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Abstract

Density estimation with Gaussian Mixture Models is a popglener-
ative technique used also for clustering. We develop a fwarie to
incorporate side information in the form efjuivalence constraints into
the model estimation proceduréquivalence constraints are defined on
pairs of data points, indicating whether the points arisenfthe same
source (positive constraints) or from different sourcesg@tive con-
straints). Such constraints can be gathered automaticatlyme learn-
ing problems, and are a natural form of supervision in oth& the
estimation of model parameters we present a closed form Elkpiure
which handles positive constraints, and a Generalized Edaquture us-
ing a Markov net which handles negative constraints. Usinlgliply
available data sets we demonstrate that such side infamedin lead to
considerable improvement in clustering tasks, and thagtgorithm is
preferable to two other suggested methods using the sameofygide
information.

1 Introduction

We are used to thinking about learning from labels as supedviearning, and learning
without labels as unsupervised learning, where 'supetVigeplies the need for human
intervention. However, in unsupervised learning we ardingted to using data statistics
only. Similarly supervised learning is not limited to usiladpels. In this work we focus
on semi-supervised learning using side-information, Whgnot given as labels. More
specifically, we use unlabeled data augmenteadpyvalence constraints between pairs
of data points, where the constraints determine whethdr pat was generated by the
same source or by different sources. Such constraints magcdpgired without human
intervention in a broad class of problems, and are a natarai bf supervision in other
scenarios. We show how to incorporatgivalence constraintsinto the EM algorithm [1],
in order to fit a generative Gaussian mixture model to the.data

Density estimation with Gaussian mixture models is a papgknerative techniques,
mostly because it is computationally tractable and ofterpces good results. However,
even when the approach is successful, the underlying asmunsi.e., that the data is
generated by a mixture of Gaussian sources) may not be gasiified. It is therefore
important to have additional information which can steer @MM model estimation in
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the “right” direction. In this paper we propose to incorperaquivalence constraints into
an EM parameter estimation algorithm. One added value mayfaster convergence to a
high likelihood solution. Much more importantly, the comagtts change the GMM likeli-
hood function and therefore may lead the estimation praeetuchoose a better solution
which would have otherwise been rejected (due to low reddikelihood in the uncon-
strained GMM density model). Ideally the solution obtaiméth side information will be
more faithful to the desired results. A simple example destrating this point is shown in
Fig. 1.

comtined
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Figure 1:lllustrative examples for the importanceesfuivalence constraints. Left: the data set con-
sists of 2vertically aligned classes - (a) given no additional information, the EM altjoni identifies
two horizontal classes, and this can be shown to be the maximum likelihdotico (with log likeli-
hood of—3500 vs. log likelihood of—2800 for the solution in (b)); (b) additional side information in
the form of equivalence constraints changes the probghilitction and we get a vertical partition as
the most likely solution. Right: the dataset consists of thasses with partial overlap - (c) without
constraints the most likely solution includes twon-overlapping sources; (d) with constraints the
correct model with overlapping classes was retrieved amtist likely solution. In all plots only the
class assignment of noveth-constrained points is shown.

Equivalence constraints are binary functions of pairs of points, indicating whettres two
points come from the same source or from two different sauréée denote the first case
as “is-equivalent” constraints, and the second as “notvatgnt” constraints. As it turns
out, “is-equivalent” constraints can be easily incorpeddhto EM, while “not-equivalent”
constraints require heavy duty inference machinery sudheakov networks. We describe
the derivations in Section 2.

Our choice to use equivalence constraints is motivated éyetative abundance efjuiv-
alence constraints in real life applications. In a broad family of applicatigrguivalence
constraints can be obtained without supervision. Maybe the most impogaurce of un-
supervisedequivalence constraints is temporal continuity in data; for example, in video
indexing a sequence of faces obtained from successive $ramneughly the same location
are likely to contain the same unknown individual. Furtherej there are several learning
applications in whicleguivalence constraints are the natural form of supervision.

One such scenario occurs when we wish to enhance a retriegalesusing supervision

provided by its users. The users may be asked to help anribtatetrieved set of data
points, in what may be viewed as 'generalized relevancebiaeld. The categories given
by the users have subjective names that may be inconsistesrtefore, we can only extract
equivalence congraints from the feedback provided by the users. Similar things bapp

a 'distributed learning’ scenario, where supervision igvided by several uncoordinated
teachers. In such scenarios, whauivalence constraints are obtained in a supervised
manner, our method can be viewed as a semi-supervisedrigaathnique. Most of the

work in the field of semi-supervised learning focused on teeof partial labels augment-
ing a large unlabeled data set [4, 8, 5].
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A few recent papers use side information in the forneepfivalence constraints [6, 7, 10].

