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Abstract We present an efficient method for learning part-
based object class models from unsegmented images repre-
sented as sets of salient features. A model includes parts’
appearance, as well as location and scale relations between
parts. The object class is generatively modeled using a sim-
ple Bayesian network with a central hidden node containing
location and scale information, and nodes describing object
parts. The model’s parameters, however, are optimized to re-
duce a loss function of the training error, as in discriminative
methods. We show how boosting techniques can be extended
to optimize the relational model proposed, with complexity
linear in the number of parts and the number of features per
image. This efficiency allows our method to learn relational
models with many parts and features. The method has an
advantage over purely generative and purely discriminative
approaches for learning from sets of salient features, since
generative method often use a small number of parts and
features, while discriminative methods tend to ignore geo-
metrical relations between parts. Experimental results are
described, using some bench-mark data sets and three sets
of newly collected data, showing the relative merits of our
method in recognition and localization tasks.
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1 Introduction

One of the important organization principles of object recog-
nition is the categorization of objects into object classes.
Categorization is a hard learning problem due to the large
inner-class variability of object classes, in addition to the
“common” object recognition problems of varying pose and
illumination. Recently, there has been a growing interest in
the task of object class recognition (Fergus et al. 2003, 2005;
Agarwal et al. 2004; Opelt et al. 2004b; Csurka et al. 2004;
Leibe et al. 2004; Feltzenswalb and Huttenlocher 2005;
Fritz et al. 2005; Loeff et al. 2005; Dorkó and Schmid 2005)
which can be defined as follows: given an image, deter-
mine whether the object of interest appears in the image.
In many cases the localization of the object in the image is
also sought.

Following previous work (Fergus et al. 2003; Vidal-
Naquet and Ullman 2003), we represent an object using a
part-based model (see illustration in Fig. 1). Such models
can capture the essence of most object classes, since they
represent both parts’ appearance and invariant relations of
location and scale between the parts. Part-based models are
somewhat resistant to various sources of variability such as
within-class variance, partial occlusion and articulation, and
they are potentially convenient for indexing in a more com-
plex system (Lowe 2001; Leibe et al. 2004).

Part-based approaches to object class recognition can
be crudely divided into two types: (1) ‘generative’ meth-
ods which compute class models (Fergus et al. 2003, 2005;
Leibe et al. 2004; Feltzenswalb and Huttenlocher 2005;
Fei-Fei et al. 2003; Fritz et al. 2005; Loeff et al. 2005)
and (2) ‘discriminative’ methods which do not compute
class models (Opelt et al. 2004a, 2004b; Csurka et al. 2004;
Serre et al. 2005; Viola and Jones 2001; Dorkó and Schmid
2005). In the Generative approach, a probabilistic model of
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Fig. 1 (Color online) Dog image with our learnt part-based model
drawn on top. Each circle represents a part in the model. The parts
relative location and scale are related to one another through a hidden
center

the object class is learnt by likelihood maximization. After-
wards, the likelihood ratio test is used to classify new im-
ages. The main advantage of this approach is the ability to
naturally model relations between object parts. In addition,
domain knowledge can be incorporated into the model’s
structure and priors. Discriminative methods do not learn
explicit class models, and instead they seek a classification
rule which discriminates object images from background
images. The main advantage of discriminative methods is
the direct minimization of a classification-based error func-
tion, which typically leads to superior classification results
(NG and Jordan 2001). Additionally since these methods do
not explicitly model object classes, they are usually compu-
tationally efficient.

In our current work, we suggest to combine the two ap-
proaches in order to enjoy the benefits of both worlds: the
modeling power of the generative approach, with the ac-
curacy and efficiency of discriminative optimization. We
motivate this idea in Sect. 2 using general considerations,
and as a solution to some problems encountered in related
work. Our argument relies on two basic claims. The first
is that feature relations are powerful cues for recognition,
and perhaps indispensable cues for semantical recognition-
related tasks like object localization or part identification.
Clearly relations can be more naturally incorporated into
an explicit generative model than an abstract discrimina-
tor. On the other hand, we argue that generative learning
procedures are inadequate in the specific context of learn-
ing from unsegmented images, due essentially to computa-
tional and functional reasons. We therefore propose to re-
place maximum-likelihood optimization in the generative
learning, by the discriminative optimization of the classi-
fiers’ parameters. The initial description of the main tech-
niques and most of the recognition results has appeared in
conference proceedings (Bar-Hillel et al. 2005a, 2005b).

Specifically, we suggest a novel learning method for clas-
sifiers based on a simple part based model. The model, de-
scribed in Sect. 3, is a ‘star’-like Bayesian network, with
a central hidden node describing the objects location and
scale. The location and scale of the different parts depend

only on the central hidden variable, and so the parts are con-
ditionally independent given this variable. Such a model al-
lows us to represent part relations with low inference com-
putational complexity. Models of similar topology are im-
plicitly or explicitly considered in Lowe (2001), Leibe et al.
(2004), Fritz et al. (2005), Fergus et al. (2005). While us-
ing a generative object model, we optimize its parameters
by minimizing a loss over the training error, as done in dis-
criminative learning. We show how a standard boosting ap-
proach can be naturally extended to learn such a model with
conditionally independent parts. Learning time is linear in
the number of parts and the number of feature extracted per
image. Beyond this extension, we consider a wider family
of gradient descent optimization algorithms, of which the
extended boosting is a special case. Optimal performance
is empirically achieved using algorithms from this family
that are close to the extended boosting, but not identical to
it. The discriminative optimization methods are discussed in
Sect. 4.

Our experimental results are described in Sect. 5. We
compare the recognition and localization performance of
our algorithm to several state-of-the-art methods, using the
benchmark data sets of Fergus et al. (2003) and Agarwal
and Roth (2002). In the recognition task, our performance
is somewhere in the middle. Our algorithm is usually bet-
ter than generative methods which keep a 1-1 part-feature
correspondence (Fergus et al. 2003, 2005), since it is able
to learn larger models with selective features. It is also su-
perior to plain boosting (Opelt et al. 2004b) which neglects
spatial part relations. However, it is outperformed by Dorkó
and Schmid (2005) which uses a clever mixture of interest
detectors, and by Loeff et al. (2005) which allows a part to
be implemented by many image features. These two alterna-
tive techniques, however, are inherently ill-suited for local-
ization, given the fuzzy nature of location in their class mod-
els. In the localization task we use techniques introduced by
Feltzenswalb and Huttenlocher (2005) to efficiently scan the
image and find the exact location of one or more object in-
stances. Our localization experiments are carried with the
Caltech data (Fergus et al. 2003) and a localization bench-
mark (Agarwal and Roth 2002). The performance achieved
is comparable to the best available methods.

In order to further investigate and challenge our method,
we collected three more difficult data sets containing images
of chairs, dogs and humans, with matching backgrounds
(we have made this data publicly available online). We
used these data sets to test the algorithm’s performance un-
der harder conditions, with high visual similarity between
object and background, and large pose and scale variabil-
ity. We investigated the relative contribution of the appear-
ance, location and scale components of our model, and
showed the importance of incorporating location relations
between object parts. In another experiment we checked
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the contribution of using a large numbers of parts and fea-
tures, and demonstrated their relative merits. We experi-
mented with a generic interest point detector (Kadir and
Brady 2001), as well as with a discriminative interest point
detector (Gao and Vasconcelos 2004); our results show a
small advantage for the latter. Finally, we showed that the
classifiers learnt perform well against new, unseen back-
grounds.

2 Why Mix Discriminative Learning with Generative
Modeling: Motivation and Related Work

In this section we describe the main arguments for combin-
ing generative and discriminative methods in the context of
learning from unsegmented images. In Sect. 2.1 we review
the distinction between the generative and discriminative
paradigms, and assess the relative merits of each approach
in general. We next discuss the specific problem of learning
from unsegmented images in Sect. 2.2, and characterize it as
learning from unordered feature sets, rather than data vec-
tors. In Sect. 2.3 we claim that relations between features,
best represented in a generative framework, are useful in
the context of learning from unordered sets, and are specif-
ically important for semantical recognition-related tasks.
In Sect. 2.4 we argue that generative maximum-likelihood
learning is highly problematic in the context of learning
from unsegmented images. Specifically, we argue that such
learning suffers from inherent computational problems, and
that it is likely to exhibit deficient feature pruning character-
istics. To solve these problems while keeping the important
information of feature relations, we propose to combine the
generative treatment of relations with discriminative learn-
ing techniques. In Sect. 2.5 we briefly review how feature
relations are handled in related discriminative methods.

2.1 Discriminative and Generative Learning

Generative classifiers learn a model of the probability
p(x|y) of input x given label y. They then predict the input
labels by using Bayes rule to compute p(y|x) and choosing
the most likely label. With 2 classes y ∈ {−1,1}, the opti-
mal decision rule is the log likelihood ratio test, based on
the statistic:

log
p(x|y = 1)

p(x|y = −1)
− ν (1)

where ν is a constant threshold. The models p(x|y = 1) and
p(x|y = −1) are learnt in a maximum likelihood framework
(or maximum-a-posteriori when a useful prior is available).

Discriminative classifiers do not learn probabilistic class
models. Instead, they learn a direct map from the input
space X to the labels. The map’s parameters are chosen in

a way that minimizes the training error, or a smooth loss
function of it. With two labels, the classifier often takes the
form sign(f (x)), with the interpretation that f (x) models
the log likelihood ratio statistic.

There are several compelling arguments in the learn-
ing literature which indicate that discriminative learning is
preferable to generative learning in terms of classification
performance. Specifically, learning a direct map is consid-
ered an easier task than the reliable estimation of p(x|y)

(Vapnik 1998). When classifiers with the same functional
form are learned in both ways, it is known that the asymp-
totic error of a reasonable discriminative classifier is lower
or equal to the error achievable by a generative classifier
(NG and Jordan 2001). In addition, discriminative methods
are often simpler and faster then their generative counter-
parts (Ulusoy and Bishop 2005).

However, when we wish to design (or choose) the func-
tional form of our classifier, generative models can be very
helpful. When building a model of p(x|y) we can use our
prior knowledge about the problem’s domain to guide our
modeling decisions. We can make our assumptions more ex-
plicit and gain semantic understanding of the model’s com-
ponents. Specifically, the generative framework readily al-
lows for the modeling of parts relations, while providing
us with a rich toolbox of theory and algorithms for infer-
ence and relations learning. It is plausible to expect that a
carefully designed classifier, whose functional form is deter-
mined by generative modeling, will give better performance
than a classifier from an arbitrary parametric family.

