
A Scheme for Single Instance Representation in
Hierarchical Assembly Graphs

Ari Rappoport

Institute of Computer Science, The Hebrew University, Jerusalem 91904, Israel.

http://www.cs.huji.ac.il/∼arir. arir@cs.huji.ac.il.

Abstract: The Hierarchical Assembly Graph (HAG) is a common representation for
geometric models. The HAG is a directed acyclic graph. Nodes in the graph represent
objects, and arcs denote the sub-part relation between objects. Affine transformations
and other instantiation parameters are attached to the arcs. An instance of an object in
a HAG is defined as a path ending at its node. Information common to all instances
whose paths end at a given node can be attached to this node. Data associated with a
single instance cannot be attached to any single node or arc in the graph. Such private
data can be stored in an external list, hash table, or a partial expansion of the graph
into a tree, but all of these schemes have severe drawbacks in terms of storage, access
efficiency, or update efficiency.

In this paper we present a scheme for representing single instances in the assembly
graph itself, by identifying an instance with the last node in its path when the only way
of reaching the last node is through a unique path starting at the first node of the path.
We give an algorithm for singling an instance in the graph, i.e. transforming the graph
into an equivalent one in which the instance can be identified with a node. We also
show how to undo an instance’s singling when its private data is no longer needed.

Keywords: Assembly, Hierarchical Assembly Graph (HAG), geometric data struc-
tures, single instance representation, singling algorithm.

Publication: IFIP Conference on Geometric Modeling in Computer Graphics, Gen-
ova, Italy, June 1993. Published in: Falcidieno, B., Kunii T.L. (eds), Geometric Mod-
eling in Computer Graphics, pp. 213-224, Springer, 1993.
Note: the present copy is an updated version.

1 Introduction

One of the most important activities in computer-aided design and computer graphics
is the design of geometric models [Hoffmann89, Mäntylä88]. The preferred way of
designing a model is hierarchically, by composing objects or parts into more complex

1



objects. A common method of representing such a model is by a hierarchical assembly
graph (HAG), a directed acyclic graph in which nodes denote objects and arcs denote
the sub-part relation between objects. Geometric and other parameters related to the
model can be attached to the nodes or the arcs. The most common example is attaching
affine transformations to arcs to denote relative placement and scale of part and sub-
part [Braid78].

An important observation regarding the HAG is that internal nodes do not repre-
sent instances of objects in the final model, but ‘generic objects’. The generic object
appears in as many instances as there are paths leading to it from the root of the graph.
The HAG has two notable advantages: space efficiency – information common to all
instances generated from the same generic object (including their sub-graphs) is stored
only once; and fast update – modification of parameters or information in the generic
object is instantaneously reflected in all its instances in the graph.

In many cases it is desired to attach data to a single instance. For example, saying
that the color of one chair in a meeting room is different from the default color of the
other chairs; or that a specific screw in a machine has a unique mark on top. In this
paper we call this type of data private instance data, and assume that there is no special
structure imposed on it, i.e., private data of one instance is independent of private data
that may be attached to other instances. Note that since our graph can be instantiated as
a sub-part in another graph, we actually want to associate private data with a sub-path
in this other graph (a sub-instance).

An instance is specified by a path in the graph, therefore private data cannot be
attached to a single node or arc. There are some simple methods for single instance
representation, which include an external list or hash table, an expansion of the graph
into a tree, and storage of a partial expanded tree having only paths leading to instances
with private data. Each of these schemes has disadvantages in terms of storage, access
efficiency, or update efficiency, to be described later.

We are not aware of substantial previous work on the issue of single instance
representation or even on the representation of assemblies. There is a rich literature
on boundary representations (see the textbooks [Hoffmann89, Mäntylä88]) and some
work on hierarchical boundary models, e.g. [Floriani88]. Braid [Braid78] and Lee and
Gossard [Lee85] describe assembly data structures which are essentially hierarchical
assembly graphs. A more complex assembly structure, including symbolic repetitions
and recursions, is described in [Emmerik93]. A modeling system using sequences of
parameterized transformations is described [Rossignac89], and a method for interactive
editing of a node’s affine transformation is detailed in [Rossignac90]. None of these
papers deals with the general problem of associating private data to single instances in
geometric hierarchies. Requicha and Chan [Requicha86] briefly discuss the fact that
single instances correspond to paths, in the context of representing features and toler-
ances in CSG. Rossignac [Rossignac86] presents a technique for storing, at any node,
lists to sub-node instances, using a relative path. These references are used to override
the inherited attributes for that instance during evaluation. However, usage of private
instance data is done by expanding the graph into a tree.

