object will appear taller, and vice versa (with no
change when D = 0). This is reversed when the virtual eye
is in front of the camera path.

When the normalization surface is not parallel to the
scene object and there is a difference in elevation angle be-
tween them, it can be shown that the aspect ratio becomes

AP dep den sinay; sin(ape—apN)

(")

dep den Sinap, sin(oapi—opN)

where oy, a0 are the angles between the object plane and
the input and reprojected rays, respectively, and o, is the
elevation angle difference between the object plane and the
normalization surface.

3.3 Discussion

As the distance between the scene and the normalization
surface decreases, so does the aspect ratio distortion. Thus,
in order to achieve correct aspect ratio, we need to approxi-
mate the scene as well as possible. However, this may lead
to other, often worse distortions.

Specifically, Equation (6) states that the aspect ratio is
a function of the distances between the normalization sur-
face, the scene surface, the virtual eye and the input camera.
Changes in these distances across the image cause changes
in aspect ratio. Therefore, strong changes in the distance
to the normalization surface may cause strong changes in
aspect ratio. If these changes correspond to changes in the
distance to the scene, then they cancel each other. How-
ever, it is usually hard to obtain a depth map that fits the
scene structure accurately, especially where depth changes
abruptly (e.g., at depth edges); in these areas in particu-
lar, abrupt changes in the normalization surface may cause
strong noticeable distortions. It is therefore often preferable
to use a coarse smooth approximation of the depth map,
with only moderate changes.

4. Augmented Reality

Generating realistic views of a precaptured scene in real-
time is useful for virtual reality. A user’s head motion may
be tracked and the appropriate views of the scene can be
generated and displayed at a reasonable rate. However, the
rendered scene is static, and it may be desirable to add vir-
tual objects to the scene, which would be rendered and su-
perimposed on the X-Slits image. We shall discuss only the
geometric issues of augmented reality with the X-Slits pro-
jection (a survey of augmented reality can be found in [2]).

Figure 6: Augmented Reality. (top) The image-based
views of the scene with augmented objects. (mid-
dle) The same scene from different viewpoints. (bot-
tom) Without vertical correction, the objects’ locations
are not correct. See also the video sequences in the
supplementary material.

p normalization
surface

Figure 7: Augmented Reality. Scene point p is repro-
jected into the virtual eye through point px on the nor-
malization surface, so if a virtual object is augmented at
p, it should be shifted vertically to appear correct.

Since the rendered scene is a X-Slits image, the added
object must also be projected according to the same projec-
tion model in order to appear consistent. When adding an
object in a certain place in the scene, it should appear as if
it was there when viewed from different positions, and this
can only be accomplished if the objects are projected using
the same projection model.

Most computer graphic renderers generate perspective
images. In order to use such engines for the rendering
of X-Slits images, we must first transform the augmented
objects in a manner similar to the reprojection discussed
above, so that when projected using the regular perspective
projection, they would appear correct in the X-Slits image.
As shown above, the distortions and normalization associ-
ated with the X-Slits projections are in the vertical direction
alone, so transforming the augmented objects is just a mat-
ter of vertical shifting.

More specifically, suppose an object is augmented at
point p, and the ray through p intersects the normalization
surface at p. In order for the object to look as if it was at
P, it must be on the reprojected ray through p v (see Fig. 7).
Shifting the object’s location vertically prior to imaging, so
that it is on this ray, would have this effect.

Given a point (z, y, z) where we wish to add an object,
and given aslitat X = z., Z = z., the azimuth of the ob-
jectis 6, = arctan =22 where Az = 2 —2z., Az = z — 2,
and the elevation angle relative to the input camera is

®)

Y
¢, = arctan 7
[above is the distance between the slit and the input camera
asin (3), and L = v/ Az? + Az? is the horizontal distance
between the slit and the object. It now follows that the dis-
torted location of the augmented object is y* = L - tan ¢,
where ¢ is given in (3). If we shift the object’s position

vertically to this height, it can be projected normally and
appear as if it were in the X-Slits image of the scene at the
desired location (Fig.6).

Since the distortion is variable, this transformation
should be applied separately to every point on the aug-
mented object. In practice, it is usually sufficient to move
the object according to just one point, e.g., the point where
it is supposed to touch the scene.

5. Implementation | ssues

Using the latitude-longitude representation of spherical im-
ages as discussed in Section 2, the rendering of omnidirec-
tional X-Slits images is just a matter of sampling columns
from images and pasting them in the output image, like lin-
ear X-Slits rendering. Normalization requires vertical trans-
formation of each pixel, which may be a costly calculation
for a realtime application. However, when the input camera
path is small in relation to the normalization sphere, ¢ is
nearly linear in ¢,., and a (much faster) linear transforma-
tion is sufficient.

