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 COOPERATION IN A REPEATED GAME

 WITH RANDOM PAYMENT FUNCTION

 ILAN ESHEL AND

 DAPHNA WEINSHALL,* Tel-A viv Universitv

 Abstract

 A model of cooperation versus defection in a sequence of games is analysed under
 the assumptions that the rules of the game are randomly changed from one encounter
 to another, that the decisions are to be made each time anew, according to the
 (random) rules of the specific local game, and that the result of one such game affects
 the ability of a player to participate and thus, cooperate in the next game. Under
 plausible assumptions, it is shown that all Nash solutions of the supergame deter-
 mine cooperation over a non-degenerate range of rules, determining encounters of
 the prisoner's dilemma type.

 STOCHASTIC GAME; ESS; SUPERGAME; CONTINUOUS GAME; PRISONER'S DILEMMA

 1. Introduction

 In the one-shot prisoner's dilemma game described in Figure 1, the only Nash
 equilibrium is (D, D). This is the case also for any finite repetition of the one-shot game,
 a result which does not agree with experimental behavior as observed under similar
 circumstances (see Rapaport (1967)). However, in the infinitely repeated one-shot game,

 any individually rational payoff is a Nash equilibrium (folk theorem) and this result is
 consistent with many cases of observed cooperation in real such encounters. Yet, one
 never sees infinite series of encounters. Another drawback is that (D, D) is always a Nash
 equilibrium which leaves the problem of the evolution of cooperative behavior open.

 C D

 C 0.4, 0.4 0, 0.5

 D 0.5, 0 0.1, 0.1

 Figure 1

 To rationalize some measure of cooperation in the finitely repeated prisoner's
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 Cooperation in a repeated game with random payment function

 dilemma, Radner (1980) applied the e-equilibrium concept to show that an outcome
 close to the cooperative one can be obtained. Kreps et al. (1982) explained the observed
 cooperation by incomplete information. Yet a different approach applied the concept of

 bounded rationality as implemented by various computing machines such as finite
 automata (Neyman (1985), Rubinstein (1986)) or Turing machines (Megiddo and
 Widgerson (1986)). Concerning the second difficulty, Axelrod and Hamilton (1981)
 discussed the dynamics of a process through which a cooperative behavior can be
 established in an initially non-cooperative population.

 It seems to us, though, that one cause of the inconsistency between theory and
 observation may be in the discrepancy between the mathematical model of a repetition

 of the same game and the real situation, in which there might be a continuity of different

 potential future encounters between the two potential players. Thus, a crucial factor in

 the establishment of a tendency to cooperate may be the positive probability that a
 present opponent, if then alive, will cooperate in future encounters, not because he will

 remember and return in kind for kindness (a 'strategy' which is, by itself, disadvanta-
 geous when rare) but because with some positive probability, the realization of the
 encounter parameters will be such that cooperation will be in its favor. If so, an
 individual can increase its long-term (supergame) welfare by increasing his opponent's
 survival probability even by choosing a strategy which is slightly unfavorable for the
 short-term encounter. This is indeed so, where the encounter payment function is
 survival probability (or at least 'survival' as a potential player). But then, by symmetry,
 the range of situations (encounter parameters) for which cooperation is advantageous
 increases, the probability of future cooperation increases and the process perpetuates
 itself to a limit, as we see.

 In this work we consider, more specifically, a model in which the payment function of
 any next encounter is a random variable of a known (multidimensional) distribution.
 The relevant question regarding this more general assumption is not whether to
 cooperate or not but under what conditions (i.e., for what realization of the payment
 function) to cooperate. More specifically, the (pure) strategies of the game are measur-
 able sets of 'situation' under which the player is bound to cooperate. We assume, further,
 that a failure in one encounter decreases a player's chance to participate (and, therefore,
 to cooperate, if he is willing) in the next encounter, if occurs. Thus non-cooperation,
 even when locally advantageous, may be disadvantageous from a viewpoint of the
 supergame which is defined as a sequence of encounters of a random length.