The single instance representation issue is extremely practical, and was probably
solved ad-hoc in many systems. The lack of literature may be attributed to the existence
of seemingly simple and obvious solutions. However, the issue is important enough to

2



justify a separate discussion, and its elegant and efficient solution is not as simple as
first imagined.

This paper has two main contributions. First, we discuss the single instance repre-
sentation issue in a general manner, defining the problem and the requirements from a
solution. We describe numerous obvious solutions and show that they are not efficient
in terms of time and space.

Second, we present a scheme for representing single instances in the assembly
graph itself, by identifying an instance with the last node in its path when the only
way of reaching it is through a unique path from the first node. We give an algorithm
for singling instances in the graph, i.e., transforming the graph into an equivalent one
in which the instance can be identified with a node. We also show how to undo an in-
stance’s singling when its private data is no longer needed. The elegance of our scheme
lies in that it enables private data to be stored uniformly within the graph itself, in a
similar way to storage of common data and transparently to algorithms manipulating
the graph.

Section 2 defines the problem and discusses the advantages and disadvantages of
the simple solutions. Section 3 presents the singling algorithm and some of its proper-
ties, and also shows how to undo the effects of the algorithm in order to delete private
instance data once it is not needed.

2 Instances in Hierarchical Assembly Graphs

In this section we motivate and define the problem of representing single instances in
hierarchical assembly graphs. We define the terms strict instance and sub-instance,
discuss simple solutions to the problem and show that they have severe disadvantages.

2.1 The Hierarchical Assembly Graph (HAG)

A geometric model is best designed hierarchically, by composition of simple objects
into more complex ones. The natural way of representing such a model is by a directed
acyclic graph (DAG) 1. A node in the graph represents a generic object. We denote
objects and nodes by capital letters (A,B,N ), where ‘object A’ means the sub-graph
rooted at node A. An arc in the graph from node A to node B means that object B

is one of the objects used in defining object A. We say that the meaning of the arc
is an instantiation of the generic object B; we also refer to B as a sub-object of A

and to A as a parent of B. We denote arcs by small letters (ei, ek). Note that it is a
mistake to denote an arc by the pair of nodes it connects, since there may be several
arcs connecting the same two nodes; an object can utilize another object more than
once.

Figure 1(a) gives a textual specification of a simple HAG, in the notation described
in [Emmerik93]. The same HAG is visualized in Figure 1(b); bold, hatched arcs denote
several arcs, numbered in the range shown to their right. Figure 1(c) shows a possible
object represented by the HAG.

1By requiring that the graph be acyclic we rule out using it for representing fractal-like objects. This is
not a practical limitation. See [Emmerik93] for a description of a system allowing cyclic graphs.

3



(a) (b) (c)

Y = 2Z

Z = block

1..5

1..2

X = 5Y X

Y

Z

Figure 1: An example of a HAG.

Various parameters of an instantiation are attached to the corresponding arc. One
such common parameter is an affine transformation expressing the placement and scale
of a sub-object relative to those of its parent. There may be other parameters, for ex-
ample, if the sub-object is an object parameterized by dimensions then an instantiation
can supply the desired dimensions.

As an illustrative example, Figure 2 gives pseudo-code for displaying a model rep-
resented in a HAG, assuming: (1) all children of a node are combined with the set union
operator, (2) every node has a color attached to it which is inherited by its children, (3)
there are display functions available for the geometric primitives in the leaves of the
graph.

Display (Node N) {
UpdateCurrentColor (Color(N))
if N is a leaf

DisplayPrimitive (Geometry(N))
else

for each arc e ∈ OutArcs(N) {
PushGraphicsState()
MultCurrentTransformation (Transformation(e))
Display (DestinationNode (e))
PopGraphicsState()

}
}

Figure 2: A procedure for displaying a model represented
by a hierarchical assembly graph.