These considerations suggest that a hybrid path may be
beneficial. More specifically, choose the functional form of
the classifier using a generative model of the data, then learn
the model’s parameters in a discriminative setting. While the
arguments in favor of this idea as presented so far are very
general, we next claim that when learning from images in
particular, this idea can overcome several problems in cur-
rent generative and discriminative approaches.

2.2 Learning from Features Sets

Our primary problem is object class recognition from un-
aligned and unsegmented images, which are binary labeled
as to whether or not they contain an object from the class.
A natural view of this problem is as a binary classification
problem, where the input is a set of features rather than an
ordered vector of features, as in standard learning problems.
This is an important distinction: vector representation im-
plicitly assumes that measurements of the ‘same’ quantities
are made for all data instances and stored in corresponding
indices of the data vectors. The ‘same’ features in differ-
ent data vectors are assumed to have the same fixed, simple
relation with the class label (the same ‘role’). Such implicit
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correspondence is often hard to find in bottom up image rep-
resentation, in particular when feature maps or local descrip-
tors sets are detected with interest point detectors.

Thus we adopt the view of image representation as a set
of features. Each feature has a location index, but unlike
an element in a vector, its location does not imply a pre-
determined fixed ‘role’ in the representation. Instead, only
relations between locations are meaningful. Such represen-
tations present a challenge to current learning theory and
algorithms, which are well developed primarily for vectorial
input.

A second inherent problem arises because the relevant
feature set representations usually contain a large number of
spurious features. The images are unsegmented, and there-
fore many features may not represent the object of interest
at all (but background information), while many other fea-
tures may duplicate each other. Thus feature pruning is an
important part of the learning problem.

2.3 Semantics and Part Relations

The lack of feature correspondence between images can be
handled in two basic ways: either try to establish correspon-
dence, or give it up to begin with. Without correspondence,
images are typically represented by some statistical prop-
erties of the feature set, without assigning roles to specific
image features. A notable example is the feature histogram,
used for example in Csurka et al. (2004), Chan et al. (2004),
Thureson and Carlsson (2004) and most of the methods in
Everingham et al. (2006). These approaches are relatively
simple and in some cases give excellent recognition results.
In addition they tend to have good invariance properties, as
the use of invariant features directly gives invariant classi-
fiers. Most of these approaches do not consider feature re-
lations, mainly because of their added complexity (an ex-
ception is Thureson and Carlsson 2004). The main draw-
back of this framework is the complete lack of image se-
mantics. While good recognition rates can be achieved, fur-
ther recognition related tasks like localization or part iden-
tification cannot be done in this framework, as they require
identifying the role of specific features.

The alternative research choice, which we adopt in the
current paper, seeks to identify and correspond features
with the same ‘role’ in different images. This is done ex-
plicitly in some generative modeling approaches (Fergus
et al. 2003, 2005; Feltzenswalb and Huttenlocher 2005;
Leibe et al. 2004), using the notion of a probabilistically
modeled ‘part’. The ‘part’ is an entity with a fixed role
(probabilistically modeled), and its instantiation in each im-
age is a single feature, to be chosen from the set of available
image features. Discriminative part based methods (Opelt
et al. 2004a, 2004b; Agarwal et al. 2004; Vidal-Naquet and
Ullman 2003), as well as some generative models (Loeff

et al. 2005), use a more implicit ‘part’ notion, and their de-
gree of commitment to finding semantically similar features
in images varies. The important advantage of identifying
parts with fixed roles over the images is the ability to per-
form image understanding tasks beyond mere recognition.

When looking in images for parts with fixed roles, fea-
ture relations (mainly location and scale relations) provide
a powerful, perhaps indispensable cue. Basing part identity
on appearance criteria alone is possible, and in (Opelt et al.
2004a; Serre et al. 2005; Dorkó and Schmid 2005) it leads
to very good recognition results. However, as reported in
(Opelt et al. 2004a), the stability of correct part identification
is low, and localization results are mediocre. Specifically, it
was found that typically less than 50% of the instantiating
features were actually located on the object. Instead, many
feature rely on the difference in background context between
object and non-object images. Conversely, good localization
results are reported for methods based on generative models
(Fergus et al. 2003, 2005; Leibe et al. 2004). In Agarwal
et al. (2004) a detection task is considered in a discrimina-
tive framework. In order to achieve good localization, gross
part relations are introduced as additional features into the
discriminative classifier.

2.4 Learning in Generative Models

We now consider generative model learning when the in-
put is a set of unsegmented images. In this scenario, the
model is learnt from a set of object images alone, and its
parameters are chosen to maximize the likelihood of the
image set (sometimes under a certain prior over models).
We describe two inherent problems of this maximum like-
lihood approach. In Sect. 2.4.1 we claim that such learn-
ing involves an essential tradeoff, where computational effi-
ciency is traded for weaker modeling which allows repetitive
parts. In Sect. 2.4.2 we review how this problem is handled
in some current generative models. In Sect. 2.4.3 we main-
tain that generative learning is not well adjusted to feature
pruning, and becomes problematic when rich image repre-
sentations are used.

2.4.1 The Computational Problem

Assume that the image is represented as a set of features (see
Sect. 2.2), that our generative model incorporates part rela-
tions, and that we are committed to a notion of ‘part’ instan-
tiated by a single image feature, as discussed in Sect. 2.3.
Likelihood evaluation and model learning under these con-
ditions are hard. Denote the feature set of image I by
F(I), and the number of features in F(I) by N . While
the input is a feature set, the generative model typically
specifies the likelihood P(V |M) for an ordered part vector
V = (f1, . . . , fP ) of P parts. The problem of learning from
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unordered sets is tackled by considering all the possible
vectors V that can be formed using the feature set.
Legitimate part vectors should have no repeated features,
and there are O(NP ) such vectors. Thus, the image like-
lihood P(I |M) requires marginalization1 over all such vec-
tors. Assuming uniform prior over these vectors, we have

P(I |M) =
∑

V =(x1,...,xP )∈F(I)P

xi �=xj if i �=j

P (V |M). (2)

Efficient likelihood computation in relational models is
only possible via the decomposition of the joint probabil-
ity using conditional independence assumptions, as done in
graphical models. Such decomposition specifies the proba-
bility as a product of local terms, each depending on a small
subset of parts. For a part vector V = (f1, . . . , fP )

P (V |M) =
∏

c

�c(V |Sc ) (3)

where Sc ⊂ {1, . . . ,P } are index subsets and V |S = {fi :
i ∈ S}. Using dynamic programming, inference and mar-
ginalization are exponential in the ‘induced width’ g of
the related graphical model, which is usually relatively low
(note that for trees, g = 2 only).

The summation in (2) does not lend itself easily to such
simplifications, however. We therefore make the following
approximation, in which part vectors with repetitive features
are allowed

P(I |M) =
∑

(x1,...,xP )∈F(I)P

xi �=xj for i �=j

∏

c

�c(V |Sc )

≈
∑

(x1,...,xP )∈F(I)P

∏

c

�c(V |Sc ). (4)

This approximation is essential to making efficient mar-
ginalization possible. If feature repetition is not allowed,
global dependence emerges between the features assigned
to the different parts (as they cannot overlap). As a result we
get global constraints, and efficient enumeration becomes
impossible.

The approximation in (4) may appear minor, which is in-
deed the case when a fixed, ‘reasonable’ part based model
is applied to an image. In this case, typically, parts are char-
acterized by different appearance and location models, and
part vectors with repetitive parts have low insignificant prob-
ability. But during learning, approximation (4) brings about
a serious problem: when vectors with feature repetitions are

1Alternatively, one may approximate the sum in (2) by a max operator,
looking for the best model interpretation in the image. This does not
affect the computation considerations discussed here.

Fig. 2 (Color online) A “star” graphical model. Peripheral nodes,
shown in blue, are related only via a hidden central node. Such a model
is used in our work, as well as in Fergus et al. (2005). If (i) feature rep-
etition is allowed (as in (4)), and (ii) model parameters are chosen to
maximize the likelihood of the best object occurrence, then all the pe-
ripheral nodes are optimized to represent the same part

allowed, learning may result in models with many repetitive
parts. In fact, standard maximum likelihood has a strong ten-
dency to choose such models. This is because it can easily
increase the likelihood by choosing the same parts with high
likelihood, over and over again.

The intuition above can be made precise in the simple
case in which a ‘star’ model is used (see Fig. 2) and the sum
over all hypotheses is approximated by the single best fea-
tures vector. In this extreme case, the maximal likelihood is
achieved when all the peripheral parts models are identical.
We specifically consider this model in Sect. 3 and prove the
last statement in Appendix 1. The proof doesn’t directly ap-
ply when a sum over all the feature vectors is used, but as
this sum is usually dominated by only a few vectors, part
repetition is likely to occur in this case too.

Thus, in conclusion, we see that in the ideal generative
framework, one needs to choose between computational ef-
ficiency and the risk of part duplication. One way to escape
this dilemma is by dropping the requirement that a part is
instantiated in a single image feature, as done in (Loeff et al.
2005). This, however, leads to a vaguer ‘part’ notion, with
lower semantic value. The alternative we suggest here keeps
the ‘part’ notion intact, and gives up generative optimization
instead.

2.4.2 How is This Computational Problem Handled:
Related Work

Several recent approaches use generative modeling for ob-
ject class recognition (Fergus et al. 2003, 2005; Fei-Fei et al.
2003; Holub et al. 2005; Feltzenswalb and Huttenlocher
2005; Loeff et al. 2005). In Fergus et al. (2003), Fei-Fei et al.
(2003), Holub et al. (2005) a full relational model is used.
The probability P((f1, . . . , fP )|M) in this model cannot be
decomposed into the product of local terms, due to the com-
plex probabilistic dependencies between all of the model’s
parts (in graphical models terminology the model is a sin-
gle large clique). As a result, both learning and recognition
are exponential in the number of model parts, which limits
the number of parts that can be used (up to 7 in Fergus et al.
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2003, 4 in Fei-Fei et al. 2003, 3 in Holub et al. 2005), and
the number of features per image (N = 30,20, up to 100 re-
spectively). In (Fergus et al. 2005) a decomposable model is
proposed with a ‘star’-like topology. This reduces the com-
plexity of recognition (i.e., the likelihood evaluation of an
existing model) significantly. However, learning remains es-
sentially exponential, in order to avoid part repetition in the
learnt model.

In contrast, the problem (as well as the feature prun-
ing problem, discussed in the next section) is completely
avoided in the case of learning from segmented images,
as done in Feltzenswalb and Huttenlocher (2005). Here the
input is a set of object images, with manually segmented
parts and manual part correspondence between images. In
this case learning is reduced to standard maximum likeli-
hood estimation of vectorial data. As stated above, Loeff
et al. (2005) avoid the computational problem by allowing
for each part to be implemented in many image features.

