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Abstract

Estimation of Gaussian mixture models is an
efficient and popular technique for clustering
and density estimation. An EM procedure is
widely used to estimate the model parame-
ters. In this paper we show how side informa-
tion in the form of equivalence constraints can
be incorporated into this procedure, leading
to improved clustering results. Equivalence
constraints are prior knowledge concerning
pairs of data points, indicating if the points
arise from the same source (positive con-
straint) or from different sources (negative
constraint). Such constraints can be gath-
ered automatically in some learning prob-
lems, and are a natural form of supervision
in others. We present a closed form EM
procedure for handling positive constraints,
and a Generalized EM procedure using a
Markov net for the incorporation of negative
constraints. Using publicly available data
sets we demonstrate that such side informa-
tion may lead to considerable improvement
in clustering tasks, and that our algorithm is
preferable to another suggested method using
this type of side information.

Keywords: Learning from partial knowledge, semi-
supervised learning, Gaussian mixture models, clus-
tering.

1. Introduction

We are used to thinking about learning from labels as
supervised learning, and learning without labels as un-
supervised learning, where ’supervised’ implies a need
for human intervention. However, in unsupervised
learning we are not limited to using data statistics
only. Similarly supervised learning is not limited to
using labels. In this work we focus on semi-supervised
learning using side-information, which is not given

as labels. More specifically, we use equivalence con-
straints between pairs of data points, which determine
whether each pair was generated by the same source,
or by different sources. Such constraints may be ac-
quired without human intervention in a broad class
of problems, and are a natural form of supervision in
other scenarios. In this paper we show how to incor-
porate equivalence constraints into the EM algorithm
(Dempster et al., 1977), in order to compute a gener-
ative Gaussian mixture model of the data.

Equivalence constraints are binary functions of pairs of
points, indicating whether the two points come from
the same source or from two different sources. We de-
note the first case as “is-equivalent” constraints, and
the second as “not-equivalent” constraints. As it turns
out, “is-equivalent” constraints can be easily incorpo-
rated into EM, while “not-equivalent” constraints re-
quire heavy duty inference machinery such as Markov
networks. We describe the derivations in Section 2.

The underlying motivation of our approach is the ob-
servation that the partition extracted by the EM al-
gorithm may not reflect the actual structure in the
data. Thus side information should ideally lead to so-
lutions which are more faithful to the desired results.
A simple example demonstrating this point is shown
in Fig. 1. Side information can also be used to improve
the convergence characteristics of the EM algorithm.

Our work is also motivated by the relative abundance
of equivalence constraints in real life applications. In a
broad family of applications, equivalence constraints
can be obtained without supervision. Maybe the
most important source of unsupervised equivalence
constraints is temporal continuity in data; for exam-
ple, in video indexing a sequence of faces obtained
from successive frames in roughly the same location
are likely to contain the same unknown individual.
Furthermore, there are several learning applications
in which equivalence constraints are the natural form
of supervision.

In workshop ’The Continuum from labeled to unlabeled data in machine learning and data mining’ (with ICML-2003).



(a) (b) (c)

Figure 1. An illustrative example of the importance of equivalence constraints: (a) data set with 3 classes; (b) the same
data set unlabeled. (c) additional side information in the form of ”is-equivalent” constraints: each pair of points (such as
the stars and the squares) are known to belong to the same class. The required partition is vertical, which is not evident
from the raw data density alone in (b). Hence EM cannot be expected to find the relevant clusters, as the likelihood of
finding horizontal clusters is similar to that of finding vertical ones. However, the pairs in (c) change the data probability
function, and now vertical partitions are more likely to be found by the EM.