2.2 Instances

The HAG is a graph and not a tree since one generic object may be instantiated more
than once, by different objects or even by the same object. For example, in mechanical
engineering there is a large number of standard parts which are commonly utilized in

4



many of the components of a machine. In interior design, the same chair, lamp, or tile
can be used many times in a building.

We define a strict instance of an object A in the graph as a path in the graph starting
from the root and ending in A. When the path can start in any node we say that the path
is a sub-instance, because it corresponds to a strict instance in the sub-graph rooted at
the path’s first node. For simplicity, we will refer to both types as an instance and use
sub- or strict-instance only when the differentiation is needed.

An instance I is denoted by the list of the arcs on its path: I = (e1, ..., ek). Note
again that it is wrong to denote a path by a list of its nodes since this creates an ambi-
guity when there is more than a single arc connecting the same two nodes. Note also
that an instance’s path does not have to end in a leaf.

We say that an instance contains another if its path contains the other instance’s
path. Instances overlap if their paths have common arcs.

2.3 Single Instance Representation

Information common to all instances of a node is attached to the node. This information
may include the object’s basic geometry, default color and material, and so on. It may
be desired to associate private data to an instance. As examples, pin number 1 in a
VLSI chip should be marked by a slight change in geometry; In Figure 1 the block
pointed to by the arrow needs to be drawn in a different color. We call the operation of
associating private data to an instance I a singling of I .

Private instance data cannot be attached to any specific node or arc in the graph
since it is associated with a whole path in the graph. A scheme for representing single
instances is needed. Note that private instance data should not be lost when the object
is instantiated in another object; this is the whole point in hierarchical design. Hence,
a requirement from such a scheme is that it be capable of representing sub-instances
(corresponding to partial paths), not only strict instances (corresponding to paths from
the root).

On the other hand, there is no reason why a single instance representation scheme
should be required to represent two overlapping or containing instances. From the
point of view of the design process, it is meaningless to associate different private data
with two such instances; it only matters which object is instantiated and through which
path from the root.

An interesting issue is the way in which instances are specified. In an interactive
system, the user is obviously not expected to type in whole paths in the graph. Instead,
he/she can graphically select one strict instance and be given the power to step up and
down its path to narrow or widen it. An instance may also be the result of querying.
For example, instances located in a specified area of space, touching a specified object,
or visible from a certain location. Instance specification is an orthogonal issue to the
instance representation issue discussed in this paper.

2.4 Possible Solutions: List, Hash Table, Partial Tree and Graph

A very simple scheme for single instance representation is to expand the graph into
a tree, in which case private data can be attached to any node because there is only

5



one way of reaching a node. However, this method loses the two main advantages
of the graph. Storage efficiency is lost because common instance information will be
duplicated. For large models this becomes prohibitive. Update efficiency is damaged
because a modification of a generic object is no longer automatically reflected in all of
its instances, and requires traversing the tree and performing the modification on every
duplicated node.

A second scheme for single instance representation is to store the instances in a
separate, external structure, in which a single entity corresponds to a path in the as-
sembly graph. This scheme has the appealing interpretation that the graph stores the
common instance information and the other structure stores the differing information.

The external structure can be a simple list whose nodes correspond to paths in the
graph. This scheme requires a search in the list each time an instance is visited in the
graph, in order to determine whether it has an associated private data. A hash table
can be used instead of a list to make the search more efficient, but there are problems
in designing efficient hash functions, especially that a key here is of varying length.
Another alternative, an array indexed by an instance’s serial number, consumes too
much space and creates consistency problems when the numbers change as a result of
a change in the HAG.

It is possible to combine both schemes by using a partial tree. A partial tree is
an expansion of the graph into a tree having only the paths leading to instances with
private data. Figure 3 shows a HAG (a) and a partial tree singling the sub-instance (5)
(b). Arcs 6 and 7, which are not contained in any path leading to sub-instance (5), do
not appear in the partial tree. A traversal of the graph is accompanied by a coordinated,
synchronized traversal of the tree to identify the existence of private data.

The partial tree scheme is indeed attractive for representing strict instances, but not
for sub-instances. Suppose that an object B with private instance data is used a large
number of times in an object A, i.e., it appears in many paths in the graph of A. The
partial tree will duplicate all of the instances of object B, but all the duplicates will be
identical (Figure 3(b)). We see that the partial tree has the same disadvantages as the
fully expanded tree in terms of storage and update efficiency.