 Under plausible assumptions it is shown that, except for some singular cases (to be
 determined), any Nash solution of the supergame determines cooperation over a non-
 degenerate set of situations (i.e., realizations of the payment function) of the prisoner's
 dilemma type. As it appears, the widely analysed case of repetition of the same
 encounter is one singular exception.

 The motivation for this work stems from a biological (or sociobiological) context, in
 which individuals interact repeatedly under various conditions, the payment function of
 an encounter is the survival probability to the next encounter and the payment function
 of the supergame is the survival probability to the next generation. We are, therefore,

 interested also in some stronger, dynamic properties of the Nash solutions, namely, in
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 I. ESHEL AND D. WEINSHALL

 evolutionary stability. For discussion of the evolutionary aspects of the model, the
 reader is referred to Eshel and Weinshall (1987).

 2. The model and its basic properties

 We start by defining a two-player symmetric supergame as a random-length sequence
 of 'events' (to be defined below) to which each of the players is exposed, if not having
 perished in some previous event. We assume that at each moment there is a fixed
 probability p > 0 of some future event occurring, independently of past events. If the

 two players are alive, an event becomes a symmetric 2 X 2 encounter, in which each
 player has two alternative strategies, say 'cooperate' or 'defect'. The outcome of
 the encounter is the survival probabilities of the two players in that encounter, given

 by the matrix

 cooperate defect

 cooperate

 defect

 Xi, X, X3, X2

 X2, X3 X4, X4

 wherein the parameters X= (X,, *, X4) are random variables drawn from the four-
 dimensional distribution F, independently of the past.
 We further assume that if only one of the players is present at the time of an event,

 then his probability of surviving it is equal to the one he would achieve with the lack of

 cooperation, say X4, independently of the strategy. (With minor technical difficulties,

 though, most results of this work can be extended to the situation in which this survival

 probability attains any value smaller than X,.) By choosing the term 'cooperation' for the
 first strategy, however, we mean that

 (2. a) X,>X3 and X2>X4

 (i.e., by cooperating, a player always helps his opponent)

 xm + x3 (2. b) X4 < X 2

 (i.e., mutual cooperation is always in the Pareto's optimum of the encounter), and

 (2.1c) X2 >X3

 (i.e., if only one player defects, then his reward will be higher than that of his cooperating

 opponent).
 We assume a positive probability for encounters of the prisoner's dilemma type, i.e.:

 (2.2) p(D) > 0 where D = {X IX2> XI > X4> X3}.

 We also assume, however, a positive probability for encounters in which cooperation is
 of immediate self reward, i.e.,

 480
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 (2.3) p(R)>O where R = {X I X, X2; X2 3 X4}.

 We assume, moreover, that F has positive densityfover a convex set of parameters, Q,
 including at least part of the boundary (X I X = X2 > X3 = X4} between R and D.

 At each stage of the supergame each player possesses full knowledge of the present
 situation (i.e., about the realization a of X) as well as of the distribution F and the value

 p. However, we assume no memory so that a pure strategy is a measurable set G of
 realizations of X (game-matrices a) over which the player is bound to cooperate. A
 mixed strategy is a measurable function F: Q -* [0, 1], determining the probability F(a)

 that a player will cooperate in a given realization a E Q.
 If player i (i = 1, 2) chooses the strategy F,, then the survival probability of player 1

 during a single encounter is

 l(rF, r2) = fS {Fr(a)F2(a)a, + r,(a)(l - (a))a3

 (2.4) + (1 - F,(a))F2(a)a2 + (1 - Fr,(a))(1 - F2(a))a4}dF(a).
 The survival probability of player 2 is, by symmetry;

 (2.5) s2(rF, r2) = sl(F2, Fr).

 Finally, the survival probability of any player at an event in which his opponent is
 missing is

 (2.6) s(F, -) = a4dF = EX4 = , say

 independently of the player strategy.