One such scenario occurs when we wish to enhance a
retrieval engine using supervision provided by its users.
The users may be asked to help annotate the retrieved
set of data points, in what may be viewed as ’general-
ized relevance feedback’. The categories given by the
users have subjective names that may be inconsistent.
Therefore, we can only extract equivalence constraints
from the feedback provided by the users. In another
scenario we wish to learn from several teachers who
do not know each other and are not able to coordinate
among themselves the use of common labels. This can
be regarded as a ’distributed learning’ scenario. This is
the typical scenario when the database contains many
classes, which may not have a conventional name, e.g.,
a large facial image database. As in the former sce-
nario, the information obtained from the teachers is in
the form of equivalence constraints.

When equivalence constraints are obtained in a super-
vised manner, our method can be viewed as a semi-
supervised learning technique. Most of the papers in
the field of semi-supervised learning consider the case
of partial labels in which a large unlabeled data set is
augmented by a much smaller labeled data set (Miller
& Uyar, 1997; Szummer & Jaakkola, 2001; Nigam
et al., 1998). Specifically, in Miller and Uyar (1997) la-
bels are introduced into an EM formulation of a Gaus-
sian mixture model, leading to improvement of cluster-
ing results. Nigam et al. (1998) presents an algorithm
for text classification from labeled and unlabeled doc-
uments using EM.

There are several papers that use side information
in the form of equivalence constraints. The Relevant
Component Analysis algorithm (RCA) presented by
Shental et al. (2002) uses equivalence constraints to
learn a distance metric over the input space. RCA has

been shown to enhance clustering performance, and
can also be used in our EM derivations. Similar work
is presented by Xing et al. (2002). Phillips (1998)
represented pairs of data points by their vector dif-
ference, and multi-class classification in the original
space is mapped to a binary classification in the dif-
ference space; the main drawback of this approach is
the mapping which is ill-defined.

Wagstaff et al. (2001) introduced equivalence con-
straints into the K-means clustering algorithm. The al-
gorithm is closely related to our work since it allows in-
corporating both “is-equivalent” and “not-equivalent”
constraints. The algorithm partitions the data in the
following heuristic manner: In every K-means iteration
each point is assigned to the model which is closest to
it and complies with the constraints on all of the pre-
viously assigned points. If no such model is found the
algorithm fails to find a clustering solution.

By introducing the constraints into the EM algorithm
we gain significantly better clustering results. One
reason may be that the EM of a Gaussian mixture
model is preferable to K-means as a clustering algo-
rithm. More importantly, the probabilistic semantics
of the EM procedure allows introducing constraints in
a principled way, thus overcoming many drawbacks of
the heuristic approach. To support this claim, in Sec-
tion 3 we present comparative results, demonstrating
the very significant advantage of our constrained EM
algorithm over the constrained K-means algorithm us-
ing a number of data sets from the UCI repository and
a large database of facial images (Georghiades et al.,
2000).



2. Constrained EM: the update rules

A Gaussian mixture model (GMM) is a parametric sta-
tistical model which assumes that the data originates
from a weighted sum of several Gaussian sources. More
formally, a GMM is given by:

p(x|Θ) = ΣM
l=1αlp(x|θl),

where αl denotes the weight of each Gaussian, θl its
respective parameters, and M denotes the number of
Gaussian sources in the GMM. EM is a widely used
method for estimating the parameter set of the model
(Θ) using unlabeled data (Dempster et al., 1977). The
algorithm iterates between two steps:

• ’E’ step: calculate the expectation of the log-
likelihood over all possible assignments of data
points to sources.

• ’M’ step: maximize the expectation by differenti-
ating w.r.t current parameters.

Equivalence constraints modify the ’E’ step in the
following way: instead of summing over all possible
assignments of data points to sources, we sum only
over assignments which comply with the given con-
straints. For example, if points xi and xj form an “is-
equivalent” constraint, we only consider assignments
in which both points are assigned to the same Gaus-
sian source. On the other hand, if these points form a
“not-equivalent” constraint, we only consider assign-
ments in which each of the points is assigned to a dif-
ferent Gaussian source.