2.4.3 Feature Pruning

We argued in Sect. 2.2 that feature pruning is necessary
when learning from images. P , the number of parts in the
model, is often much smaller than the number of features
per image N . This is usually not the case in classical ap-
plications of generative modeling, in which data is typically
described as a relatively small feature vector.

When P � N , maximum likelihood chooses to model
only parts with high likelihood—often parts which are
highly repetitive in images, with repetitive relations. This
optimization policy has a number of drawbacks. On the one
hand, it introduces a preference for simple parts, as these
tend to have low variability through images, which gives
rise to high likelihood scores. It also introduces preference
for features which are frequent in natural images, whether
they belong to the object or not. On the other hand, there
is no explicit preference for discriminative parts, nor any
preference for feature diversity. As a result, certain aspects
of the object may be extensively described, while others are
neglected. The problem may be intuitively summarized by
stating that generative methods can describe the data, but
they cannot choose what to describe. Additional task related
signal, external to the data, is needed, and is most readily
provided by labels.

In Fergus et al. (2003), Fei-Fei et al. (2003), initial feature
pruning is obtained by using the Kadir and Bradey detector
(Kadir and Brady 2001), which finds relatively diverse, high
entropy regions in the image. Explicit preference is given to
features with large scale, which tend to be more discrimina-
tive. In addition, they limit the number of features per image
(N = 20,30). To some extent, the burden of feature pruning
is placed on the pre-learning feature detection mechanisms.
However, with such a small number of features per image,

objects do not always get sufficient coverage. In fact, learn-
ing is very sensitive to the fine tuning of the feature pruning
mechanism.

In Fergus et al. (2005), where a ‘star’-like decomposable
model is used, more parts and features are used in the gen-
erative learning experiments. Surprisingly, the results do not
show obvious improvement. Increasing the number of parts
P and features Nf does not typically reduce the error rates,
since many of the additional features turn out to be irrel-
evant, which makes feature pruning harder. In Sect. 5 we
investigate the impact that P and Nf have on performance
for models similar to those used by Fergus et al. (2005), but
optimized discriminatively. In our experiments extra infor-
mation (increased Nf ) and modeling power (increased P )
clearly lead to better performance.

2.5 Relations in Discriminative Methods

Many part based object class recognition methods are
mostly discriminative (Opelt et al. 2004b; Vidal-Naquet and
Ullman 2003; Ullman et al. 2002; Agarwal et al. 2004;
Dorkó and Schmid 2005). In most of these methods, spa-
tial relations between parts are not considered at all. While
some of these systems exhibit state-of-the-art recognition
performance, they are usually lacking in further, more se-
mantical tasks as localization and part identification, as de-
scribed in Sect. 2.3. In the ‘fragment based’ approach of
(Vidal-Naquet and Ullman 2003; Ullman et al. 2002) rela-
tions are not used, but when the same approach is applied
to segmentation, which requires richer semantics, fragment
relations are incorporated (Borenstein at al. 2004).

One way to incorporate part relations into a discrimina-
tive setting is used by the object detection system of Agar-
wal et al. (2004). The task is localization, and it requires
the exact correspondence and the identification of parts. To
achieve this, qualitative location relations between fragment
features are also considered as features, creating a very large
and sparse feature vector. Discriminative learning in this
very high dimensional space is then done using a specific
feature-efficient learning algorithm. The relational features
in this scheme are highly qualitative (for example, ‘fragment
a in to the left and bottom of fragment b’). Another problem
with this approach is that supervised learning from high di-
mensional sparse vectors is a hard problem, often requiring
dimensionality reduction to enable efficient learning.

In this context, our main contribution may be the de-
sign of a relatively simple and efficient technique for the
introduction of relational information into the discrimina-
tive framework of boosting. As such, our work is related
to the purely discriminative techniques used in Opelt et al.
(2004a, 2004b). In spirit, our work has some resemblance
to the work of (Torralba et al. 2004), in which relational
context information is incorporated into a boosting process.
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However, the techniques we use and the task we consider
are quite different.

2.6 Similar Approaches to the Generative-Discriminative
Combination

In our work, the generative-discriminative combination is
aimed at solving a very specific problem: how to allow the
efficient learning of part-based models with spatial part re-
lations. But when viewed more broadly, it is an instance of a
more general recent trend, trying to combine the representa-
tion advantage of generative models with the accuracy and
goal-oriented nature of discriminative ones. In many cases,
the combination is done by concatenating an initial genera-
tive stage, which provides the representation, with a second
discriminative stage for the actual classification. In Holub
et al. (2005) and Fritz et al. (2005), generative methods (pre-
viously presented in Fergus et al. 2003 and Leibe et al. 2004
respectively) are augmented with a discriminant SVM-based
second stage. This approach is shown to considerably en-
hance recognition (Holub et al. 2005) and localization re-
sults (Fritz et al. 2005). In these two examples the genera-
tive models include spatial relations. Other approaches use
a similar 2-stage procedure for a bag-of-features model (Li
et al. 2005; Dorkó and Schmid 2005), and obtain excellent
recognition results. In these approaches the set of object im-
age features is represented using a Gaussian mixture model,
followed by a discriminative procedure which selects infor-
mative Gaussian components and uses them for classifica-
tion.

In Holub and Perona (2005), Holub et al. present an ob-
ject recognition method which, like our proposed scheme,
relies on discriminative optimization of a generative model
based classifier. However, the proposed discriminative op-
timization does not solve the computational problem de-
scribed in Sect. 2.4.1, and learning is even slower than the
parallel generative learning procedure. The models learnt
are hence limited to 3–4 parts. Note that the 2-stage meth-
ods described above (Holub et al. 2005; Fritz et al. 2005) do
not solve the computational problem either. Specifically, the
method of Holub et al. (2005) is also limited to 3–4 parts in
practice, and the method of Fritz et al. (2005) learns from
segmented or highly aligned images.

3 The Generative Model

We represent an input image using a set of local descriptors
obtained using an interest point detector. Some details re-
garding this process are given in Sect. 3.1. We then define a
classifier over such sets of features using a generative object
model. The model and the resulting classifier are described
in Sects. 3.2 and 3.3 respectively.

3.1 Feature Extraction and Representation

Our feature extraction and representation scheme mostly
follows the scheme used in Fergus et al. (2003). Initially,
images were rescaled to have a uniform horizontal length
of 200 pixels. We experimented with two feature detec-
tors: (1) Kadir & Brady (KB) (Kadir and Brady 2001), and
(2) Gao & Vasconcellos (GV) (Gao and Vasconcelos 2004).2

The KB detector is a generic detector. It searches for circu-
lar regions of various scales, that correspond to the maxima
of an entropy based score in scale space. The GV detector
is a discriminative saliency detector, which searches for fea-
tures that permit optimal discrimination between the object
class and the background class. Given a set of labeled im-
ages from two classes, the algorithm finds a set of discrim-
inative filters based on the principle of Maximal Marginal
Diversity (MMD). It then identifies circular salient regions
at various scales by pooling together the responses of the
discriminative filters.

Both detectors produce an initial set of thousands of
salient candidates for a typical image (see example in
Fig. 3a). As in Fergus et al. (2003), we multiply the saliency
score of each candidate patch by its scale, thus creating a
preference for large image patches, which are usually more
informative. A set of Nf high scoring features with limited
overlap is then chosen using an iterative greedy procedure.
By varying the amount of overlap allowed between selected
features we can vary the number of patches chosen: in our
experiments we varied Nf between 13 and 513. After their
initial detection, selected regions are cropped from the im-
age and scaled down to 11 × 11 pixel patches. The patches
are then normalized to have zero mean and variance of 1.
Finally the patches are represented using their first 15 DCT
coefficients (not including the DC).

To complete the representation, we concatenate 3 addi-
tional dimensions to each feature, corresponding to the x

and y image coordinates of the patch, and its scale respec-
tively. Therefore each image I is represented using an un-
ordered set F(I) of 18 dimensional vectors. Since our sug-
gested algorithm’s runtime is only linear in the number of
image features, we can represent each image using a large
number of features, typically in the order of several hundred
features per image.

3.2 Model Structure

We consider a part-based model, where each part in a spe-
cific image Ii corresponds to a patch feature from F(Ii).
Denote the appearance, location and scale components of

2We thank Dashan Gao for making his code available to us, and pro-
viding useful feedback.
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Fig. 3 (Color online) a Output of the KB interest point (or feature) de-
tector, marked with green circles. b A Bayesian network specifying the
dependencies between the hidden variables Cl,Cs and the parts scales

and locations Xk
l ,X

k
s for k = 1, . . . ,P . The part appearance variables

Xk
a are independent, and so they do not appear in this network

each vector x ∈ F(I) by xa, xl and xs respectively (with di-
mensions 15, 2, 1), where x = [xa, xl, xs]. We can assume
that the appearance of different parts is independent, but
this is obviously not the case with the parts’ scale and lo-
cation. However, once we align the object instances with re-
spect to location and scale, the assumption of part location
and scale independence becomes reasonable. Thus we intro-
duce a 3-dimensional hidden variable C = (Cl,Cs), which
fixes the location of the object and its scale. Our assump-
tion is that the location and scale of different parts is con-
ditionally independent given the hidden variable C, and so
the joint distribution decomposes according to the graph in
Fig. 3b.

It follows that for a model with P parts, the joint proba-
bility of {Xk}pk=1 and C takes the form

p({Xk}Pk=1,C|�)

= p(C|�)

P∏

k=1

p(Xk|C,θk)

= p(C|�)

P∏

k=1

p(Xk
a|θk

a )p(Xk
l |Cl,Cs, θ

k
l )p(Xk

s |Cs, θ
k
s ).

(5)

We assume uniform probability for C and Gaussian condi-
tional distribution for Xa,Xl,Xs as follows:

P(Xk
a|θk

a ) = G(Xk
a|μk

a,�
k
a),

P (Xk
l |Cl,Cs, θ

k
l ) = G

(
Xk

l − Cl

Cs

∣∣∣∣ μk
l ,�

k
l

)
, (6)

P(Xk
s |Cs, θ

k
s ) = G(log(Xk

s ) − log(Cs)|μk
s , σ

k
s ),

where G(·|μ,�) denotes the Gaussian density with mean
μ and covariance matrix �. We index the model compo-
nents a, l, s as 1,2,3 respectively, and denote the log of
these probabilities by LG(xj |C,μj ,�j ) for j = 1,2,3.