 Assuming now that, given the probabilities si = s (Fr, F2), the survival of player 1 and

 player 2 at a given encounter are independent random variables, the probability that
 both players survive a single encounter is, then, s5s2 and the probability that they both
 survive the entire sequence of games is, therefore,

 oo q
 (2.7) pKq(SIS2)K=

 K=0 1- ss2

 (Note that pKq is the probability of k encounters.) In the same way, the probability that

 only player 1 will survive a single encounter is s1(1 - s2). Hence, if both players do not
 survive till the end of the sequence, then, using the Bayes formula, we know that there is

 a probability s,(l - s2)/(1 - Ss2) that at one encounter, player 1 survives and player 2
 dies. Employing the stationary property of the sequence of games, we know that the
 survival probability of player 1 till the end of the sequence, conditioned on his
 opponent's death at one stage of the supergame is

 oo q (2.8) S pKq K= q
 KO 1 - P,

 The unconditioned survival probability of player 1 to the end of the sequence is,
 therefore
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 V(r, 2)= q +(1- )sls2) q
 1 -pS j2 \ 1 - pPSIS 1 -I S SS2 -

 where sIs2 and A are given by (2.4)-(2.6). By simple algebraic manipulation one
 readily gets

 (2.9) V(r,, F2) q (1 + pi)
 1 - A

 where

 (2.10) v = y(rF, F2) = O(s,, s2) = 1 - pss2

 Hence, the game is determined by the attempt of player 1 to choose a strategy F, that

 will maximize ,(F,, r2) against F2 and of player 2 to choose a strategy F2 that will
 maximize /(F2, Fr) against r,. It can readily be shown (see Section 4) that when the two

 strategies r, and r2 are sufficiently close (in the metric of F-averages) s, > A and
 therefore adl/ds, > 0 and da/ds2 > 0. Hence a rational behavior for both players is to seek

 to increase both s, and s2.

 3. Minimal and maximal Nash solutions of the general supergame

 Let r be a population strategy and let F* be equal to r on all points of Q except for an

 e-measure vicinity 0 of the point a E Q, at which r* = F + 6 where E > 0 is a small
 positive number and 6 is either positive or negative, provided - F(a) < < 1 - F(a).

 Denote

 (3.1) s = s,(r, F)= s2(F, F)= S {alF2 +(a2 +a3)r(l -F) + a4( - F)2}dF(a).

 Employing (2.4) one readily calculates the increment of the survival probability of
 player 1 at a single encounter:

 (3.2) Al = s(F*, F)- s,(F, F)= e{(a, - a2)(a)+ (a3 - a4)(1- F(a))} + o(e).

 The corresponding increment of the survival probability of player 2 is

 (3.3) A2 = s2(F*, F)- s2(F, ) = e{(al - a3)(a) + (a2 - a4)(1 - (a))} + o(E).

 From (3.2), (3.3) and (2.10) it follows that the increment of 0 is

 aq a0
 (3.4) A1 - -+ A2 a + o(e) = e(1 - ps2)-2A(x, F) + o(E)

 as, aS2

 where

 A(a, F) = (1 - Aps){(a, - a2)F(a) + (a3 - a4)(1 - F(a))}

 (3.5) + ps(s - A)((a, - a3)F(a) + (a2 - a4)(1 - F(a))}.
 The coefficient of increment A can be written as

 482
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 (3.6) A(a, F) = (1 - (a))A+(a, F) - (a, F)A-(a, F)

 where

 (3.7) A+(a, F) = ps(s - A)(a2 - a4) - (1 - ps)(a4 - a3)

 and

 (3.8) A-(a, ) = (1 - Aps)(a2 - a,) - ps(s - A)(a, - a3).

 A strategy F is stable against expansion (of cooperative behavior) if for almost all a
 with F(a) < 1, A(a, F) _ 0. It is stable against desertion (from cooperative behavior) if
 for almost all a with F(a) > 0, A(a, F) - 0. F is a Nash solution of the game if it is stable

 against both expansion and desertion. If it is strictly so, then r is a strict Nash solution
 and, therefore, an ESS. As an immediate result we get the following two propositions.