However, there is a basic difference between “is-
equivalent” (positive) and “not-equivalent” (negative)
constraints: While positive constraints are transitive
(i.e. a group of pairwise “is-equivalent” constraints
can be merged using a transitive closure), negative
constraints are not transitive. The outcome of this
difference is expressed in the complexity of incorpo-
rating each type of constraint into the EM formula-
tion. Therefore, we begin by presenting a formulation
for positive constraints (Section 2.1), and then present
a different formulation for negative constraints (Sec-
tion 2.2). We conclude by presenting a unified formu-
lation for both types of constraints (Section 2.3).

2.1. Incorporating positive constraints

Let a chunklet denote a small subset of data points
that are known to belong to a single unknown class.
Chunklets may be obtained by applying the transitive
closure to the set of “is-equivalent” constraints.

In this settings we are given a set of unlabeled data
points, and a set of chunklets. In order to write
down the likelihood of a given assignment of points to
sources, a probabilistic model of how chunklets are ob-
tained must be specified. We consider two such mod-
els:

1. Chunklets are sampled i.i.d, with respect to
the weight of their corresponding source (points
within each chunklet are also sampled i.i.d)

2. Data points are sampled i.i.d, without any knowl-
edge about their class membership, and only af-
terward chunklets are selected from these points.

The first assumption may be appropriate when chun-
klets are automatically obtained using temporal conti-
nuity. The second sampling assumption is appropriate
when equivalence constraints are obtained using dis-
tributed learning. When incorporating these sampling
assumptions into the EM formulation for a GMM,
different algorithms are obtained: Using the first as-
sumption we obtain closed-form update rules for all
of the GMM parameters. When the second sampling
assumption is used there is no closed-form solution for
the sources’ weights. In this section we therefore derive
the update rules under the first sampling assumption,
and at the end of the section we shortly discuss the
second sampling assumption.

More specifically, let p(x) =
∑M

l=1 αl pl(x|θl) de-
note our GMM. Each pl(x|θl) term is a Gaussian pa-
rameterized by θl = (µl, Σl) with a mixing coeffi-
cient αl. Let X denote the set of all data points,
X = {xi}

N
i=1. Let {Xj}

L
j=1, L ≤ N denote the distinct

chunklets, where each Xj is a set of points xi such that⋃L

j=1 Xj = {xi}
N

i=1 (unconstrained data points appear

as chunklets of size one). Let Y = {yi}
N
i=1 denote the

source assignment of the respective data-points, and

Yj = {y1
j . . . y

|Xj |
j } denote the source assignment of

the chunklet Xj . Finally, let EΩ denote the event {Y
complies with the constraints}.

The expectation of the log likelihood is the following:

E[log(p(X,Y|Θnew, EΩ))|XΘold, EΩ] (1)

=
∑

Y

log(p(X,Y|Θnew, EΩ)) · p(Y|X, Θold, EΩ)

where
∑

Y
stands for a summation over all assign-

ments of points to sources:
∑

Y
≡

∑M

y1=1 . . .
∑M

yN=1.
In the following discussion we shall also reorder the
sum according to chunklets:

∑
Y

≡
∑

Y1
. . .

∑
YL

,
where

∑
Yj

stands for
∑

y
j

1

· · ·
∑

y
j

|Xj |

.



First, using Bayes rule and the independence of chun-
klets, we can write

p(Y|X, Θold, EΩ) =
p(EΩ|Y,X, Θold) p(Y|X, Θold)∑
Y

p(EΩ|Y,X, Θold) p(Y|X, Θold)

=

∏L

j=1 δYj
p(Yj |Xj , Θ

old)
∑

Y1
. . .

∑
YL

∏L

j=1 δYj
p(Yj |Xj , Θold)

(2)

where δYj
≡ δ

y
j

1
,...,y

j

|Xj |

equals 1 if all the points in

chunklet i have the same source, and 0 otherwise.