In [9] equivalence constraintswere introduced into the K-means clustering algorithm. The
algorithm is closely related to our work since it allows fbetincorporation of both “is-
equivalent” and “not-equivalent” constraints. In [3] eepience constraints were intro-
duced into the complete linkage clustering algorithm. Imparison with both approaches,
we gain significantly better clustering results by introidigahe constraints into the EM al-
gorithm. One reason may be that the EM of a Gaussian mixtuidetris preferable as
a clustering algorithm. More importantly, the probabitissemantics of the EM proce-
dure allows for the introduction of constraints in a prinegbway, thus overcoming many
drawbacks of the heuristic approaches. Comparative seardtgiven in Section 3, demon-
strating the very significant advantage of our method overtwo alternative constrained
clustering algorithms using a number of data sets from thé t@@ository and a large
database of facial images [2].

2 Constrained EM: the update rules

A Gaussian mixture model (GMM) is a parametric statisticatiel which assumes that the
data originates from a weighted sum of several GaussiarcesuMore formally, a GMM

is given byp(z|©) = M, aup(z|6;), whereq; denotes the weight of each Gaussirits
respective parameters, and denotes the number of Gaussian sources in the GMM. EM
is a widely used method for estimating the parameter seteofitbdel ) using unlabeled
data [1]. Equivalence constraints modify the 'E’ (expectation computation) step, such that
the sum is taken only over assignments which comply with fliergconstraints (instead
of summing oveall possible assignments of data points to sources).

It is important to note that there is a basic difference betwés-equivalent” (positive)
and “not-equivalent” (negative) constraints: While piwsitconstraints are transitive (i.e.
a group of pairwise “is-equivalent” constraints can be redrgsing a transitive closure),
negative constraints are not transitive. The outcome afdfiference is expressed in the
complexity of incorporating each type of constraint inte M formulation. Therefore, we
begin by presenting a formulation for positive constra{f®sction 2.1), and then present a
different formulation for negative constraints (SectioR)2 A unified formulation for both
types of constraints immediately follows, and the detaistherefore omitted.

2.1 Incorporating positive constraints

Let achunklet denote a small subset of data points that are known to betoagsingle
unknown class. Chunklets may be obtained by applying thesitiiee closure to the set of
“is-equivalent” constraints.

Assume as given a set of unlabeled data points and a set okleltainin order to write
down the likelihood of a given assignment of points to sosyeeprobabilistic model of
how chunklets are obtained must be specified. We considesialo models:

1. Chunklets are sampled i.i.d, with respect to the weighthefr corresponding
source (points within each chunklet are also sampled.i.i.d)

2. Data points are sampled i.i.d, without any knowledge abweir class member-
ship, and only afterwards chunklets are selected from thesgs.

The first assumption may be appropriate when chunklets @oeratically obtained using
temporal continuity. The second sampling assumption is@pf@ate wheneguivalence
constraints are obtained usingdistributed learning. When incorporating these sampling
assumptions into the EM formulation for GMM fitting, differealgorithms are obtained:
Using the first assumption we obtain closed-form updatesrigeall of the GMM parame-
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ters. When the second sampling assumption is used therelesex-form solution for the
sources’ weights. In this section we therefore restrictdiseussion to the first sampling
assumption only; the discussion of the second samplingrgstson, where generalized EM
must be used, is omitted.

More specifically, lep(z) = Zf‘il a; pi(x|6;) denote our GMM. Eacly (x|6;) term is a
Gaussian parameterized By = (,ul ¥;) with a mixing coefficienty;. Let X denote the
set of all data pointsX = {z;}}¥,. Let {X; }] 1 L < N denote the distinct chunklets,

where eachX; is a set of points; such thalUj:1 X, = {a:i}fil (unconstrained data
points appear as chunklets of size one). Yet= {y;}, denote the source assignment

of the respective data-points, akig = {y} . ‘ i ‘} denote the source assignment of the
chunkletX ;. Finally, let Eq denote the ever{tY complies with the constrainis

The expectation of the log likelihood is the following:
Ellog(p(X,Y|0"", Bq))|X ©°', Ea] = Y _ log(p(X, Y|©"", Eq)) - p(Y|X, 0", Ea) (1)
Y

where) ", stands for a summation over all assignments of points tocesud _,, =

S ... _;. Inthe following discussion we shall also reorder the sugveding to
chunklets) vy =3y ... >0y, Wherezyj stands fOIZy{ ...Zy‘jxﬂ_

First, using Bayes rule and the independence of chunkletsam write

p(EQ ‘Ya X: @Old) p(Y‘Xa QOld)
Yoy P(EalY, X, 0d) p(Y|X, @ld)
[1}_, by, p(V;]X;,0%)

= - L old 2)
Z)q cee ZYL Hj:l dy; p(Y;|X;, ©°1)

wheredy, = 4 oy equals 1 if all the points in chunkléthave the same label, and 0

x5

p(Y[X, 0%, Eq) =

otherwise.