 Proposition 3.1. A strategy F is a population Nash solution of the game if and only if:
 (i) A(a, F) = A+(a, F) _ 0 for almost all a with F(a) = 0;
 (ii) A(a, F) = 0 for almost all a with 0 < F(a) < 1;
 (iii) - A(a, F) = A-(a, F) _ 0 for almost all a with F(a) = 1.

 Proposition 3.2. If F is a pure strategy with
 (i) A+ (a, F) < 0 for almost all a with F(a) = 0;
 (ii) A-(a, F) < 0 for almost all a with F(a) = 1;

 then r is an ESS.

 We now prove the following result.

 Proposition 3.3. Any population Nash solution F of the game determines full
 cooperation over a non-degenerate subset of the prisoner's dilemma range D.

 Proof. First, if F is a Nash solution then s = s,(F, F) > ., otherwise it follows from
 (2.10) that y/(F, F)< 0. But by unconditional defection, player 1 can guarantee s,l _
 with y/ _ 0, in which case F cannot be a Nash solution.

 Now, from (3.5) it follows that on the boundary set (al a = a2 > a3 = a4} of D

 (a, r) = ps(s -/A)(a, -a3)> 0

 and the continuity of A implies that A(a, r)> 0 for some open set in D. But from
 Proposition (3.1) it follows that F(a)= 1 for almost all a in this set, which completes
 the proof.

 Proposition 3.4. If F is stable against expansion (desertion) then there is a Nash
 solution r' - r (F' _ r).

 Proof. Assume F is stable against expansion. We define a decreasing set of strategies
 {rF}°_o0 which is stable against expansion in the following way:

 (i) ro = r;
 (ii) Assume that rF has been defined so that it is stable against expansion. For any

 a EQ consider the game a in which each player attempts to maximize his gain,
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 multiplied by 1- 2ps, plus that of his opponent, multiplied by ps, (s,- ), where
 Sn = s(Fr, Fn).

 In such a 2 X 2 game, the expected increment of the reward of a player switching from

 defection to cooperation, provided his opponent cooperates in probability Fr(a), is

 (1 - ;psn){(a, - a2)Fr(a) + (a3 - a4)(1 - Fn(a))}

 (3.5) + psn(s - I){(a, - a3)rT(a) + (a2 - a4)(1 - F(a))} = A(a, F)

 (see (3.5)). But since Fr is stable against expansion, we know that either Fn(a)= 1 or
 A(a, ,) < 0. In either case it follows from (3.5)' that a best strategy (probability of
 cooperation) x against F,(a) in the local game described above must be smaller than or
 equal to Fr(a) (in a non-singular case it is either x = FT(a) or x = 0).

 As a general property of 2 X 2 symmetric games we know (e.g., Eshel (1982)) that in
 this case there must be at least one ESS with cooperation probability smaller than or
 equal to Fr(a). We denote the smallest of these ESSs by F + ,(a). From the fact that the

 use of Fn +, against Fr +, is at least as good as the use of Fr against FT it follows that:

 psn(sn - A)[(1 - +(a))(a - a) + (a)(al - a3)]

 (3.9) --(1 - Apsn)[(1 - F,+(a))(a4 - a3) + Fn+,(a)(a2 - a,)] _ 0.

 But since n + i(X) Fn,(X) for all X E Q, it follows from (2.1) and (3.1) that Sn + < s.
 By replacing s, by s,n+ we therefore only decrease the left side of (3.9). Employing
 (3.5) we get

 (3.10) A(Fn+, a) 0 for all a with n+i(a)< 1.

 F +, is therefore stable against expansion.
 {rnF }, is a decreasing sequence of non-negative functions, hence FT n F'.
 By continuity argument, F' is also stable against expansion. It is stable against

 desertion from its very construction, so it is a Nash solution of the game.

 Definition. The set

 G = {a I F(a)> 0 for all Nash solutions F}

 is called the minimal range of cooperation.