(a) (b) (c)

1..2

3..4

5 6..7

1 2

3 4 3 4

5 5 5 5

1..2

3..4

5

Figure 3: (a) A HAG, (b) a partial tree singling sub-instance (5), (c) a partial graph
singling the same instances.

6



A solution may be to store a partial graph instead of a partial tree. In a partial graph,
instances are represented by a partial tree rooted at the first node on the instance’s
path, and all arcs which do not lead to the first node are removed from the graph.
Figure 3(c) shows a partial graph singling instance (5); arcs 6 and 7 do not appear,
while parts leading to the first node of instance (5), the third node, are stored as a
graph. This scheme presents a problem when an instance whose path contains the path
of a singled instance is to be singled, with different data (for example, instance (1, 3, 5)
in Figure 3(c)). An algorithm is required for singling instances in partial graphs.

The singling algorithm presented in the next section singles instances in general
directed acyclic graphs. As such, it can be used on the partial graph too. However, it
can be used directly on the original graph, obviating the need for the partial graph.

3 A Scheme for Instance Singling

In this section we present a scheme for singling instances in directed acyclic graphs.
The scheme stores instances as equal-status nodes in the graph. We give an algorithm
for instance singling and show how to undo its effects.

3.1 General Idea

The main observation on which the scheme is based is that a path (hence an instance)
can be identified with its last node, if and only if the only way of reaching the last
node of the path is through a unique path starting from the first node. Another way of
phrasing this condition is that there is no upward ambiguity when going from the last
node up to the first node of the path. Note that the condition has two essential parts:
that the only way of reaching the last node of the path is from the first node, and that
there is only one such way. When this condition is fulfilled, the instance’s private data
can be associated with this node or with the arc directly leading to it (Figure 4).

1..m

1..n

(a)

1

1 2..n

2..m

1..n

1

1 1..n

1..m

(b) (c)

Figure 4: (a) An example of a HAG having three nodes, m + n arcs, n × m strict
instances, and n × m + m + n instances. No single node or arc can be identified with
an instance. (b) The output of the singling algorithm when singling the path (1, 1). (c)
An erroneous answer in which the path is duplicated.

The graph is transformed to achieve this situation. The transformation process
should be careful to preserve all original paths in the graphs, not to duplicate paths,
and not to add new paths. The graph in Figure 4(a) can be transformed as in (c) to

7



single the path (1, 1). However, the old path still exists in the graph. A correct solution
is shown in (b), where all and only original paths are present and no path is duplicated.

Our scheme has the advantage that it is completely transparent to graph traversal
algorithms; they operate as they ordinarily would, not knowing or caring whether the
data they find associated with a node is private or not. There is no need to search for
instances in external structures or to coordinate the traversal with one on a partial tree
or a partial graph. For example, in Figure 2, a node’s color is used to update the current
display color. The procedure is used with no change when the color belongs to a single
instance.

Every operation that could be performed on the original graph can also be per-
formed on the transformed graph. In particular, a different instance can now be singled,
so that a singled graph represents the whole assembly, including private data of many
single instances.

3.2 A Singling Algorithm

Denote the path of the instance I to be singled by I = (ej , ..., ek), 0 < j ≤ k and the
nodes it passes through by (Nj−1, ..., Nk). InArcs(N), OutArcs(N) denote the sets
of in-coming and out-going arcs of node N , respectively. Pi (for ‘parents’) denotes
the arcs in InArcs(Ni) which arrive from nodes other than Ni−1. Ei denotes the set
of arcs in OutArcs(Ni) connecting Ni−1 to Ni, other than ei. Pseudo-C code of the
algorithm is shown in Figure 5, and Figure 6 shows the main transformation performed.

The algorithm performs k − j + 1 stages, such that stage i deals with Ni, i = j..k.
Note that the order is top-down. At stage i, if ei is the only in-coming arc to node
Ni then Ni is marked as singled. If ei is not the only in-coming arc to Ni we invoke
SingleArcNode, whose function is to ensure upward disambiguity of its input node
Ni with respect to its input arc ei.

First, SingleArcNode checks whether Ni already has an unsingled brother NU
i .

If it exists, all the offending in-coming arcs of Ni are moved to this brother and Ni is
marked as singled.