Next, using chunklet independence and the independenceitspvithin a chunklet we
see that

L N
p(X,Y|0"" Eq) =p(Y|0"" Eq) p(X|Y,0"" Eq) = H Qy; Hp(xi\yi,(a’““’)
j=1 i=1
Hence the log-likelihood is:
L L
log p(X, Y |0 Eq) = Z > log plmilyi, ©") + > log(ay,) 3)
j=1lz;€X; j=1

Finally, we substitute (3) and (2) into (1); after some maitagions, we obtain the following
expression:

L

E(LogLikelihood) = >N log p(xill, 07) - p(Y; = 1|X;, ©°%)

1 j=1z;€X;

M:

~

2
+ Zlogal p(Y; = 1|X;,0°7)

1 5=

M:

l

—_
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where the chunklet posterior probability is:
ap'? HziEXJ- p(mz‘yi =1, QOM)

old
p(Y; =11X;,0"%) = 57 :
S, a8 L e, paily] = m, 00

To find the update rule for each parameter, we differentitevith respect tqy,, ; and
a;. We get the following rules:

L
1
apr = = ST p(Y; = 11X;,07
j=1

il

Y Xip(Y; = 11X;,0°4) X
iy p(Y; = 11X, ©014) X

new

>jo ShEp(Y; = 11X, 01X,

new  _ Jj=1
X =

> p(Y; = 11X, 0°14)| X

whereX; denotes the sample mean of the points in chunkleY ;| denotes the number of
points in chunkley, andX’ denotes the sample covariance matrix of tttechunklet of
thelth class.

As can be readily seen, the update rules above effectivedyf #ach chunklet as a single
data point weighed according to the number of elements in it.

2.2 Incorporating negative constraints

The probabilistic description of a data set using a GMM éigacto each data point two
random variables: an observable and a hidden. The hiddabl@pof a point describes its
source label, while the data point itself is an observed gtarfnom the source. Each pair
of observable and hidden variables is assumed to be indepeatithe other pairs. How-
ever, negativesquivalence constraints violate this assumption, as dependencies between
the hidden variables are introduced.

Specifically, assume we have a groQp= {(a},a?)}E., of index pairs correspond-
ing to P pairs of points that are negatively constrained, and defieeeventE, =
{Y complies with the constraints}. Now
p(X[Y,0) p(Ea|Y) p(Y|O)

p(Eal0)
Let Z denote the constant(Eq|©). Assuming sample independence, it follows that

ﬁ<X\Y,®) p(Y[0) = TIV, p(yi|©)p(a:ly:, ©). By definition p(Eq|Y) = lyep,,
ence

p(X,Y‘@, EQ) = p(X|Y, @, EQ) p(Y|®, EQ) =

N
1
p(X,Y|8, Bq) = lvera gp(yi\@)p(wilyu 9) (4)
Expandindly ¢ g, gives the following expression
N
1

p(X, Y0, Eq) = 7 H (1=6y,1,,2) Hp(yi|®)l9($i\yi,@) (5)

(a},a2) =

As a product of local components, the distribution in (5) barreadily described using a
Markov network. The network nodes are the hidden sourcebkas and the observable
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data point variables. The potentjalz;|y;, ©) connects each observable data point, in a
Gaussian manner, to a hidden variable corresponding talie of its source. Each hidden
source node holds an initial potentiali(fy;|©) reflecting the prior of the cluster weights.
Negative constraints are expressed by edges between hiddahles which prevent them
from having the same value. A potential over an edge(a?) is expressed by — Oy 1,0

(see Fig. 2).

Data
D‘_m] Point 3
Point 1

Figure 2: An illustration of the Markov network required for incorgding “not-equivalent” con-
straints. Data points and2 have a negative constraint, and so do posid3.

We derived an EM procedure which maximiZeg(p(X |0, Eq)) entailed by this distribu-
tion. The update rules fqr; andy; are still

e = Yic, zip(yi = 11X, 07, Eq) new _ Yiv, Silp(yi = 1IX, 07, Eo)

Zﬁil p(yl = ”X760ld7E9) Zf\il p(yl = ”Xﬂ@t)ldﬂEQ)
whereS;l = (z; — ppev)(z; — ppe)T denotes the sample covariance matrix. Note,

however, that now the vector of probabilitipg; = 1|X, 04, Eq) is inferred using the
net.

The update rule of; = p(y; = l|Onew, Fq) is more intricate, since this parameter appears
in the normalization factof in the likelihood expression (4):

N
Z =p(Eal®) =Y p(YIO)pEaY)=> .> [lew: [] @=0y,14.) 6
. 102

Y1 yn =1 (a},a?)