 Proposition 3.5. (i) There is always a minimal Nash solution F* such that
 {a I r*(a)> 0 = G.
 (ii) There is a positive value x0 > 0 (including the possibility x0 = xo) such that

 (3.11) G= a <x4 =Gx, say.
 a2 -a4

 Proof. (i) Let F, and r2 be two Nash solutions of the supergame and let f =
 min(rF, F2). s = s(r) < min(s(r,), s(r2)). Let a GE. Without loss of generality assume
 Fr(a) rF2(a) hence F(a) = Fr(a). Since Fr(a) is a Nash solution we know that either
 Fr(a) = 1 or A(a, Fr) - 0 (F, is stable against expansion). But by differentiating the right
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 side of (3.5) with respect to s and employing (2.1), one can easily verify that it is
 increasing with s, as long as s > A. Hence, by replacing the term s(F,) in A(a, i,) by the
 equal or smaller term s(F) one gets A(a, f) and we get A(a, f) < A(a, F,) 0. f is,
 therefore, stable against expansion in a and this is true for all a E Q, hence f is stable
 against expansion.

 From Proposition (3.4) it therefore follows that there is a Nash solution F3 r =
 min(Fr, F2). Now, for all x EQ, denote F*(x) = Inf{F(a) | F is a Nash solution}. Indeed,
 f* = G. Let F*(a) < 1. From the definition of F* it is implied that there is a sequence
 (F, } of Nash solutions such that F,(a) -- *(a) as n - xc. We therefore conclude that
 there exists a decreasing sequence of Nash solutions (F,"* so that F* = F, and, for all
 n = 1, 2, ..., F*+, min{Fr*, r,+}.

 Since {F,*} is a decreasing sequence of functions with F,* > F*, there exists a limit
 function

 F = lim F,*

 with F - F*. We also know

 F(a) = lim F *(a) = *(a).
 n - oc

 But for all n, F,* is a Nash solution and, therefore, stable against expansion. As a
 special case, it is stable against expansion at the point a. r*(a) < 1 and, therefore, for
 large enough n. F*(a) < 1 and we know that A(a, F*) < 0. By continuity argument
 A(a, F) _ 0. But F(a) = F*(a) hence, by employing (3.5) we get

 0 > A(a, F) = (1 - Aps)((a, - a2)F*(a) + (a3 - a4)(1 - F*(a))}

 (3.12) + ps(s - .){(a, - a3)*(a) + (a2 - a)(1 - F*(a))}

 where s = s(F). But F* _ F and, therefore, as we have seen, s* = s(T*) < s(F) = s and by
 replacing s by s* in the right side of(3.12) we obtain A(a, F*) _ 0.

 This is true for all a E Q with F*(a) < 1 and F* is, thus, stable against expansion. From
 Proposition (3.4) we now deduce that there exists a Nash solution F** _< *, but, from
 the definition of F*, F* F**, hence F** = F* is a Nash solution, and this completes the
 proof of the first part of the proposition. Namely, there is a minimal Nash solution F

 with (a I(a)> 0} = G.
 (ii) Suppose there is no value x for which G = Gxo, then there are two points a E G,

 b E G such that

 a4- a3 b4- b3

 a2- a4 b2- b4

 F(b) = 0 (where F is the minimal Nash solution). Hence it is implied from Proposition
 3.1 that

 ps(s - A)(b2 - b4) - (1 - Aps)(b4 - b3) = A+(a, F) - 0.

 This, in turn, implies
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 (3.13) a4-a3 b4-b3 ps(s -)
 a2- a4 b2- b4 1 - Aps

 (Note that from the definition of cooperation we have assumed (2.1), so that always
 X2> X4, hence the denominators are positive.) Denote by F' the strategy obtained from
 r by determining F' = over an e-measure vicinity of a and F'= r elsewhere. For E > 0
 sufficiently small, the value s' = s(F') is sufficiently close to s so that it follows from
 (3.13) that

 (3.14) X4-x >ps'(s'-A)
 X2 - X4 1 - pS'

 for all x at the e-vicinity of a. Moreover, since F' rF with strict inequality on a positive
 measure set then s' = s(F')< s() = s and (3.14) is indeed true for all x G. Assume
 now F'(x) > 0 we know that either F'(x) = F(x) = 1 or else (since F(x) > F'(x) > 0 and F
 is a Nash solution) A(x, F) < 0. But since s' _ s, A(x, F') A(x, F), hence A(x, F') 0
 and F' is stable against expansion. It, therefore, follows from Proposition 3.4 that a Nash

 solution r" F' exists with F"(a) = 0 while F(a)> 0 contradiction to the assumption
 that r is a minimal Nash solution. We, thus, proved G = Gxo.

