The Fourier Transform

Given a continuous function \(f(x) \), its Fourier transform \(F(u) \) is defined as:

\[
F(u) = \int_{-\infty}^{+\infty} f(x) e^{-i2\pi ux} dx
\]

The inverse transform is:

\[
f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(u) e^{i2\pi ux} du
\]

In general the transform is complex:

\[
F(u) = R(u) + iI(u)
\]

Amplitude:

\[
|F(u)| = \sqrt{R^2(u) + I^2(u)}
\]

Phase:

\[
\phi(u) = \tan^{-1}\left(\frac{I(u)}{R(u)} \right)
\]
The Discrete FT (DFT)

- Defined as:
 \[F(u) = \sum_{x=0}^{N-1} f(x) \exp\left[-i2\pi ux / N\right] \]

- The inverse transform is:
 \[f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u) \exp[i2\pi ux / N] \]

The Convolution Theorem

- The convolution of two functions \(f(x) \) and \(g(x) \), denoted by \(f(x) * g(x) \), is defined by the integral:
 \[f(x) * g(x) = \int_{-\infty}^{+\infty} f(a) g(x-a) da \]

- The Fourier transform of the convolution \(f(x) * g(x) \) is the pointwise product of the two Fourier transforms \(F(u)G(u) \), and vice versa:
 \[f(x) * g(x) \iff F(u)G(u) \]
 \[f(x)g(x) \iff F(u) * G(u) \]
The Sampling Theorem

- A bandlimited signal $f(x)$, with cutoff frequency w, can be reconstructed exactly from uniform samples taken at frequency at least $2w$.

- Reconstruction is performed by convolving the discrete signal with the (properly scaled) sinc function:

$$\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$
Sampling and Reconstruction

Box filter

Hat filter

Gaussian filter
Proper Sampling

- Continuos input
- Prefilter
- Bandlimited continuous signal
- Sample
- Discrete output