3.3 A Model Based Classifier

As discussed in Sect. 2.4.1, the likelihood P(I |M) is given
by averaging over all the possible part vectors that can be
assembled from the feature set F(I) (see (2)). In our case,
we should also average over all the possible values for the
hidden variable C. Thus

P(I |M) = K0

∑

C

∑

(x1,...,xp)∈F(I)P

xi �=xj for i �=j

P∏

k=1

P(xk|C,θk) (7)

for some constant K0.
In order to allow efficient likelihood assessment we make

the following approximations

P(I |M) ≈ K0

∑

C

∑

(x1,...,xp)∈F(I)P

P∏

k=1

P(xk|C,θk) (8)

≈ K0 max
C,(x1,...,xp)∈F(I)P

P∏

k=1

P(xk|C,θk) (9)

= K0 max
C

P∏

K=1

max
x∈F(I)

P (x|C,θk). (10)

Approximation (8) above was discussed earlier in a more
general context (see (4)), and it is necessary in order to
eliminate the global dependency between parts. In approx-
imation (9), averages are replaced by the likelihood of the
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best feature vector and best hidden C. This approximation
is compelling since as long as the image contains a single
object from the class, there are rarely two different likely
object interpretations. In addition, working with the best sin-
gle vector uniquely identifies the object’s location and scale,
as well as the object’s parts. Such unique identification is
required for most semantical tasks beyond mere recogni-
tion. Finally, the approximated likelihood is decomposed
into separate maxima over C and the different parts in (10).

The decomposition of the maximum achieved in (10) is
the key to the efficient likelihood computation. We discretize
the hidden variable C and consider only a finite grid of lo-
cations and scales, with a total of Nc possible values. Us-
ing this decomposition the maximum over the Nc · NP

f ar-
guments can be computed in O(NcNf P ) operations. How-
ever, we cannot optimizing the parameters of such a model
by likelihood maximization. Since feature repetition is al-
lowed, the ML solution will choose the same (best) part p

times, as shown in Appendix 1.
The natural generative classifier is based on the compari-

son of the LRT statistic to a constant threshold, and it there-
fore requires a model of the background in addition to the
object model. Modeling general backgrounds is clearly dif-
ficult, due to the diversity of objects and scenes that do not
share simple common features. We therefore approximate
the background likelihood by a constant. Our LRT based
classifier thus becomes

f (I) = logP(I |M) − log(I |BG) − ν′

= max
C

P∑

k=1

max
x∈F(I)

logp(x|C,θk) − ν (11)

for some constant ν.

4 Discriminative Optimization

Given a set of labeled images {Ii, yi}Ni=1, we wish to find a
classifier f (I) of the functional form given in (11), which
minimizes the exponential loss

L(f ) =
N∑

i=1

exp(−yif (Ii)). (12)

This is the same loss minimized by the Adaboost algorithm
(Schapire and Singer 1999). Its main advantage in our con-
text is that it allows for the determination of the classifier
threshold using a closed form formula, as will be described
in Sect. 4.1.

We have considered two possible techniques for the op-
timization of the loss in (12): Boosting and gradient de-

scent. In the boosting context, we view the log probability of
a part

max
x∈F(I)

logp(x|C,θk)

as a weak hypothesis of a specific functional form. However,
the classifier form we use in (11) is rather different from
the traditional classifiers built by boosting, which typically
have the form f (I) = ∑P

k=1 αkhk(I ). Specifically, the clas-
sifier (11) does not include part weights αk , it has an extra
threshold parameter ν, and it involves a maximization over
C, which depends on all the ‘weak’ hypotheses. The third
point is the most problematic, as it requires optimizing over
parts with internal dependencies, which is much harder than
optimization over independent parts as in standard boosting.

In order to simplify the presentation, we assume in
Sect. 4.1 a simplified model with no spatial relations be-
tween the parts, and show how the problems of parts
weights and threshold parameters are coped with, with mi-
nor changes to the standard boosting framework. In Sect. 4.2
we consider the problem of dependent parts, and show how
boosting can be naturally extended to handle classifiers as in
(11), despite the dependencies between parts due to the hid-
den variable C. Finally we consider the optimization from
a more general viewpoint of gradient descent in Sect. 4.3.
This allows us to introduce several enhancements to the pure
boosting technique.

4.1 Boosting of a Probabilistic Model

Let us consider a simplified model with parts appearance
only (see (6)). We show how such a classifier can be
represented as a sum of weighted ‘weak’ hypotheses in
Sect. 4.1.1. We then derive the boosting algorithm as an ap-
proximate gradient descent in Sect. 4.1.2. This derivation is
slightly simpler than similar derivations in the literature, and
provides the basis for our treatment of related parts, intro-
duced in Sect. 4.2. In Sect. 4.1.3 we show how the threshold
parameter in our classifier can be readily optimized.

4.1.1 Functional Form of the Classifier

When there are no relations between parts, the classifier (11)
takes the following form

f (I) =
P∑

k=1

max
x∈F(I)

logp(xa|θk
a ) − ν. (13)
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This classifier is easily represented as a sum of weak hy-
potheses f (I) = ∑P

k=1 hk(I ) where

hk(I ) = max
x∈F(I)

logG(xa|θk
a ) − νk (14)

and ν = ∑P
k=1 νk . Weak hypotheses in this form can be

viewed as soft classifiers.
We next represent the classifier in an equivalent func-

tional form in which the covariance scale is transformed to
part weight. Now f (I) = ∑P

k=1 αkhk(I ) where hk(I ) takes
the form

hk(I ) = max
x∈F(I)

logG(xa|ηk
a,�

k
a) − νk, |�k

a | = 1. (15)

The equivalence of these forms is shown in Appendix 2.

4.1.2 Boosting as Approximate Gradient Descent

Boosting is a common method which learns a classifier of
the form f (x) = ∑p

k=1 αkhk(x) in a greedy fashion. Sev-
eral papers (Friedman et al. 2000; Mason et al. 2000) have
presented boosting as a greedy gradient descent of some loss
function. In particular, the work of Mason et al. (2000) has
shown that the Adaboost algorithm (Freund and Schapire
1996; Schapire and Singer 1999) can be viewed as a greedy
gradient descent of the exp loss of Eq. (12), in L2 func-
tion space. In Friedman et al. (2000) Adaboost is derived
using a second order Taylor approximation of the exp loss,
which leads to repetitive least square regression problems.
We suggest here another variation of the derivation, simi-
lar to Friedman et al. (2000) but slightly simpler. All three
approaches lead to an identical algorithm (the discrete Ad-
aboost Freund and Schapire 1996) when the weak learn-
ers are binary with the range {+1,−1}. For weak learners
with a continuous output, our approach and the approach of
Mason et al. (2000) culminates in the same algorithm, e.g.
Adaboost with confidence intervals (Schapire and Singer
1999). However, our approach is simpler, and is later used
to derive a boosting version for a model with dependent
parts.

Specifically, we derive Adaboost by considering the first
order Taylor expansion of the exp loss function. In what fol-
lows and throughout this paper, we use superscripts to indi-
cate the boosting round in which a quantity is measured. At
the pth boosting round, we wish to extend the classifier f

by f p(x) = f p−1(x)+αphp(x). We first assume that αp is
infinitesimally small, and look for an appropriate weak hy-
pothesis hp(X). Since αp is small, we can approximate (12)
using the first order Taylor expansion.

To begin with, we differentiate L(f ) w.r.t. αp

dL(f )

dαp
= −

N∑

i=1

exp(−yif (xi))yih
p(xi). (16)

We denote wi = exp(−yif (xi)), and derive the following
Taylor expansion

L(f p) ≈ L(f p−1) − αp

N∑

i=1

w
p−1
i yih

p(xi). (17)

Assuming αp > 0, the steepest descent of L(f ) is ob-
tained for some weak hypothesis hp which maximizes the
weighted correlation score

S(hp(x)) =
N∑

i=1

w
p−1
i yih

p(xi). (18)

This maximization is done by a weak learner, getting as in-
put the weights {wp−1

i }Ni=1 and the labeled data points. After
the determination of hp(x), the coefficient αp is determined
by the direct optimization of the loss from Eq. (12). This
can be done in closed form only for binary weak hypotheses
with output in the range of {1,−1}. In the general case nu-
meric methods are employed, such as line search (Schapire
and Singer 1999).

4.1.3 Threshold Optimization

Maximizing the linear approximation (17) can be problem-
atic when unbounded weak hypotheses are used. In particu-
lar, optimizing this criterion w.r.t. to the threshold parameter
in hypotheses of the form (14) is ill-posed. Substituting (14)
into criterion (17), we get the following expression to opti-
mize:

S(h) =
N∑

i=1

wiyi

(
max

x∈F(I)
logG(xi |μa,�a) − ν

)

= C +
( ∑

i:yi=−1

wi −
∑

i:yi=1

wi

)
ν (19)

where C is independent of ν. If
∑

i:yi=−1 wi −∑
i:yi=1 wi �=

0, S(h) can be increased indefinitely by sending ν to +∞
or −∞. Such a choice of ν clearly doesn’t improve the orig-
inal (exact) loss (12).

The optimization of the threshold should therefore be
done by considering (12) directly. It is based on the follow-
ing lemma:

Lemma 1 Consider a function f : I → R. We wish to min-
imize the loss (12) of the function f̃ = f − ν where ν is a
constant. Assume that there are both labels +1 and −1 in
the data set.

1. An optimal ν∗ exists and is given by

ν∗ = 1

2
log

[ ∑N
{i:yi=−1} exp(f (Ii))

∑N
{i:yi=1} exp(−f (Ii))

]
. (20)
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2. The optimal f̃ ∗ = f − ν∗ satisfies

N∑

{i:yi=1}
exp(−f̃ ∗(Ii)) =

N∑

{i:yi=−1}
exp(f̃ ∗(Ii)). (21)

3. The optimal loss L(f − ν∗) is

2

[
N∑

{i:yi=1}
exp(−f (Ii)) ·

N∑

{i:yi=−1}
exp(f (Ii))

] 1
2

. (22)

The lemma is proved by direct differentiation of the loss
w.r.t. ν, as sketched in Appendix 3.

We use this lemma to determine the threshold after each
round of boosting, when f p(I) = f p−1(I ) + αphp(I).
Equation (20) gives a closed form solution for ν once
hp(I) and αp have been chosen. Equation (22) gives the
optimal score obtained, and it is useful when efficient nu-
meric search for αp is required. Finally, property (21) im-
plies that after threshold update, the coefficient of ν in
(19) is nullified (the slope of the linear approximation is
0 at the optimum). Hence optimizing the threshold be-
fore round p assures that the score S(hp) does not de-
pend on νp . We optimize the threshold in our algorithm
during initialization, and after every boosting round (see
Algorithm 1). The weak learner can therefore effectively
ignore this parameter when choosing a candidate hypothe-
sis.