Next, using chunklet independence and the indepen-
dence of points within a chunklet we see that

p(X,Y|Θnew, EΩ) =p(Y|Θnew , EΩ) p(X|Y, Θnew, EΩ)

=
L∏

j=1

αyj

N∏

i=1

p(xi|yi, Θ
new)

Hence the log-likelihood is:

log p(X,Y|Θnew , EΩ) (3)

=

L∑

j=1

∑

xi∈Xj

log p(xi|yi, Θ
new) +

L∑

j=1

log(αyj
)

Finally, we substitute (3) and (2) into (1); after some
manipulations, we obtain the following expression:

E(LogLikelihood) (4)

=
M∑

l=1

L∑

j=1

∑

xi∈Xj

log p(xi|l, Θ
new) · p(Yj = l|Xj , Θ

old)

+

M∑

l=1

L∑

j=1

log αl · p(Yj = l|Xj , Θ
old)

where the chunklet posterior probability is:

p(Yj = l|Xj , Θ
old) =

αold
l

∏
xi∈Xj

p(xi|y
j

i = l, Θold)
∑M

m=1
αold

m

∏
xi∈Xj

p(xi|y
j

i = m, Θold)

To find the update rule for each parameter, we differ-
entiate (4) with respect to µl, Σl and αl. We get the
following rules:

αnew
l =

1

L

L∑

j=1

p(Yj = l|Xj , Θ
old)

µnew
l =

∑L

j=1 X̄jp(Yj = l|Xj , Θ
old)|Xj |

∑L

j=1 p(Yj = l|Xj , Θold)|Xj |

Σnew
l =

∑L

j=1 Σnew
jl p(Yj = l|Xj , Θ

old)|Xj |
∑L

j=1 p(Yj = l|Xj , Θold)|Xj |

for Σnew
jl =

∑
xi∈Xj

(xi − µnew
l )(xi − µnew

l )T

|Xj |

where X̄j denotes the sample mean of the points in
chunklet j, |Xj | denotes the number of points in chun-
klet j, and Σnew

jl denotes the sample covariance matrix
of the jth chunklet of the lth class.

As can be readily seen, the update rules above ef-
fectively treat each chunklet as a single data point
weighted according to the number of elements in it.

Let us consider briefly the second sampling assump-
tion. It can be shown that Eq. (4) becomes:

M∑

l=1

L∑

j=1

∑

xi∈Xj

log p(xi|l, Θ
new) · p(Yj = l|Xj , Θ

old)+ (5)

M∑

l=1

L∑

j=1

|Xj |log αl · p(Yj = l|Xj , Θ
old) −

L∑

j=1

log(
M∑

m=1

α|Xj |
m )

The difference lies in the last term, which can be in-
terpreted as a “normalization” term. It readily follows
that the update rule for µl and Σl remain the same,
but with

p(Yj = l|Xj , Θ
old)

=
(αold

l )|Xj |
∏

xi∈Xj
p(xi|y

j
i = l, Θold)

∑M

m=1(α
old
m )|Xj |

∏
xi∈Xj

p(xi|y
j
i = m, Θold)

The major difficulty lies in the calculation of the
sources’ weights, αl. In order to calculate αnew

l ,
we need to differentiate (5) under the constraint∑M

l=1 αl = 1. Due to the “normalization” term one
cannot derive a closed solution from (5), and as a re-
sult we must use a Generalized EM (GEM) scheme
where the maximum is obtained numerically.

2.2. Incorporating negative constraints

The probabilistic description of a data set using a
GMM attaches to each data point two random vari-
ables: an observable and a hidden. The hidden vari-
able of a point describes its source label, while the data
point itself is an observed example from the source.
Each pair of observable and hidden variables is as-
sumed to be independent of the other pairs. However,
negative equivalence constraints violate this assump-
tion, as dependencies between the hidden variables are
introduced.

