
Structure From Motion: Tomasi-Kanade

Factorization

1 The Orthographic Camera Model and the

Low Rank Result

P points are tracked along F frames. Let ufp and vfp denote the 2D image
location of the point p in frame f . Let Xp, Yp and Zp denote the 3D coordi-
nates of point p. Let U = (ufp), V = (vfp) and W = (wij) where wi,j = uij

and wi+F,j = vij for 1 ≤ i ≤ F , i.e. W =

[

U

V

]

.

In the orthographic camera model, points in the 3D world are projected
in parallel onto the image plane. For example, if the camera’s optical center
is in the origin (w.r.t 3D coordinate system), and its u, v axes coincide with
X,Y axes in the 3D world, then taking a picture is a simple projection:
(

u

v

)

=

[

1 0 0
0 1 0

]





X

Y

Z



. The depth, Z, has no influence on the image.

In this model, a camera can undergo rotation, translation, or a combina-
tion of the two:

(

ufp

vfp

)

=

[

1 0 0
0 1 0

]



R′

f





Xp

Yp

Zp



 + tf



 (1)

where R′

f is the 3 × 3 matrix that describes the rotation of the f frame
and tf is the 3 × 1 vector that describes the translation of frame f . Define

Rf =

[

1 0 0
0 1 0

]

R′

f (Rf is a 2 × 3 matrix) then equation (1) becomes:

(

ufp

vfp

)

= Rf





Xp

Yp

Zp



 + tf (2)

Stacking together the projections of all the points at time (frame) f gives:
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(

uf1 · · · ufP

vf1 · · · vfP

)

= Rf





X1 · · · XP

Y1 · · · YP

Z1 · · · ZP



 +
(

tf · · · tf
)

(3)

Stacking the projections of all points along the entire sequence together
yields:

















uf1 · · · ufP

u21 · · · u2P

. . .

uF1 · · · uFP

v11 · · · v1P

vF1 · · · vFP

















2F×P

=



























iT1
iT2
...
iTF
jT
1

jT
2

...
jT
F



























2F×3





X1 · · · XP

Y1 · · · YP

Z1 · · · ZP





3×P

+



























t11 · · · t11
t12 · · · t12
...

t1F · · · t1F
t21 · · · t21
t22 · · · t11
...

t2F · · · t2F



























2F×P

(4)

where Rf =

[

iTf
jT
f

]

. Let W =

















uf1 · · · ufP

u21 · · · u2P

. . .

uF1 · · · uFP

v11 · · · v1P

vF1 · · · vFP

















2F×P

, M =



























iT1
iT2
...
iTF
jT
1

jT
2

...
jT
F



























2F×3

S =





X1 · · · XP

Y1 · · · YP

Z1 · · · ZP





3×P

and T =



























t11 · · · t11
t12 · · · t12
...

t1F · · · t1F
t21 · · · t21
t22 · · · t11
...

t2F · · · t2F



























2F×P

.

Using these notations, equation (4) is:

W = MS + T (5)

The matrix M has 3 columns, hence rank(M) ≤ 3. The matrix S has 3
rows, hence rank(S) ≤ 3. All the columns of the matrix T are identical,
hence rank(T ) ≤ 1. This implies rank(W ) ≤ 4.
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1.1 Eliminating the Translation

Define a 2F ×P matrix W̃ by subtracting the mean of each row i of W from
each of the entries of the ith row of W :

W̃ = W






I −

1

P







1 1 · · · 1
...
1 1 · · · 1












(6)

Substituting equation (5) into equation (6) yields:

W̃ = W






I −

1

P







1 1 · · · 1
...
1 1 · · · 1












= (7)

(MS + T )(I −
1

P







1 1 · · · 1
...
1 1 · · · 1






) = (8)

MS(I −
1

P







1 1 · · · 1
...
1 1 · · · 1






) + T (I −

1

P







1 1 · · · 1
...
1 1 · · · 1






) = (9)

MŜ (10)

where Ŝ is a the matrix of 3D coordinates centred around the origin (sub-
tracting the mean of each coordinate from all the points). The last equation
is true because subtracting the average of each row from the matrix T results
in the matrix of all zeros.

1.2 Factorizing the matrix W̃

Our goal is to factorize the matrix W̃ to M2F×3 and Ŝ3×P such that W̃ = MŜ.
The Singular Value Decomposition (SVD) of W̃ is:

W̃ = UDV T (11)

where U2F×2F and VP×P are orthonormal matrices and the matrix D is diag-
onal (with non negative entries on its diagonal sorted in decreasing order).
If there is no noise, the matrix W̃ is a rank 3 matrix. Hence only the first 3
entries on the diagonal of D are non-zeros. Equation 11 can be written as:

W̃ = U ′D′V ′T (12)
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where U ′ and V ′T are obtained by taking the first 3 columns of the matrices
U and V respectively and the matrix D′ is the principal 3 × 3 block of the
matrix D.

Define M̃ = U ′

√
D′ and S̃ =

√
D′V ′T and we have factorized the matrix

W̃ to matrices of the required dimensions. However, the factorization is not
unique, and the matrices we have obtained are likely not be the matrices M

and Ŝ

1.3 Ambiguities and the Metric Constraints

The factorization of W̃ is not unique. For every 3 × 3 invertible matrix A,

W̃ = M̃S̃ = M̃AA−1S̃ = MŜ (13)

Our goal is to find an invertible A such that M = M̃A and S = A−1S̃.
To find such an A we will use the metric constraints:

iTf if = 1 ⇒ ĩTf AAT ĩf = 1 (14)

jT
f jf = 1 ⇒ j̃T

f AAT j̃f = 1 (15)

iTf jf = jT
f if = 0 ⇒ ĩTf AAT j̃f = 0 (16)

These equations are quadratic in A. To solve them, we define C = AAT and
then solve linear equations for C (6 unknowns as C is a 3 × 3 symmetric
matrix). Then we factorize C (using Cholesky or SVD) to obtain A.

After finding A, there still remains orthographic ambiguity (if Q is or-
thogonal and M satisfies the metric constraints so does MQ). this ambiguity
corresponds to the specific definition of the 3D coordinate system.
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