4.2 Relational Model Boosting

We now extend the boosting framework to handle depen-
dent parts in a relational model of the form (11). We intro-
duce part weights into the classifier by applying the transfor-
mation described in (15) to the three model ingredient de-
scribed in (6), i.e. appearance, location and scale. The three
new weights are summed into a single part weight, leading
to the following classifier form

f (I) = max
C

P∑

k=1

αkhk(I,C) − ν (23)

where for k = 1, . . . ,P

hk(I,C) = max
x∈F(I)

gk(I,C),

gk(I,C) =
3∑

j=1

λk
j∑3

j=1 λk
j

LG(xk
j |C,μk

j ,�
k
j ), (24)

|�k
j | = 1, λk

j > 0, j = 1,2,3.

In this parametrization αk is the sum of component
weights and λi/

∑3
j=1 λj measures the relative weights of

the appearance, location and scale. Thus, given an image I ,
the computation of f requires the computation of the accu-
mulated log-likelihood and its hidden center optimizer, de-
noted as follows

ll(I,C) =
p∑

k=1

αkhk(I,C),

C∗ = arg max
C

ll(I,C).

(25)

In order to allow tractable maximization over C, we dis-
cretize it and consider only a finite grid of locations and
scales with Nc possible values. Under these conditions, the
computation of ll and C∗ amounts to standard MAP mes-
sage passing, requiring O(PNf Nc) operations.

Our suggested boosting method is presented in Algo-
rithm 1. We derive it by replicating the derivation of standard
boosting in (16–18). For f of the form (23), the derivative
of L(f ) w.r.t. αp is now

dL(f )

dαp
= −

N∑

i=1

wiyih
p(Ii,C

∗
i ) (26)

and using the Taylor expansion (17) we get

L(f p) = L(f p−1) − αp

N∑

i=1

w
p−1
i yih

P (Ii,C
∗,p−1
i ). (27)

In analogy with the criterion (18), the weak learner

should now get as input {wp−1
i ,C

∗,p−1
i }N

i=1 and try to max-
imize the score

S(hp) =
N∑

i=1

w
p−1
i yih

P (Ii,C
∗,p−1
i ). (28)

This task is not essentially harder than the weak learner’s
task in standard boosting, since the weak learner ‘assumes’
that the value of the hidden variable C is known and set to
its optimal value according to the previous hypotheses. In
the first boosting round, when C∗,p−1 is not yet defined, we
only train the appearance component of the hypothesis. The
relational components of this part are set to have low weights
and default values.

Choosing αp after the hypothesis hp(I,C) has been cho-
sen is more demanding than in standard boosting. Specifi-
cally, αp should be chosen to minimize

L(max
C

[llp−1(I,C) + αphp(I,C)] − ν∗). (29)
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Algorithm 1 Relational model boosting

Given {(Ii, yi)}Ni=1, yi ∈ {−1,1}, initialize:

ll(i, c) = 0, i = 1, . . . ,N , c in a predefined grid

ν = 1

2
log

#{yi = −1}
#{yi = 1}

wi = exp(yi · ν), i = 1, . . . ,N

wi = wi

/ N∑

i=1

wi

For k = 1, . . . ,P

1. Use a weak learner to find a part hypothesis hk(I,C)

which maximizes

S(h) =
N∑

i=1

wiyih(Ii,C
∗
i )

(see text for special treatment of round 1).

2. Find optimal αk by minimizing

N∑

{i:yi=1}
exp(−f 0(Ii)) ·

N∑

{i:yi=−1}
exp(f 0(Ii))

where f 0(I ) = maxC ll(I,C) + αhk(I,C)).
Update ll and the optimal center C∗

ll(i, c) = ll(i, c) + αkh(i, c)

[f 0(Ii),C
∗
i ] = max, arg max

c
ll(i, c)

3. Update f (Ii) and the weights {wi}Ni=1

ν = 1

2
log

[ ∑N
{i:yi=−1} exp(f 0(Ii))

∑N
{i:yi=1} exp(−f 0(Ii))

]

f (Ii) = f 0(Ii) − ν

wi = exp(−yif (Ii))

wi = wi/

N∑

i=1

wi

Output the final hypothesis

f (I) = max
C

P∑

k=1

αkhk(I,C) − ν

Since the optimal value of C depends on αp , its inference
should be repeated whenever a different value is consid-
ered for αp (although the messages hp(I,C) can be com-
puted only once). After finding the maximum over C, the

loss with the optimal threshold can be computed using (22).
The search for the optimal αp can be done using any line
search algorithm, and we implement it using gradient de-
scent as described next in Sect. 4.3.

4.3 Gradient Descent

In this section we combine the relational boosting from
Sect. 4.2 with elements from a more general gradient de-
scent perspective. In Sect. 4.3.1 we describe our implemen-
tation of Algorithm 1, in which the weak learner and the
part weight optimization are gradient based. In Sect. 4.3.2
we suggest to supplement Algorithm 1 with feedback ele-
ments in the spirit of more traditional gradient descent algo-
rithms. Algorithm 2 presents the resulting algorithm for part
optimization.

4.3.1 Gradient-Based Implementation

Current boosting-based object recognition approaches use
a version of what we call “selection-based” weak learners
(Opelt et al. 2004b; Viola and Jones 2001; Murphy et al.
2003). The weak hypotheses family is finite, and hypothe-
ses are based on a predefined feature set (Viola and Jones
2001) or on the set of features extracted from the training
images (Opelt et al. 2004b; Murphy et al. 2003). The weak
learner computes the weighted correlation for all the possi-
ble hypotheses and returns the best scoring one. Weak learn-
ers of this type, considered in the current paper, sample fea-
tures from object images (exhaustive search is too expensive
computationally); they build part hypotheses based on the
feature and the current estimate of the hidden center C∗ in
the feature’s image. However, as a single feature cannot reli-
ably determine the relative weights of the different part com-
ponents (the covariance scale of appearance, location and
scale), several values of these parameters are considered for
each feature.

As an alternative, we have considered a second type of
weak learners, which we call “gradient-based”. A “gradient-
based” weak learner uses a hypothesis supplied by the se-
lection learner as its starting point, and tries to improve its
score using gradient ascent. Unlike the selection based weak
learner, the gradient-based weak learner is not limited to
parts based on natural image features, as it searches in the
continuum of all possible part models. The update rules are
based on the relevant gradient, i.e. the derivative of the score
S(hp) w.r.t. the part parameters, given by the weighted sum

�θp = η
dS(hp)

dθp
= η

N∑

i=1

w
p−1
i yi

dhp(Ii,C
∗,p−1
i )

dθp

= η

N∑

i=1

w
p−1
i yi

dgp(Ii,C
∗,p−1
i , x

∗,p
i )

dθp
(30)
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where η > 0 is a step size and x
∗,p
i is the best part candidate

in image i

x
∗,p
i = arg max

x∈F(Ii )

gp(Ii,C
∗,p−1
i ).

Specifically, θp = {μp
j ,�

p
j , λ

p
j }3

j=1
. In order to keep

�
p
j > 0 during the gradient descent (for j = 1,2) we re-

parameterize (�
p
j )−1 = (A

p
j )tA

p
j and descend w.r.t. A

p
j .

Dropping the superscript p from all the variables and pa-
rameters and denoting gi = gp(Ii,C

∗,p−1
i , x

∗,p
i ), the gradi-

ents in (30) are given by

dgi

dμj

= −λj�
−1
j (z∗

i,j − μj ),

dgi

dAj

= −λjAj (z
∗
i,j − μj )(z

∗
i,j − μj )

t ,

(31)

dgi

dλj

= 1
/(

3∑

j=1

λj

)
[LG(x∗

i,j |C∗
i ,μj ,�j )

−
3∑

j=1

λj∑3
j=1 λj

LG(x∗
i,j |C∗

i ,μj ,�j )].

Above x∗
i,j stands for the j th component (appearance, loca-

tion or scale) of x∗
i and

z∗
i,1 = x∗

i,1,

z∗
i,2 = (x∗

i,2 − (Cl)
∗
i )/(Cs)

∗
i ,

z∗
i,3 = log(x∗

i,3) − log((Cs)
∗
i ).

The constraints of |�j | = 1 and λj ≥ 0 were enforced
after each gradient step. Since the gradient depends on the
best part candidates according to the current model, the gra-
dient dynamics iterates between gradient steps in the para-
meters θp and the re-computation of the best part candidates
{x∗,p

i }Ni=1. Pseudo code is given in Step 1 of Algorithm 2.
We also use gradient descent dynamics to implement

the line search for the optimal part weight αp . This search
method is based on slow, gradual changes in the value of αp ,
and hence it allows us to experiment with a feedback mech-
anism (see Sect. 4.3.2). The gradient of the loss w.r.t. αp is
given in (26). Notice that the gradient depends on {C∗

i }Ni=1
and {wi}Ni=1, and both are functions of αp . Hence the gra-
dient dynamics in this case iterates between gradient steps
of αp , inference of {C∗

i }Ni=1, and updates of {wi}Ni=1. This
loop is instantiated in Step 3 of Algorithm 2. The loop must
be preceded by the computation of the messages h(i, c) in
Step 2.

Algorithm 2 Optimization of part p

Input : F(Ii), yi , wi , C∗
i , i = 1, . . . ,N

ll(i, c), i = 1, . . . ,N, c = 1, . . . ,Nc

initialize weak hypothesis using a selection learner :
Choose θ = λj ,μj ,�j , j = 1, . . . ,3, α = 0

Set [h(i,C∗
i ), x∗(i)] = max, arg max

x∈F(Ii )

g(x,C∗
i )

where g(x, c) = ∑3
j=1

λj∑3
j=1 λj

LG(xj |c,μj ,�j )

Loop over 1,2,3 K1 iterations

1. Loop over a, b K2 iterations (θ optimization)

(a) Update weak hypothesis parameters

θ = θ + η

N∑

i=1

wiyi

dg(x∗
i , c∗

i )

dθ

(b) Update best part candidates for all images

[h(i,C∗
i ), x∗

i ] = max, arg max
x∈F(Ii )

g(x,C∗
i )

2. Compute for all i, c h(i, c) = maxx∈F(Ii ) g(x, c)

3. Loop over a, b, c K3 iterations (α optimization)

(a) Update α: α = α + η
∑N

i=1 wiyih(i,C∗
i )

(b) Update hidden center for all images
[f 0(Ii),C

∗
i ] = max, arg maxc ll(i, c) + αh(i, c)

(c) Update f (Ii) and the weights

ν = 1

2
log

[ ∑N
{i:yi=−1} exp(f 0(Ii))

∑N
{i:yi=1} exp(−f 0(Ii))

]

f (Ii) = f 0(Ii) − ν

wi = exp(−yif (Ii)), wi = wi

/ N∑

i=1

wi

Set llp(i, c) = ll(i, c) + αh(i, c)

Return θ , wi , C∗
i , llp(i, c), i = 1, . . . ,N , c = 1, . . . ,Nc.