Specifically, assume we have a group Ω = {(a1
i , a

2
i )}

P
i=1

of index pairs corresponding to P pairs of points that



are negatively constrained, and define the event EΩ =
{Y complies with the constraints}. Now

p(X,Y|Θ, EΩ) = p(X|Y, Θ, EΩ) p(Y|Θ, EΩ)

=
p(X|Y, Θ) p(EΩ|Y) p(Y|Θ)

p(EΩ|Θ)

Let Z denote the constant p(EΩ|Θ). Assuming sam-
ple independence, it follows that p(X|Y, Θ) ·p(Y|Θ) =∏N

i=1 p(yi|Θ)p(xi|yi, Θ). By definition p(EΩ|Y) =
1Y∈EΩ

, hence

p(X,Y|Θ, EΩ) =
1

Z
1Y∈EΩ

N∏

i=1

p(yi|Θ)p(xi|yi, Θ) (6)

Expanding 1Y∈EΩ
gives the following expression

p(X,Y|Θ, EΩ) (7)

=
1

Z

∏

(a1

i
,a2

i
)

(1 − δy
a1

i

,y
a2

i

)
N∏

i=1

p(yi|Θ)p(xi|yi, Θ)

As a product of local components, the distribution in
(7) can be readily described using a Markov network.
The network nodes are the hidden source variables and
the observable data point variables. The potential
p(xi|yi, Θ) connects each observable data point, in a
Gaussian manner, to a hidden variable corresponding
to the label of its source. Each hidden source node
holds an initial potential of p(yi|Θ) reflecting the prior
of the cluster weights. Negative constraints are ex-
pressed by edges between hidden variables which pre-
vent them from having the same value. A potential
over an edge (a1

i − a2
i ) is expressed by 1− δy

a1

i

,y
a2

i

(see

Fig. 2).

Figure 2. An illustration of the Markov network required
for incorporating “not-equivalent” constraints. Data
points 1 and 2 have a negative constraint, and so do points
2 and 3.

We derived an EM procedure which maximizes
log(p(X|Θ, EΩ)) entailed by this distribution. The up-
date rules for µl and Σl are still

µnew
l =

∑N

i=1 xip(yi = l|X, Θold, EΩ)
∑N

i=1 p(yi = l|X, Θold, EΩ)

Σnew
l =

∑N

i=1 Σ̂ilp(yi = l|X, Θold, EΩ)
∑N

i=1 p(yi = l|X, Θold, EΩ)

where Σ̂il = (xi −µnew
l )(xi −µnew

l )T denotes the sam-
ple covariance matrix. Note, however, that now the
vector of probabilities p(yi = l|X, Θold, EΩ) is inferred
using the net.

The update rule of αl = p(yi = l|Θnew, EΩ) is more
intricate, since this parameter appears in the normal-
ization factor Z in the likelihood expression (6):

Z = p(EΩ|Θ) =
∑

Y

p(Y|Θ)p(EΩ|Y) (8)

=
∑

y1

...
∑

yN

N∏

i=1

αyi

∏

(a1

i
,a2

i
)

(1 − δy
a1

i

,y
a2

i

)

This factor can be calculated using a net which is simi-
lar to the one discussed above but lacks the observable
nodes. We use such a net to calculate Z and differenti-
ate it w.r.t αl, after which we perform gradient ascent.
Alternatively, we can approximate Z by assuming that
the pairs of negatively constrained points are disjoint.
Using such an assumption, Z is reduced to the rela-
tively simple expression: Z = (1 −

∑M

i=1 α2
i )

P . This
expression for Z may be easily differentiated, and can
be used in the Generalized EM scheme. Although the
assumption is not valid in most cases, it is a reasonable
approximation in sparse networks, and our empirical
tests show that it gives good results.