If an unsingled brother does not exist, Ni is marked as unsingled renamed NU
i , and

a new brother node N I
i is created (I stands for ‘instance’ and U for ‘unsingled’.) All

the offending in-coming arcs of N I
i are moved to NU

i , as done in the previous case.
N I

i receives a copy of the out-going arcs of NU
i . This may violate upward disam-

biguity of child nodes of N I
i , since each in-coming arc of such a node becomes two

arcs (recall that upward disambiguity is the condition necessary for identifying the fi-
nal node N I

k with the singled instance.) The function SingleArcNode is now called
recursively for each child node for which upward disambiguity is required.

Note that only the arcs OutArcs(Ni) are duplicated, not the whole sub-graph de-
scending from them; both sets of arcs denoted by OutArcs(Ni) in Figure 6(b) lead to
the same nodes.

To prove that the algorithm is correct, we have to prove (1) instance I can be iden-
tified with node N I

k ; (2) the new graph is equivalent to the original one in terms of their
instances.

Define two paths to be equivalent if their respective arcs are either identical or
copies of each other and their respective nodes are either identical or brothers. Define

8



Node SinglePath (Hag H, Path I) {
denote the arcs on I by ej , ..., ek

denote the nodes on I by Nj−1, ..., Nk

for i = j to k

answer = SingleArcNode (I, ei, Ni)
return answer

}

Node SingleArcNode (Path I, Arc ei, Node Ni) {
if there is only one arc in InArcs(Ni)

mark Ni as singled
return Ni

if Ni has an unsingled brother NU
I

for each arc e ∈ InArcs(Ni)
if e 6= ei

remove e from InArcs(Ni) and append it to InArcs(NU
I )

mark Ni as singled
return Ni

mark Ni as unsingled NU
i

create a new node N I
i , mark it as singled,

and append it as a brother to NU
i

remove ei from InArcs(NU
i ) and append it to InArcs(N I

I )
OutArcs(N I

i ) = OutArcs(NU
i )

for every e ∈ OutArcs(N I
i )

if Child(e) is marked as singled
SingleArcNode (I, e, Child(e))

return N I
i

}

Figure 5: Pseudo-C code for the singling algorithm.

two graphs to be equivalent if there is a bijection between their paths such that every
corresponding pair of paths are equivalent. Define two nodes to be equivalent if the
sub-graphs rooted at them are equivalent.

It is easy to see (e.g. by exhaustive enumeration of the paths that pass through N I
i−1

and Ni) that N I
i−1

of Figure 6(a) is equivalent to this of Figure 6(b), and that N I
i and

NU
i are equivalent. Hence the graph transformation performed by SingleArcNode

yields an equivalent graph, which proves (2). To prove (1), note the following invariant:

• After stage i, for every j ≤ h ≤ i there is a singled node Nh equivalent to Ni

with no upward ambiguity.

Consequently, after stage i there exist two nodes N I
i and Nj−1 connected by a unique

singled path Nj−1, ..., N
I
i . This path can be denoted by the names of its nodes because

there is no ambiguity – only a single arc connects each pair of nodes. After the last
stage, in which i = k, we can safely identify the original path (ej , ..., ek) with node

9



N i−1

P i
E ie i

(b)

N

N i−1

i

P iE i
e i

(a)

N i
I

N i
U

II

OutArcs(N )i OutArcs(N )iOutArcs(N )i

Figure 6: The situation in (a) is replaced by that in (b). Node Ni is split into two nodes,
N I

i , which lies on the path to the singled node, and NU
i , for all the other paths.

N I
k .

The algorithm is optimal in terms of the number of nodes in the transformed graph,
since a new node is created if and only if a node with upward ambiguity must be
singled.

Finally, note that consecutive singling of each and every strict instance in the graph
will result in an expansion of the graph into a tree, since at the end no node will have
more than a single in-coming arc.

3.3 Deleting Singled Instances

In a dynamic or interactive environment it is necessary to provide a way of deleting
singled instances once their private data is no longer needed, in order to optimize the
graph’s storage and the efficiency of graph traversal algorithms. Deleting singled in-
stances is done by reversing the process shown in Figure 6; it requires a small modifi-
cation to the singling algorithm, arc counting.