4.3.2 Gradient-Based Extension

When the determination of both θp and αp are gradi-
ent based, the boosting optimization at round p essentially
makes a specific control choice for a unified gradient descent
algorithm which optimizes αp and θp together. A more tra-
ditional gradient descent algorithm can be constructed by (1)
differentiating L(f ) directly instead of using its Taylor ap-
proximation, and (2) iterating small gradient steps on both
αp and θp in a single loop, instead of two separate loops
as suggested by boosting. In boosting, the optimization of
θp is done before setting αp and there is no feedback be-
tween them. Such feedback is plausible in our case, since
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any change in αp may induce changes in C∗ for some im-
ages, and can therefore change the optimal part model of
hp(I,C).

We considered the update steps required for gradient de-
scent of the exact loss (12), without the Taylor approxima-
tion implied by the boosting strategy. The gradient of αp

(26) and its treatment remain the same, as αp was optimized
w.r.t. the exact loss in the boosting strategy as well. The gra-
dient w.r.t. θp is

dL(f )

dθp
=

N∑

i=1

w
p
i yi

dhp(Ii,C
∗,p
i )

dθp
. (32)

While this expression is very similar to (30), there is
a subtle difference between them. In (32) wi and C∗

i are
no longer constant as they were in (30), but depend on θp

and αp . Exact gradient descent therefore requires the re-
computation of wi,C

∗
i at each gradient iteration, which is

computationally expensive.
We have experimented in the continuum between the

‘boosting’ and the ‘gradient descent’ flavors using Algo-
rithm 2, which encloses the optimization loops of hp and αp

in a third ‘feedback’ loop. Setting the outer loop counter K1

to 1 we get the boosting flavor, i.e., Algorithm 2 implements
an inner loop step in Algorithm 1. Setting K1 to some large
value and K2 = 1, K3 = 1, we get exact gradient descent
flavor. We found that a good trade-off between complexity
and performance is achieved with a version which is rather
close to boosting, but still repeats the optimization of αp

and hp several times to allow mutual cross-talk during the
estimation of these parameters. Thus, our final optimization
algorithm involves repeated, sequential calls of Algorithm 2.

5 Experimental Results

We tested our algorithm in recognition tasks using the Cal-
tech datasets (Fergus et al. 2003), which are publicly avail-
able,3 as well as three more challenging data sets we have
collected specifically for this evaluation. The former are
used as a common benchmark, while the latter are designed
to measure the performance limits of the algorithm by chal-
lenging it with fairly hard conditions. Localization perfor-
mance was evaluated using a common benchmark for this
task (Agarwal et al. 2004).4 The datasets are described in
Sect. 5.1. In Sect. 5.2 we discuss the various algorithm pa-
rameters. Recognition results are presented in Sect. 5.3. In
Sect. 5.4 we report the results of additional experiments,
studying the contribution to recognition performance of sev-
eral modeling factors in isolation. Finally, we report local-
ization results in Sect. 5.5.

3http://www.robots.ox.ac.uk/∼vgg/data.
4http://www.pascal-network.org/challenges/VOC/#UIUC.

5.1 Datasets

We compare our recognition results with other methods us-
ing the Caltech datasets. Four datasets are used: Motor-
cycles (800 images), Cars rear (800), Airplanes (800) and
Faces (435). These datasets contain relatively small variance
in scale and location, and the background images do not con-
tain objects similar to the class objects. In order to test recog-
nition performance under harder conditions, we compiled 3
new datasets with matching backgrounds.5 These datasets
contain images of Chairs (800 images), Dogs (500) and Hu-
mans (593), and are briefly described below. The data sets
mentioned above are not well suited for localization experi-
ments, since the objects of interest are usually placed in the
center of the image. We nevertheless present here localiza-
tion results for the data sets which include a bounding-box
information, which are Airplanes, Motorcycles and Faces.
To better estimate the localization ability of our algorithm
we used the UIUC cars side benchmark (Agarwal et al.
2004). The training set here is composed of 550 cars im-
ages and 500 background images. The test set includes 170
images, containing altogether 200 cars, with ground truth
bounding boxes.

In the Chairs and Dogs datasets, the objects are seen
roughly from the same pose, but include large inner class
variability, as well as some variability in location and scale.
For the Chairs dataset we compiled a background dataset
of Furniture which contained images of tables, beds and
bookcases (200,200,100 images respectively). When possi-
ble (for tables and beds), images were aligned to a viewpoint
isomorphic to the viewpoint of the chairs. As background
for the Dogs dataset, we compiled two animal datasets:
‘Easy Animals’ contains 500 images of animals not simi-
lar to Dogs; ‘Hard Animals’ contains 250 images from the
‘Easy Animals’ dataset, and an additional set of 250 images
of four-legged animals (such as horses and goats) in a pose
isomorphic to the Dogs.

The Humans dataset was designed to include large vari-
ability in location, scale and pose. The data contains images
of 25 different people. Each person was photographed in 4
different scales (each 1.5 times larger than its predecessor),
at various locations and with several articulated poses of the
hands and legs. For each person there are several images in
which s/he is partially occluded. For this dataset we created
a background dataset of 593 images, showing the sites in
which the Humans images were taken. Figure 4 shows sev-
eral images from our datasets.

5.2 Algorithm Parameters

We have run a series of preliminary experiments, in order to
tune the weak learners’ parameters and compare the results

5The datasets are available at http://www.cs.huji.ac.il/~aharonbh/.
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Fig. 4 (Color online) Images from the Chairs, Dogs and Humans
datasets and their corresponding backgrounds. Object images appear
on the left, background images on the right. In the second row, the two
leftmost background images are of ‘easy animals’ and next are two

‘hard animals’ images. In the third row, the two leftmost object images
belong to the easier image subset. The next two images are hard due to
the person’s scale and pose

when using selection-based vs. gradient-based weak learn-
ers. The parameters of the selection based weak learner in-
clude the number of image patches it samples, and the num-
ber of location/scale models used for each sampled patch.
The parameters of the gradient based learner include the
step size and stop condition. The gradient based learner is
not limited to hypotheses based on object images, and in
many cases it chooses exaggerated appearance and loca-
tion models for the part in order to enhance discriminative
power. In the exaggerated appearance models, the bright-
ness contrast is enhanced and the mean patch looks al-
most like a Black&White mask (see examples in Fig. 5b).
This tendency for exaggerated appearance model is en-
hanced when the weight of the location model is relatively
weak.

In exaggerated location models, parts are modeled as be-
ing much farther from the center than they are in real objects.
An example is given in Fig. 7, showing a chair model where
the tip of the chair’s leg is located below its mean location
in most images. Still, in most cases gradient based learners
give lower error rates than their purely selection-based com-
petitors. Some examples are given in Fig. 5a. We hence used
gradient based learners in the rest of the recognition experi-
ments.

We have also experimented with the learning of covari-
ance matrices for the appearance and location models. As
stated in Sect. 4.3.1, we have implemented gradient dynam-
ics for the square root of the covariance matrix. However,
we have still observed too much over-fitting in the estima-
tion of the covariance matrices in our experiments. These
additional degrees of freedom tended not to improve the test
results, while achieving lower training error. The problem
was more serious with the appearance covariance matrix,
where we have sometimes observed reduced performance,
and the emergence of unstable models with covariance ma-
trices close to singular. As a result, in the following experi-
ments we fix the covariance matrices to σI . We only learn

the covariance scale, which in our model determines the part
and component weight parameters.

In the recognition experiments reported in Sect. 5.3, we
constructed models with up to 60 parts using Algorithm 2,
with control parameters of K1 = 60, K2 = 100, K3 = 4.
Each image was represented using at most Nf = 200 fea-
tures (KB detector) or Nf = 240 features (GV detector).
The hidden center location values were an equally spaced
grid of 6 × 6 positions over the image. The hidden scale
center had a single value, or 3 different values with a ra-
tio of 0.63 between successive scales, resulting in a total
of Nc = 36,108 values respectively. We randomly selected
half of the images from each dataset for training and used
the remaining half for testing.

For the localization experiments reported in Sect. 5.5
we changed several important parameters of the learning
process. Model accuracy is more important for this task,
and we therefore learn smaller models with P = 40 parts,
but using a finer location grid of 10 × 10 possible locations
(NC = 100) and Nf = 400 features extracted per image.
As noted above, the dynamics of the gradient-based loca-
tion model tends to produce ‘exaggerated’ models, in which
parts are located too far from the objects center. This ten-
dency dramatically reduces the utility of the model for lo-
calization. We therefore eliminated the gradient location dy-
namics in this context, and modified only the part appear-
ance using gradient descent. We found experimentally that
increasing the weight of the location component uniformly
for all the parts improves the localization results consider-
ably. In the experiments reported below, we multiply the
location component weights λk

2, k = 1, . . . ,P (see (23) for
their definition) by a constant factor of 10. Probabilistically,
this amounts to smaller location covariance and hence to
stricter demands on the accuracy of parts relative locations.
Finally, parts without location component (when the loca-
tion component weight is 0) are ignored; these parts do not
convey localization information, and therefore add irrelevant
‘noise’ to the MAP score.
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Fig. 5 a Comparison of error rates obtained by selection-based and
gradient based weak learners on the Caltech data sets. The results pre-
sented were obtained for object models without a location component,
i.e. the models are not relational and classification is based on part ap-
pearance alone. b Examples of parts from motorcycle models learnt

using the selection-based learner (top) and the gradient-based learner
(bottom). The images present reconstructions from the 15 DCT coeffi-
cients of the mean appearance vector. The parts presented correspond
to motorcycles seat (left) and wheel (right). Clearly, the parts learnt by
the gradient learner have much sharper contrasts

5.3 Recognition Results

As a general remark, we note that our algorithm tends to
learn models in which most features have clear semantics in
terms of object’s parts. Examples of learnt models can be
seen in Figs. 6 and 7. In the dog example we can clearly
identify parts that correspond to the head, back, legs (both
front and back), and the hip. Typically 40–50 out of the
60 parts are similar in quality to the ones shown. The lo-
cation models are gross, and sometimes exaggerated, but
clearly useful. Analysis of the part models shows that in
many cases, a distinguished object part (e.g., a wheel in the
motorcycle model, or an eye in the face model) is modeled
using a number of model parts (12 for the wheel, 10 for the
eye) with certain internal variation. In this sense our model
seems to describe each object part using a mixture model.