2.3. Combining positive and negative

constraints

Both kinds of constraints can be combined in a single
Markov network by a rather simple extension of the
network described in the previous section. Assume we
have, in addition to the negative constraints, a set {ci}
of chunklets, where each ci is an index set of points
known to share the same label. Now the detailed form
of Eq. (7) becomes

p(X,Y|Θ, EΩ) =
1

Z

∏

ci

δyci

∏

(a1

i
,a2

i
)

(1 − δy
a1

i

,y
a2

i

)

·

N∏

i=1

p(yi|Θ)p(xi|yi, Θ)

where δyci
is 1 iff all the points in chunklet ci have the

same label. Since the probability is positive only when
the hidden variables of the chunklet points have identi-
cal values, we can replace those variables with a single



variable which states the source label of the chunklet.
Doing so for all the data points, we get a smaller set
of hidden chunklet variables H = {hi}

L
i=1. The origi-

nal negative constraints over Y are transformed into a
set of negative constraints over H, which we denote as

Ω̂ = {(â1
i , â

2
i )}

P
i=1. The probability can now be written

as

p(X,H|Θ, EΩ̂) =
1

Ẑ

∏

(â1

i
,â2

i
)

(1 − δh
â1

i

,h
â2

i

)

L∏

i=1

α
|hi|
hi

·

N∏

i=1

p(xi|hf(i), Θ)

where |hi| denotes the number of data points mapped
to hi.

The distribution above can be expressed by a Markov
network similar to the network from the previous sec-
tion, where every pair of data points related by a posi-
tive constraint share a hidden father node (see Fig. 3).

Figure 3. An illustration of the Markov network required
for incorporating “not-equivalent” and “is-equivalent” con-
straints. Data points 2, 3, 4 are positively constrained, and
so are points 5, 6. Data points 2, 3, 4 have a negative con-
straint with point 1 and with points 5, 6.

The EM procedure derived from this distribution is
similar to the one presented above, with some minor
changes in the normalizing constant Z. The incor-
poration of positive constraints in this network is in
accordance with the generic sampling assumption de-
scribed in the end of Section 2.1, as the data points are
assumed to be sampled i.i.d before the introduction of
the constraints.

The complexity of each EM round is dominated by the
inference complexity, which is O(M induced width(G))
by using the Jtree algorithm (Pearl, 1988). Hence,
in practice, the algorithm is limited to O(N) ”not-
equivalent” constraints. The general case with O(N 2)
constraints is NP-hard, as the graph coloring problem
can be reduced to it. To achieve scalability to large
sets of constraints two approximations are used: the
graph is replaced by a spanning tree, and the normal-
ization factor Z is approximated.

3. Experimental results

In order to evaluate the performance of our EM deriva-
tions and compare it to the performance of the con-
strained K-means algorithm presented by Wagstaff
et al. (2001), we tested our algorithms using several
data sets from the UCI repository. We simulated a
’distributed learning’ scenario in order to obtain side
information. In this scenario, we obtain equivalence
constraints using the help of N teachers. Each teacher
is given a random selection of K data points from the
data set, and is then asked to partition this set of
points into equivalence classes. The constraints pro-
vided by the teachers are gathered and used as equiv-
alence constraints. We compared the performance of
the following algorithms:

• K-means algorithm when no side information is
used.

• Constrained K-means (Wagstaff et al., 2001), us-
ing only positive equivalence constraints.

• Constrained K-means (Wagstaff et al., 2001), us-
ing both positive and negative equivalence con-
straints.

• EM of a Gaussian mixture model when no side
information is used.

• Our closed form EM algorithm when only positive
equivalence constraints are used.

• Our Markov network EM algorithm, using both
positive and negative equivalence constraints.

The number of constrained points was determined by
the number of teachers N and the size of the subset
K that they were each given. By controlling the prod-
uct NK we modified the amount of side information
provided to the different algorithms. Specifically, we
experimented with two conditions: using “little” side
information (approximately 15% of the data points
are constrained) and using “much” side information
(approximately 30% of the points are constrained).1

All algorithms were given initial conditions that did
not take into account the available equivalence con-
straints. The clustering obtained was evaluated using
a combined measure of precision P and recall R scores.
Specifically, the score we used was: f 1

2

= 2PR
R+P

The results over several UCI data sets are presented
in Fig. 4. Several effects can clearly be seen:

1on two of the datasets presented we used more side-
information, since the amounts described above showed
little or no improvement.
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Figure 4. Combined precision and recall scores (f 1

2

) of several clustering algorithms over 5 data sets from the UCI repos-

itory. Results are presented for the following algorithms: (a) K-means, (b) constrained K-means using only positive
constraints, (c) constrained K-means using both positive and negative constraints, (d) regular EM, (e) EM using positive
constraints, and (f) EM using both positive and negative constraints. Results are shown twice, using 15% of the data
points in constraints (left bars) and 30% of the points constrained (right bars). The results were averaged over 100
realizations of constraints. Also shown are the names of the data sets used and some of their parameters: N - the size of
the data set; C - the number of classes; d - the dimensionality of the data.

• As can be expected, the performance of the EM
algorithms is generally better than the perfor-
mance of the K-means algorithms. Specifically,
our constrained EM outperforms the constrained
K-means algorithm on all databases, and shows
substantial improvements over the baseline EM
as well.

• Introducing side information in the form of equiv-
alence constraints clearly improves the results of
both K-means and the EM algorithms. As the
amount of side-information increases, the algo-
rithms which make use of it tend to improve.

• Most of the improvement can be attributed to
the positive constraints, and can be achieved
using our closed form EM version. In most
cases adding the negative constraints contributes
a small but significant improvement over results
obtained when using only positive constraints.

It should be noted that most of the UCI data sets
considered so far contain two or three classes. Thus
in the ’distributed learning’ setting a relatively large
fraction of the constraints gathered were positive. In

Figure 5. Three images of the same person from the YaleB
data set.

a more realistic situation, when the number of classes
is large, we are likely to gather much more negative
constraints than positive constraints. This is an im-
portant point in light of the results in Fig. 4, where
the major boost in performance was due to the use of
positive constraints.

In order to test the case of a data set with many classes
we conducted the same experiment using a subset of
the yaleB facial image dataset (Georghiades et al.,
2000) which contains a total of 640 images, including
64 frontal pose images of 10 different subjects. In this
database the variability between images of the same
person is due mainly to different lighting conditions.
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Figure 6. combined precision and recall scores of several
clustering algorithms over the YaleB face data set. The
results are presented using the same format as in Fig. 4.
Percentage of data in constraints was 50% (left bars) and
75% (right bars). Results presented are averaged over more
than 1000 realizations of constraints. It should be noted
that when using 75% of the data in constraints the con-
strained K-means algorithm failed to converge in more than
half of its runs.

We automatically centered all the images using opti-
cal flow. Images were then converted to vectors, and
each image was represented using the first 60 PCA co-
efficients. The task was to cluster the facial images
belonging to these 10 subjects.

Some example images from the data set are shown in
Fig. 5. Due to the random selection of images given
to each of the N teachers, most of the constraints ob-
tained were negative constraints. Our results over this
data set are summarized in Fig. 6. As can be seen,
even though there was only a small number of positive
constraints, our algorithms substantially outperformed
the regular EM algorithm.

4. Discussion and Concluding Remarks

We have presented several variants of the EM al-
gorithm which incorporate equivalence constraints.
When using only positive constraints, we provided an
efficient closed form solution for the update rules, and
demonstrated that using positive constraints can sig-
nificantly boost clustering performance. When nega-
tive constraints are added, the computational cost in-
creases, a Markov network is used as an inference tool,
and we must defer to approximations of the source
weights update rules. Still, using negative constraints
also boosts performance over results obtained by our
positive constraints EM variant.

We have explored several other techniques of learning
from equivalence constraints (Hertz et al., 2002; Shen-
tal et al., 2002). Specifically we presented the RCA al-
gorithm which uses positive equivalence constraints to

compute a Mahalanobis metric. We have shown, that
RCA improves the performance of metric based clus-
tering algorithms. In most cases when RCA is used in
conjunction with the EM algorithms presented here, it
further boosts their performance.
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