 Finally, since Go = {a l a4 _ a3} contains no point of the prisoner's dilemma type, it
 follows from Proposition 3.3 that x0 > 0 and this completes the proof.

 In a similar way, one can prove the following dual proposition.

 Proposition 3.5'. There is a maximal Nash solution F and a positive value y > 0
 such that

 (3.15) {a IF(a) = 1}=a a2a <o=H0, say,
 a I- a3

 (the maximal range of full cooperation).

 As it follows from Proposition 3.3 p(Hyo n D) > 0, i.e., Hy, includes a non-degenerate
 subset of the prisoner's dilemma range. As we see, however, it is possible that Hyo = Q
 and full cooperation is a Nash solution.

 4. The model of positive association

 In many classes of human (and, maybe, animal) conflicts, the temptation to defect is
 higher when one's opponent defects, i.e.

 (4.1) pX4- X3>X - X, = 1.

 We refer to (4.1) as the assumption of positive association. By simple algebraic
 manipulations, (4.1) can be written equivalently as,

 486
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 X4-X3>X- X ifX4> X3
 X2- x4 Xl - X3

 (4.2) x
 X,-X3X X- , ifX4< X3 (andX2< X)
 XI - X3 X2- X4

 with probability 1.
 Henceforth, for any measurable set G C Q we denote by G the pure strategy F,

 r(x)= 1G.

 Proposition 4.1. In a model of positive association, the minimal Nash solution is the
 pure strategy G,o itself, namely: cooperate if and only if (a4- a3)/(a2 - a4) < X.

 Proof. Let F be the minimal Nash solution. From Proposition 3.5 we know that
 (a I F(a) > 0} = Go. From the minimal property of F it also follows that

 (4~.~3) a4-a3<ps(s-A)
 a2- a4 - Aps

 for almost all a E G(o, otherwise we can build (in a similar way as in the proof of
 Proposition 3.5) a strategy F' which is equal to F everywhere except on an e-measure
 vicinity of the point a E Gxo which does not obey (4.3). We then define F'(x) = 0 over this

 vicinity and show that for a small enough e > 0, F' is stable against expansion and
 therefore there is a Nash solution F" _ F' < F contrary to the minimal property of F.

 Moreover, for any a E G it follows from (4.2) that either

 a2 - a, an --a3 <ps(s - A) (4.4a) a-a a- ps(s-
 a,-a3 a2-a4 1 - .ps

 or

 (4.4b) a2< a, and a4< a3.

 In both cases it follows from (3.8) that A-(a, F) < 0. From (4.3) and (3.7) it is implied
 that (for almost all aE G ) A+(a, F) _ 0, hence (from 3.6)

 (4.5) A(a, F) > 0 for almost all a E G,

 (since F(a)> 0 on Gx).

 From Proposition 3.1 we, thus, infer that F(a) = 1 for all a E G.o and the pure strategy G.o
 is, therefore, the minimal Nash solution.

 We shall see that Go is also a strict Nash solution and an ESS. We prove more than
 this. Let us extend the definition of G.o so as to denote, for any x > 0:

 (4.6) G={a4 <x}.
 Da2-ea a

 Denote also

 sx = s(Gx, G,)

 487
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 and

 (4.8) g(x) = s
 1 - psx

 Since Gxo is a Nash solution, it follows from (3.7) and Proposition 3.1 that

 a4- a3 psxo(sxo -) g()

 a2- a4 1 - psxo

 for almost all a ( Go. (4.3) can be written as (a4- a2)/(a2- a4) < g(x0) for almost all
 a E Go. From this and the definition of (4.6) it follows immediately that

 (4.9) g(xo)= xo.