In Table 1 we present our results on the Caltech database
benchmark and compare them to several generative (Fer-
gus et al. 2003, 2005; Loeff et al. 2005) and discriminative
(Opelt et al. 2004b; Dorkó and Schmid 2005) approaches.
All the methods compared learn object class recognition
from unordered sets of features, obtained from an inter-
est point detector. Following Fergus et al. (2003), the mo-
torbikes, airplanes and faces datasets were tested against
office background images, and the Cars rear dataset was
tested against road background images. We used the exact
train and test indices used by Fergus et al. (2003) and the
same Kadir and Bradey (KB) feature detector. Comparison
is hence easier between our method and methods (Fergus
et al. 2003;6 Opelt et al. 2004b;7 Loeff et al. 2005) which
use the same KB feature detector. The results reported were

6The results reported in Fergus et al. (2003) (except for the cars data
base) were achieved using manually scale-normalized images, while
the our methods did not rely on any such rescaling.
7In Opelt et al. (2004a), this approach was reported to give better re-
sults using segmentation based features. We did not include these re-
sults here since we focus on comparing different learning algorithms
using similar features. see also discussion in Sect. 6.

obtained without modeling scale, since it did not improve
classification results when using the KB detector. This may
be partially explained by noting that the Caltech datasets
contain relatively small variance in scale. Error rates for our
method were computed using the threshold learnt by our
boosting algorithm.

In this recognition task our method seems to be superior
to Fergus et al. (2003) and Opelt et al. (2004b), comparable
to Fergus et al. (2005), and inferior to Loeff et al. (2005)
and Dorkó and Schmid (2005). We believe that our advan-
tage over the methods of Fergus et al. (2003) and Opelt et al.
(2004b) can be attributed to the small number of parts in the
former and the neglect of spatial part information by the lat-
ter. It seems that while the method presented in Fergus et al.
(2005) is somewhat problematic w.r.t. its learning method
(see Sect. 2.4.2), it compensates for it by using a rich com-
bination of 3 different interest detectors. The methods (Lo-
eff et al. 2005; Dorkó and Schmid 2005) are usually prefer-
able to our suggested method in the binary object recogni-
tion problem. These methods, however, are less suitable for
the localization task, and they were not tested on localization
benchmarks.

We used the Chairs and Dogs datasets to test the sensitiv-
ity of the algorithm to visual similarity between object and
background images. We trained the Chairs dataset against
the Caltech office background dataset, and against the furni-
ture dataset described above. The Dogs dataset was trained
against 3 different backgrounds datasets: Caltechs ‘office’
background, ‘Easy Animals’ and ‘Hard Animals’. The re-
sults are summarized in Table 2. As can be seen, our algo-
rithm works well when there are large differences between
the object and background images. However, it fails to dis-
criminate, for example, dogs from horses.

We used the Humans dataset to test the algorithm’s sensi-
tivity to variations in scale and object articulations. In order
to obtain reasonable results on this hard dataset, we had to
reduce scale variability to 2 scales and restrict the variabil-
ity in pose to hand gestures only—we denote this dataset by
‘Humans restricted’ (355 images). The results are shown in
Table 2.
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Fig. 6 (Color online) 5 parts from a dog model with 60 parts. The top
left drawing shows the modeled locations of the 5 parts. Each part’s
mean location is surrounded by the 1 std line. The cyan cross indicates
the location of the hidden ‘center’. The top right pictures show dog
test images with the model implementation found. All these dogs were
successfully identified except for the one on the right-bottom corner.
Below the location model, the parts’ mean appearance patches are

shown. The last three rows present parts implementations in the 3 test
images that got the highest part likelihood. Each column presents the
implementations of the part shown above the column. The parts have
clear semantic meaning and repetitive locations on the dogs back, hind
leg, joint of the hind leg, front leg and head. Most other parts behave
similarly to the ones shown

The parameters in our model are optimized to minimize
training error with respect to a certain background. One may
worry that the learnt models describe the background just as
well as they describe the object, in which case performance
in classification tasks against different backgrounds is ex-
pected to be poor. Indeed, from a purely discriminative point
of view, there is no reason to believe that the learnt classi-
fier will be useful when one of the classes (the background)
changes. To investigate this issue, we used the learnt mod-
els to classify object images against various background im-
ages not seen by the learning algorithm. We found that the
learnt models tend to generalize well to the new classifica-
tion problem, as seen in Table 3. These results show that the
models have ‘generative’ qualities: they seem to capture the

‘essence’ of the object in a way that does not really depend
on the background used.

5.4 Recognition Performance Analysis

In this section we analyze the contribution to performance
of several important modeling factors. Specifically, we con-
sider the contribution of modeling part location and scale,
and of increasing the number of model parts and features
extracted per image.

5.4.1 Location and Scale Models

The relational components of the model, i.e. the location and
scale of the parts, clearly complicate learning considerably,
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Fig. 7 (Color online) 5 parts from a chair model. The model is pre-
sented in the same format as Fig. 6. Model parts represent the tip of
the chairs leg (first part), edges of the back (second and forth parts),

the seat corner (third) and the seat edge (fifth). The location model is
exaggerated: The tip of the chairs leg is modeled as being far below its
real mean position in object images

Table 1 Test error rates over the Caltech dataset, showing the results of our method in 2 conditions—using 7 or 50 parts compared to several
other methods. The algorithm’s parameters were held constant across all experiments

Data name Our model Fergus et al. (2003) Opelt et al. (2004b) Fergus et al. (2005) Loeff et al. (2005) Dorkó and Schmid (2005)

50 parts

Motorbikes 4.9 7.5 7.8 4.0 3.0 0.5

Cars Rear 0.6 9.7 8.9 12.3 2.0 –

Airplanes 6.7 9.8 11.1 6.8 3.0 1.5

Faces 6.3 3.6 6.5 11.9 1.3 0.9

Table 2 Error rates with the new datasets of Chairs, Dogs and Hu-
mans. Results were obtained using the KB detector (see text for more
details)

Data Background Test error

Chairs Office 2.23

Chairs Furniture 15.53

Dogs Office 8.61

Dogs Easy Animals 19.0

Dogs Hard Animals 34.4

Humans Sites 34.3

Humans (resticted) Sites 25.9

and it is important to understand if they give any perfor-
mance gain. Table 4 shows comparative results varying the
model complexity. Specifically we present results when us-
ing only an appearance model, and when adding location
and scale models, using the GV detector (Gao and Vasconce-

los 2004).8 We can see that although the appearance model
produces very reasonable results, adding a location model
significantly improves performance. The additional contri-
bution of the scale model is relatively minor. Additionally,
by comparing the results of our full blown model (A+L+S)

to those presented in Tables 1 and 2, we can see that the dis-
criminative GV detector usually provides somewhat better
results than those obtained using the generic KB detector.

5.4.2 Large Numbers of Parts and Features

When hundreds of features are used per image, many fea-
tures lie in the background of the image, and learning good
parts implicitly requires feature pruning. Figure 8 gives er-
ror rates as a function of the number of parts and features.
Significant performance gains are obtained by scaling up

8Similar experiments with the KB detector yielded similar results, but
showed no significant improvement with scale modeling.
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these quantities, indicating that the algorithm is able to find
good part models even in the presence of many clutter fea-
tures. This behavior should be contrasted with the generative
learning of a similar model in Fergus et al. (2005), where in-
creasing the number of parts and features does not usually
lead to improved performance. Intuitively, maximum likeli-
hood learning chooses to model features which are frequent
in object images, even if these are simple clutter features
from the background, while discriminative learning natu-
rally tends to selects more distinctive parts.

Table 3 Generalization results of some learnt models to new back-
grounds. Each row describes results of a single class model trained
against a specific background and tested against other backgrounds.
Test errors were computed using a sample of 100 images from each
test background. The classifiers based on learnt models perform well
in most of the new classification tasks. There is no apparent connec-
tion between the difficulty of the training background and successful
generalization to new backgrounds

Data Original Motorcycles Airplanes Sites

BG BG BG BG

Cars Road (0.6) 3.0 2.2 6.8

Cars Office (1.6) 1.0 0.8 6.4

Chairs Office (2.2) 8.0 1.4 6.2

Chairs Furniture (15.5) 17.4 4.2 8.4

Dogs Office (8.6) 10.3 4.0 12.3

Dogs Easy animals (19.0) 15.7 5.7 7.7

5.5 Localization Results

Locating an object in a large image is much harder than the
binary present/absent detection task. The latter problem is
tackled in this paper using a limited set of image features,
and a crude grid of possible object locations. For localiza-
tion we use a similar framework in learning, but turn to a
more exhaustive search at the test phase. While searching
we do not select representative features, but consider in-
stead as part candidates all the possible image patches at
every location and several scales. Object center candidates
are taken from a dense grid of possible image locations. To
search efficiently, we use the methods proposed in Fergus
et al. (2005), Feltzenswalb and Huttenlocher (2005), which
allow such an exhaustive search in a relatively low compu-
tational cost.

Table 4 Errors rates using models of varying complexity. (A) Ap-
pearance model alone. (A + L) Appearance and location models.
(A + L + S) Appearance, location and scale models. The algorithm’s
parameters were held constant across all experiments

Data name A A + L A + L + S

Motorbikes 8.1 3.2 3.5

Cars Rear 4.0 1.4 0.6

Airplanes 15.1 15.1 12.1

Faces 6.1 5.2 3.8

Chairs 16.3 10.8 10.9

Fig. 8 a) Error rate as a function of the number of parts P in the model on the Caltech datasets for Nf = 200. b) Error rate as a function of
the number of image features Nf on the Cars rear (easy) and Airplanes (Relatively hard) Caltech datasets, with P = 30. In b), the X axis varies
between 13 and 228 features in log scale, base 2. All the results were obtained using the KB detector
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The model is applied to an image following a three stage
protocol:

1. Convolve the image with the first 15 filters of the DCT
base at Ns scales, yielding Ns × 15 coefficient ‘activity
maps’. We use Ns = 5, spanning patch sizes between 5
and 30 pixels.

2. Compute P ×Ns appearance maps by applying the parts
appearance models to the vector of DCT coefficients at
every image location. The coordinate values (x, y) in
map (k, j) contain the log probability of part k with scale
j in location (x, y).