This factor can be calculated using a net which is similahtodne discussed above but
lacks the observable nodes. We use such a net to calctlatel differentiate it w.r.ty,
after which we perform gradient ascent. Alternatively, \va@ approximate’ by assuming
that the pairs of negatively constrained points are disjdilsing such an assumptiof,is

reduced to the relatively simple expressigh= (1 — Zf‘il a?)P. This expression fof
can be easily differentiated, and can be used in the GereddtiM scheme. Although the
assumption is not valid in most cases, it is a reasonableapation in sparse networks,

and our empirical tests show that it gives good results.

3 Experimental results

In order to evaluate the performance of our EM derivationd emmpare it to the con-
strained K-means [9] and constrained complete linkagelfgjrihms, we tested all 3 al-
gorithms using several data sets from the UCI repositoryeaeel multi-class facial image
database [2]. We simulated a 'distributed learning’ scieriarorder to obtain side informa-
tion. In this scenari@quivalence constraints are obtained by employindy’ uncoordinated
teachers. Each teacher is given a random selectidhddta points from the data set, and is
then asked to partition this set of points into equivalerasses. The constraints provided
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BALANCE N=625 d=4 C=3

BOSTON N=506 d=13 C=3

IONOSPHERE N=351 d=34 C=2

“little”

abcdefghi

“much”

abcdefghi

PROTEIN N=116 d=20 C=6

“little”

abcdefghi

“much”

abcdefghi

WINE N=168 d=12 C=3

“little”

abcdefghi

YaleB N=640, d=60, C=10

"much”

abcdefghi

“little”

“much”

“little”

“much”

"little"

"much"

abcdefghi abcdefghi abcdefghi abcdefghi abcdef abcdef

Figure 3: Combined precision and recall scorg’sil of several clustering algorithms over 5 data
sets from the UCI repository, and 1 facial image databas&eBYaThe YaleB dataset contained a
total of 640 images including 64 frontal pose images of 1fed#nt subjects. In this dataset the vari-
ability between images of the same person was due mainlyfferelit lighting conditions. Results
are presented for the following algorithms: (a) K-mean} cfinstrained K-means using only posi-
tive constraints, (¢) constrained K-means using both pes#nd negative constraints, (d) complete
linkage, (e) complete linkage using positive constraiffj;omplete linkage using both positive and
negative constraints, (g) regular EM, (h) EM using positieastraints, and (i) EM using both posi-
tive and negative constraints. In each panel results amsrshar two cases, usind 5% of the data
points in constraints (left bars) an80% of the points constrained (right bars). The results were av-
eraged over 100 realizations of constraints for the UCIs#dta and 1000 realizations for the YaleB
dataset. Also shown are the names of the data sets used aaabtimir parameters: N - the size of
the data set; C - the number of classes; d - the dimensiordlitye data.

by the teachers are gathered and useatjaival ence constraints. Each of the 3 algorithms
(constrained EM, constrained K-means, and constrainegaelinkage) was tested in
three modes: (i) basic algorithm without using any siderimfation, (ii) constrained ver-
sion using only positivequivalence constraints, and (iii) constrained version using both
positive and negativequivalence constraints. The results of the 9 algorithmic variants are
compared in Fig. 3.

In the simulations, the number of constrained points wasrdghed by the number of
teachersV and the size of the subsét given to each. By controlling the produdt K
we controlled the amount of side information provided to kx&rning algorithms. We
experimented with two conditions: using “little” side imfoation (approximately5% of
the data points are constrained) and using “much” side inébion (approximately0%

of the points are constrained). All algorithms were giveriahconditions that did not
take into account the availabdguivalence constraints. The results were evaluated using a
combined measure of precisidhand recallR scores:f% = %.

Several effects can clearly be seen in the results reportemi 3:

e The constrained EM outperformed the two alternative atbors in almost all
cases, while showing substantial improvement over thelinaseM. The one
case where constrained complete linkage outperformedfadr @lgorithms in-
volved the “wine” dataset. In this dataset the data lies imghHdimensional space
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(R*2) and therefore the number of model parameters to be estinbgtethe EM
algorithm is relatively large. The EM procedure was not ablét the data well
even with constraints, probably due to the fact that onlyd&@points were avail-
able for training.

¢ Introducing side information in the form afuivalence constraints clearly im-
proves the results of both K-means and the EM algorithmss &hnot always
true for the constrained complete linkage algorithm. As dneount of side-
information increases, performance typically improves.

¢ Most of the improvement can be attributed to the positivest@ints, and can be
achieved using our closed form EM version. In most casesngctiie negative
constraints contributes a small but significant improvehoser results obtained
when using only positive constraints.
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