Arc counting means keeping a counter on every arc ei participating in a singled
path. The counter counts the number of singled paths using this arc. Arc counting
is necessary since singling of some instance J may utilize arcs created for singling
of a previous instance I . If those arcs were to be joined automatically when deleting
instance I , instance J may not be singled anymore.

In Figure 7, singling instance (1) in the simple graph (a) results in the graph (b).
Singling instance (2) does not change the graph. Suppose it is now desired to cancel the
singling of instance (1). If this is done by joining the two nodes BI

1
and BI

2
, instance

(2) is not singled anymore. A counter on arc 2 will show that it is used for singling
some instance hence the node it leads to (BI

2
) cannot be joined to another.

When deleting singled instances, the process of joining two brother nodes together
back into one node is only done when all counters in all in-coming arcs have a value of
1. Otherwise, no joining is done and the only operation done in stage i is decrementing
the counter on arc ei.

10



1..2 1 2

(a) (b)

B B BI I
21

Figure 7: An example for the necessity of arc counters.

4 Discussion

We have motivated and defined the problem of associating private data with single
instances in hierarchical assembly graphs (HAGs). An algorithm for singling instances
was presented. The algorithm is suited for singling instances corresponding to arbitrary
paths in the graph, not necessarily paths starting at the root (strict instances) or ending
at a leaf.

The singling algorithm can be used in two ways to solve the above problem. First,
it can be used on the original HAG itself. Second, it can be used on a partial graph, as
defined in Section 2. The latter option is appealing since the common and private data
of instances are clearly separated into two structures. The former is more elegant since
the whole singling process is completely transparent to algorithms manipulating the
HAG. These operate with no modification since singled nodes are similar in structure
and functionality to the other nodes in the graph.

In this paper we have not dealt with updating singled instances after modification
of the graph itself (i.e., when adding or deleting nodes or arcs). The arc counters
(Section 3) can be easily used to notify the user that an editing operation invalidates
an instance’s private data; meaningful automatic treatment of this case is left to future
reports.

Another topic for future work is how to organize the private data when imposed on
it there is a structure different from the structure of the assembly graph (for example, if
color inheritance of instances depends upon their location and not upon their sub-part
hierarchy). It seems that in this situation an external structure cannot be avoided.

Acknowledgements
I thank Maarten van Emmerik for an enjoyable and productive collaboration, in which the issue
of single instance manipulation first arose. I thank Jarek Rossignac, Eyal Piassetsky and Martti
Mäntylä for discussions and correspondence improving my understanding of the issue.

11



References
[Braid78] Braid, I.C., On storing and changing shape information, Computer Graphics, 12(3):252-

256, 1978 (Siggraph ’78).

[Emmerik93] Emmerik, M.J.G.M. van, Rappoport, A., Rossignac, J., Simplifying interactive
design of solid models: a hypertext approach. The Visual Computer, 9:239-254, 1993.

[Floriani88] de Floriani, L., Falcidieno, B., A hierarchical boundary model for solid object
representation, ACM Transactions On Graphics 7(1):42-60, 1988.

[Hoffmann89] Hoffmann, C., Geometric and Solid Modeling: an Introduction, Morgan Kauf-
mann, 1989.

[Lee85] Lee, K., Gossard, D.C., A hierarchical data structure for representing assemblies: part
1, Computer-Aided Design 17(1):15-19, 1985.

[Mäntylä88] Mäntylä, M., An Introduction to Solid Modeling, Computer Science Press, Mary-
land, 1988.

[Requicha86] Requicha, A.G., Chan, S.C., Representation of geometric features, tolerances,
and attributes in solid modelers based on constructive geometry, IEEE J. Robotics and
Automation, 2(3):156-166, 1986.

[Rossignac86] Rossignac, J.R., Constraints in constructive solid geometry, ACM Symposium
on Interactive 3D Graphics, ACM Press, 1986, pp. 93-110.

[Rossignac89] Rossignac J.R., Borrel P., Nackman L.R., Interactive design with sequences of
parameterized transformations, in: Intelligent CAD Systems 2: Implementational Issues,
Springer-Verlag, pp. 93-125, 1989.

[Rossignac90] Rossignac, J.R., Borrel, P., Kim, J., Mastrogiulio, J., BIERPAC: basic interac-
tive editing for the relative positions of assembly components, IBM Research report, RC
17339 (#76615), October 1990.

12