3. Apply the relational model to the set of appearance maps,
yielding a single log probability map for the ‘hidden
center’ node. To this end, the Ns appearance maps of
each part are merged into a single map by choosing
at each coordinate the most likely part scale. We then
compute P part message maps, corresponding to the
messages hk(I,C) defined in (24), by applying the dis-
tance transform (Feltzenswalb and Huttenlocher 2005) to
the merged appearance maps. Finally the ‘hidden cen-
ter’ map is formed as a weighted sum of parts message
maps.

5.5.1 Caltech Data Sets

3 data sets used in the recognition experiments are supplied
with bounding box information: Airplanes, Motorcycles and
Faces. However, only in the latter objects have significant
location variance, specifically in the X-axis. On these data
sets we measure localization accuracy using the distance be-
tween the true and the detected object center, normalized by
the bounding box size. These measurements are collected
separately for the x and y axis (normalized by the x and
y sizes of the bounding box respectively), and for the two
dimensional Euclidean distance (normalized by the bound-
ing box diagonal). Median scores for the three data sets are

Table 5 Median Localization scores for Caltech data sets. The scores
are distances between true and detected object centers, normalized by
the bounding box length in the relevant dimension. In the parenthesis
the same scores are given for the null hypothesis, placing the object at
the image center. We can see that the inaccuracies in median detection
are not larger than 10% of the bounding box size for all categories

Data Name x axis y axis
√

(x2 + y2)

Motorbikes 0.0251 (0) 0.0577 (0) 0.0463 (0)

Airplanes 0.0516 (0.0281) 0.1048 (0.0938) 0.0699 (0.0495)

Faces 0.0743 (0.2018) 0.0325 (0.0313) 0.0583 (0.1313)

Fig. 9 (Color online) 5 parts from the car side model used in the lo-
calization task. The parts shown correspond to the two wheels, front
and rear ends, and the top-rear corner. The complete model includes
38 parts, most of them with clear semantics. While the model is not

symmetric w.r.t. to the x axis, it is not far from being so. It hence hap-
pens that a car is successfully detected, but its direction is not properly
identified
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Fig. 10 (Color online) Hidden center probability maps and car de-
tections. In each image pair, the left image shows the probability map
for the location of reference point C. The right image shows the 5
parts from Fig. 9 superimposed on the detected cars. Top Successful
detections. Notice that the middle of a gap between two cars tends to
emerge as a probable car candidate, as it gains support from both cars.

Bottom Problematic detections. The third example includes a spurious
detection and a car detected using the model of the ‘wrong’ direction.
The bottom example includes a spurious ‘middle car’ between two
real cars. Values in the probability maps were thresholded and linearly
transformed for visualization

reported in Table 5, as well as median scores for the null hy-
pothesis, stating that the object is located at the image center.
Clearly the final localization is quite accurate in these exper-
iments. Note, however, that these results are only significant
for the faces data set—the only one (in the CalTech data)
with any meaningful variation in object location, as can be
seen in the scores of the null hypothesis. Similar effects were
noticed in Loeff et al. (2005).

5.5.2 UIUC Cars Side Data

The data includes cars facing both directions (i.e. left-to-
right and right-to-left). We therefore flip the training images
prior to training, such that all cars face the same direction.
At the test phase we run the exhaustive search for the learnt

model and its mirror image. We detect local maxima in the
hidden center map, sort them according to likelihood, and
prune neighboring maxima in a way similar to the neigh-
borhood suppression technique suggested in Agarwal et al.
(2004). Figure 10 presents some probability maps and de-
tected cars, illustrating typical successful and problematic
detections. Each detection is labeled as hit or miss using the
criterion used in Agarwal and Roth (2002) (which is slightly
different from the one used in Agarwal et al. (2004)), to
allow for a fair comparison with other methods. Figure 11
presents a precision-recall curve and a comparison of the
achieved localization performance to several recently sug-
gested methods. Our results are comparable to those ob-
tained by the best methods, and are inferior only to classi-
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Fig. 11 a Recall-Precision curve for cars side detection, using the model shown in Fig. 9. b Error rates (recall = 1 − precision) obtained on the
cars side data by several recent methods. Our performance is comparable to the best methods of weakly supervised learning

fiers learnt using ‘strong’ supervision, in the form of im-
ages with parts segmentations (e.g. the stronger classifiers
in Leibe et al. 2004). In such a method part identities are
not learnt but chosen manually, and so the learning task is
simpler.

6 Discussion

We have presented a method for object class recognition and
localization, based on discriminative optimization of a rela-
tional generative model. The method combines the natural
treatment of spatial part relations, typical to generative clas-
sifiers, with the efficiency and pruning ability of discrimi-
native methods. Efficient, scalable learning is achieved by
extending boosting techniques to a simple relational model
with conditionally dependent parts. In a recognition task,
our method compares favorably with several purely gener-
ative or purely discriminative systems recently proposed. In
a localization task its performance is comparable to the best
available methods.

While our recognition results are good, (Opelt et al.
2004a; Serre et al. 2005) report better results obtained using
discriminative methods which ignore geometric relations
and focus instead on feature representation. Specifically, in
Opelt et al. (2004a) segmentation based features are used,
while in Serre et al. (2005) features are based on flexible
exhaustive search of ‘code book’ patches. The recognition
performance of these approaches relies on better feature ex-
traction and representation, compared with our simple com-
bination of interest point detection and DCT-based repre-
sentation. We regard the advances offered by these meth-
ods as orthogonal to our main contribution, i.e. the efficient
incorporation of geometrical relations. The advantages can
be combined by combining better part appearance models
and better feature extraction techniques with the relational
boosting technique suggested here. We intend to continue
our research along these lines.

The complexity of our suggested learning technique is
linear in the number of parts and features per image, but
it may still be quite expensive. Specifically, the inference
complexity of the hidden center C is O(NcNf P ) where Nc

is the number of considered center locations, and this infer-
ence is carried for each image many times during learning.
This limits us to a relatively crude grid of possible center
locations in the learning process, and hence limits the accu-
racy of the location model learnt. A possible remedy is to
consider less exhaustive methods for inferring the optimal
hidden center, based on part voting or mean shift mode es-
timation, as done in (Leibe et al. 2004). Such ‘heuristic’ in-
ference solutions may offer enhanced scalability and a more
biologically plausible recognition mechanism.

Finally, leaving technical details aside, we regard this
work as a contribution to an important debate in learning
from unprocessed images, regarding the choice of genera-
tive vs. discriminative modeling. We demonstrated that com-
bining generative relational modeling with discriminative
optimization can be fruitful and lead to more scalable learn-
ing. However, this combination is not free of problems. Our
technical problems with covariance matrix learning and the
tendency of our technique to produce ‘exaggerated’ models
are two examples. The method proposed here is a step to-
wards the required balance between the descriptive power
of generative models and the task relatedness enforced by
discriminative optimization.
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Appendix 1: Feature Repetition and ML Optimization
in a Star Model

Allowing feature repetitions, we derived the likelihood ap-
proximation (10) for our star model. For a set of object im-
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ages {Ij }nj=1. This approximation entails the following total
data likelihood
n∑

j=1

logP(Ij |�)

= n logK0 +
n∑

j=1

log

[
max

C

P∏

K=1

max
x∈F(Ij )

P (x|C,θk)

]

= n logK0 +
n∑

j=1

max
C

P∑

K=1

max
x∈F(Ij )

logP(x|C,θk). (33)

The maximum likelihood parameters � = (θ1, . . . , θP )

are chosen to maximize this likelihood. In this maximiza-
tion, we can ignore the constant term n logK0. To simplify
further notation let us denote parts’ conditional log likeli-
hood terms by gj (C, θk) = maxx∈F(Ij ) P (x|C,θk). Also de-
note the vector of the hidden center variables in all images
by C = (C1, . . . ,Cn).

max
�

[ n∑

j=1

max
C

P∑

K=1

gj (C, θk)

]

= max
(C1,...,Cn)

[
max

�

n∑

j=1

P∑

K=1

gj (Cj , θ
k)

]

= max
C

P∑

K=1

max
θk

[ n∑

j=1

gj (Cj , θ
k)

]
. (34)

For any fixed centers vector C, and any 1 ≤ k ≤ P , the
optimal θk is determined as θk = arg maxθ G(θ, C) where
G(θ, C) = ∑n

j=1 gj (Cj , θ). Hence, for any C, the optimal

part parameters θk are identical, as maxima of the same
function. Clearly the maximum over C also posses this prop-
erty.

The proof can be repeated in a similar way for the star
model presented in Fergus et al. (2005), in which the center
node is an additional ‘landmark’ part, as long as the sum
over all model interpretations in an image is replaced by the
single maximal likelihood interpretation.

Appendix 2: Part Weights Introduction

Here we establish the functional equivalence between clas-
sifiers with and without part weights for weak learners of the
form (14). We use the identity

logG(x|μ,�) − ν = α[logG(x|μ′,�′) − ν′] (35)

where

μ′ = μ, �′ = α�,

ν′ = 1

α

[
ν + d(1 − α)

2
log 2π + 1 − α

2
log |�| − αd

2
logα

]

to introduce part weights into the classifier. This identity is
true for all α > 0. We apply this identity to each part k in the
classifier (14), with αk = |�k

a |−1/d , to obtain

f (I) =
P∑

k=1

max
x∈F(I)

logG(x|μk
a,�

k
a) − νk

=
P∑

k=1

αk[ max
x∈F(I)

logG(x|μk
a,�

k′
a ) − νk′ ] (36)

where �k′
a = αk�k

a is has a fixed determinant of 1 for all
parts. The weights αk therefore (inversely) reflect covari-
ance scale.

Appendix 3: Proof of Lemma 1

We differentiate the loss w.r.t. ν

0 = d

dν

N∑

i=1

exp(−yi[f (Ii) − ν])

= −
∑

{i:yi=1}
exp(−f (Ii) + ν)

+
∑

{i:yi=−1}
exp(f (Ii) − ν). (37)

For f̃ = f − ν, (37) gives property (21). Solving for ν gives

exp(ν)
∑

{i:yi=1}
exp(−f (Ii))

= exp(−ν)
∑

{i:yi=−1}
exp(f (Ii)) (38)

from which (20) follows. Finally, we can compute the loss
using the optimal ν∗

N∑

i=1

exp(−yi[f (Ii) − ν∗])

=
[ ∑

{i:yi=−1} exp(f (Ii))∑
{i:yi=1} exp(−f (Ii))

] 1
2 ∑

{i:yi=1}
exp(−f (Ii))

+
[ ∑

{i:yi=−1} exp(f (Ii))∑
{i:yi=1} exp(−f (Ii))

]− 1
2 ∑

{i:yi=−1}
exp(f (Ii))

from which (22) follows.
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