 Proposition 4.2. Ifg(x) = x then Gx is an ESS.

 Proof. From the definition of Gx it follows that for almost all a 4 Gx

 a4- a3 PSx(Sx - A)
 >x =g(x)=

 a2 - a 1 - A.ps

 hence from (3.8) A+(a, Gx) < 0.
 On the other hand, for all a E Gx

 a2 a< a4- a3 px(Sx - A)

 a, - a3 a2 - a4 1 - ps

 or

 a2-al a4-a3 psx(s - A)
 a, - a2 a - a4 1 - Apsx

 and (employing (3.8)) A-(a, Gx) < 0. From Proposition 3.2 it, therefore, follows that G,
 is an ESS.

 As a special case we know that the minimal Nash solution Gxo is an ESS. We also
 conclude that x0 is the smallest positive solution of g(x) = x.

 We shall see now that the condition g(x) = x is sufficient but not necessary for Gx to be
 an ESS.

 Proposition 4.3. The pure strategy Gx is stable against expansion if and only if

 (4.10) g(x) x.

 Proof. Gx is stable against expansion if and only if

 a4-a3 >psx(sx -)g(x) = =, g(x)
 a2- a4 1 - ps

 for almost all a 4 Gx, i.e., for almost all a with (a4 - a3)/(a2 - a4) > x. This is true if and

 only if g(x) _ x.

 488

This content downloaded from 132.65.120.121 on Thu, 19 Oct 2017 10:58:42 UTC
All use subject to http://about.jstor.org/terms



 Cooperation in a repeated game with random payment function

 We use this result in order to demonstrate a partial set of all evolutionary stable

 strategies. Note that Go = (X I X4 X3} D R = (X IX4 X3; X2 _ Xi} hence p(Go) >
 p(R)> 0 and So = i + JJG(al - a4)dF(a) > i, since

 So= Jf a,dF(a)+ JfJ a4dF(a) = f f a,dF(a) + - i ffJ a4dF(a). J J Go J QJ Sl-Go Go Go

 This implies

 pSo(so - X) (4.11) g(0) = o( ) > 0.
 1 - ApSo

 Denote

 a4 - a3
 (4.12) sup ess X*

 aeF 2 a2- a4

 (including the case x* = oo).
 Employing the continuity of the distribution F(a), we know that g(x) is continuous,

 hence there are two possibilities:

 (i) g(x) > x for all 0 < x _ x* with, perhaps, an equality on a set of isolated points,
 (ii) g(x) < x over some interval [xl, x2], x, <x < x2.

 Proposition 4.4. In a model of positive association:
 (i) If g(x) > x for some range c < x < x*, (c < x*), then Q (full cooperation) is an

 ESS.

 (ii) If g(x) > x for all 0 < x < x* then Q is essentially the only ESS and also the only
 Nash solution of the game (i.e., for any other Nash solution F, p(a; F(a) < 1) = 0).

 (iii) If g(x)< x for some value 0 < x < x*, then there is a range (x,, x2) (including,
 perhaps, the case x2 = oo) such that Ge is an ESS for all xl -< < x2.

 Proof. (i) If g(x) > x for all c < x < x* then for all a E Q

 a2-a, a4-a 3

 a, -a a2- a4
 or

 a2-al a4-a3<
 a - a3 a2 -a4

 where

 x* < lim g(x) = PX -)
 X-O 1 - Apsx

 Employing (3.7) and Proposition 3.2 we, therefore, know that Q is an ESS. (Since
 A+(a, Q) > 0 and A-(a, Q) < 0 for all a EQ.)
 (ii) If g(x) > x for all 0 - x < x* then we know (Part (i)) that Q is an ESS. Also, from