The top and bottom pixels in each input column corre-
spond to elevation angles ¢, = +x. Substituting these
values in (3), we get the normalized elevation angles of
¢r = tarctan % so normalization can be done approxi-
mately by scaling each column according to this formula.

Displaying the omnidirectional X-Slits images with a
display device involves projecting the spherical image on
a plane. Graphic engines that handle perspective projection
are abundant, so it is useful to take advantage of such a sys-
tem, by mapping the rendered image on a sphere centered
about the virtual eye. Furthermore, if the sphere is approx-
imated as a mesh, the normalization described in Section 3
can be done on each vertex of the mesh quite efficiently,
instead of on each pixel of the X-Slits image.

The same graphic engine can be used for augmented ob-
jects. Provided their position is corrected according to (8),
they can simply be rendered along with the mesh.

6. Conclusion

We have shown how to use the circular Crossed-Slits pro-
jection for generating realistic new omnidirectional views
of a scene. Unlike other image-based methods, X-Slits im-
age generation can be done with a relatively small amount
of image data. Given an input sequence of images taken
by a panoramic camera rotating off-axis, one can gener-
ate omnidirectional views of the scene from different view-
points by means of simple mosaicing. We have shown how
data should be represented in order to perform this task ef-
ficiently.

Crossed-Slits images are inherently distorted, since they
are not perspective. We have analyzed these distortions and
described a method for eliminating them by using a coarse

approximation of the scene structure. The result is a method
that combines image-based rendering by ray sampling with
approximating a perspective view using a coarse 3D model.

Augmenting objects into the image-based rendered
scene requires the objects to obey the same geometric model
as the background. We have shown how the location of the
augmented objects can be shifted, so that they would appear
veridical when rendered by a perspective engine, especially
when viewed from different viewpoints.

References

[1] E. H. Adelson, J. R. Bergen. The plenoptic function and the
elements of early vision. In Computational Models of Visual
Processing, (pp. 3-20). MIT Press, 1991.

[2] R.T. Azuma. A Survey of Augmented Reality. In Presence:
Teleoperators and Virtual Environments 6, 4:355-385.

[3] H.Bakstein, T. Pajdla. Rendering Novel Views from a Set of
Omnidirectional Mosaic Images. In Workshop on Omnidirec-
tional Vision and Camera Networks 2003, June 2003.

[4] C. Buehler, M. Bosse, S. Gortler, M. Cohen, L. McMillan.
Unstructured lumigraph rendering. In Proc. of ACM SG-
GRAPH'’ 01, pp. 425-432, 2001.

[5] D. Feldman, A. Zomet. Generating Mosaics with Minimum
Distortions. In Proc. of IVR, Washington DC, July 2004.

[6] S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen. The lumi-
graph. In Proc. of ACM SIGGRAPH’ 96, pp. 43-54, 1996.

[7] S. Kang. A survey of image-based rendering techniques. In
Videometric VI, 3641:2-16, Jan 1999.

[8] M. Levoy, P. Hanrahan. Light fi eld rendering. In Proc. of
ACM SIGGRAPH' 96, pp. 31-42, 1996.

[9] L. McMillan, G. Bishop. Plenoptic modeling: An image-
based rendering system. In Proc. of ACM S GGRAPH’ 95,
pp. 39-46, Los Angeles, California, August 1995.

[10] T. Pajdla. Stereo with Oblique Cameras. 1JCV, 47(1):161-
170, Kluwer May 2002.

[11] S. M. Seitz. The Space of All Stereo Images In Proc. of
ICCV' 01, pp. 1:26—-33, Vancouver, Canada, July 2001.

[12] H.-Y. Shum, L. He. Rendering with concentric mosaics. In
Proc. of SGGRAPH' 99, pp. 299-306, August 1999.

[13] H.-Y. Shum, R. Szeliski. Stereo reconstruction from multi-
perspective panoramas. In Proc. of ICCV' 99, 1:14-21, 1999.

[14] T. Takahashi, H. Kawasaki, K. Ikeuchi, M. Sakauchi. Ar-
bitrary view position and direction rendering for large-scale
scenes. In Proc. of CVPR, pp. 296-303, Hilton Head, SC,
June 2000.

[15] A. Zomet, D. Feldman, S. Peleg, D. Weinshall. Mosaic-
ing New Views. The Crossed-Slits Projection. TPAMI,
25(6):741-754, 2003.