 Proposition 4.3, we know that no strategy Gx # Q is stable against expansion and
 therefore Q is the minimal Nash solution, hence unique.
 (iii) Assume now g(x)< x for some 0 < x < x*, then there is an interval (xl, x3) so

 that g(xl) = x, and g(5) < ~ for all xj < , < X3.
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 I. ESHEL AND D. WEINSHALL

 For any a on the boundary of G,,

 a2 -a a4- a3
 =<x =g(xi).

 a, - a3 a2- a4

 But the boundary of G, is a compact set, hence, for X = x,

 (4.13) max a2al<g(
 bound(Ge) a -a3

 Both sides of (4.12) are continuous functions of 5, hence there is a value x2, x3 X2 >

 xl, such that (4.12) holds for all xl _< < 2 and it follows from (3.8) that A-(a, Ge) < 0
 for all a E Ge. But since x _< _ x3, g( ) < ( and we also know that A +(a, Ge) < 0 for all
 a 4 Ge (Proposition 4.3). From Proposition 3.2 it, therefore, follows that Ge is an ESS.

 Remarks. (i) Note that although the value x* itself is highly sensitive to minor
 changes in 'tail probabilities' ofF, the basic result is essentially robust in the sense that if

 full cooperation is the only ESS with the distribution F and if by minor tail-changes of F
 to F one increases the right side of (4. 11) from x* to x* (which may be much larger) then,

 by following the arguments of the proof one can readily verify that with F, any possible
 ESS (and there exists at least one) determines full cooperation except, maybe, to the
 event x* - e < x < *, which is rare even in terms of F.

 (ii) Except for a singular case we know that either g(x)> x for all 0 - x <x* or
 g(x) <x for some 0 < x <x*.

 In the singular case where g(x) > x for all 0 _ x <x* with equality holding on a
 discrete set of points xi, we know from Proposition 4.2 that Gx, is indeed an ESS
 (and even a strict Nash solution). Yet it is not the continuously stable property that, as we

 have suggested elsewhere (see Eshel (1983), Eshel and Motro (1981)) is more appropriate
 for population games with a non-discrete set of pure strategies. More specifically we
 know that if a large enough majority of the population plays exactly the strategy G, then
 it will be better off than any sufficiently small minority playing any other alternative

 strategy. However, for any e > 0 there are infinitely many pure strategies G which differ

 from Gx, on a set of measure less than e, so that if a large enough majority in the
 population will choose to play G, then it will be individually advantageous for any player

 to choose a strategy further off Gx, (i.e., different from GX, on a larger set). For example,
 for any xi <x <xi + 6 with 6 >0 sufficiently small we know that g(x)>x and,
 therefore, Gx is unstable with respect to expansion (it is stable with respect to desertion).

 We may thus conclude the main findings of this section as follows.

 Theorem. In a model of positive association, Q (i.e., unconditional cooperation) is
 either the only ESS (or at least, in a singular case, the only ESS which is continuously
 stable) or there is a continuity of ESSs G,, x,- < x2, all of which being continuously
 neutral to each other, and indeed, all determining full cooperation on a non-degenerated

 subset G,0 n D of encounters of the prisoner's dilemma type.
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 Remarks. (i) If the ratio (a4 - a3)/(a2 - a4) is not bounded over the support of F,
 then x* = oc and since

 pEXiE(Xi - X4)
 lim g(x)= < oo,

 1 - pEXiEX4

 Q is never an ESS. Hence, a continuity of ESSs {gx }x<x<x2 always exists.
 (ii) By the dual arguments mentioned in Proposition 3.5' one can readily show that if

 f is not an ESS, then in addition to the class {G}),<<,,2 there is always another
 continuous class of ESSs (Hy)}yi<y<y where

 a2 aa, 1
 al - a3

 Moreover, there is always a maximal Nash solution which is a pure ESS of the form

 H,^ Gxo C Hyo
 Gx0 can be interpreted as the strategy toward which the population is bound to evolve

 from absolute selfishness. H,^ can be interpreted as the strategy toward which the
 population is bound to collapse, starting from full (or unstably too high) cooperation.
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