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Abstract

Proper treatment of selections is essential in parametric feature-based de-
sign. Data exchange is one of the most important operators in any design
paradigm. In this paper we address two-dimensional selections (faces and
surfaces) in feature-based data exchange (FBDE). We define the problem
formally and present algorithms to address it, in general and in various
cases in which feature rewrites are necessary. The general algorithm op-
erates at a geometric level and does not require solving the persistent
naming problem, which is required for selection support inside a single
CAD system. All algorithms are applicable to the Universal Product
Representation (UPR) FBDE architecture, and the general algorithm is
also applicable to the STEP parametrics specification.

1 Introduction

Parametric feature-based design is the dominant modeling paradigm in modern
CAD systems [Hoffmann93, Shah95]. Data exchange is in general a problem
of substantial theoretical and practical value. Consequently, feature-based data
exchange (FBDE) is an attractive issue to address in Solid Modeling. Moreover,
FBDE is a problem that is difficult and challenging technically, from both an
architectural and an algorithmic point of view.

In this paper we present an algorithm that addresses one of the fundamental
issues in FBDE: selections of two-dimensional entities. The problem of repre-
senting selections that serve as feature arguments inside a single CAD system
is usually called the ‘persistent naming’ problem, and is known to be challeng-
ing [Kripac97]. The problem of representing selections in the context of data
exchange is different, as will be discussed below.

In a previous paper [Rappoport05], we introduced the problem of handling
selections in FBDE, and gave a detailed solution to the case where the selected
entities are one-dimensional (edges and curves). In this paper we complete that
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work by presenting a solution to the case where the selected entities are two-
dimensional (faces and surfaces). The 2-D algorithm is different from the 1-D
one, and utilizes the latter where possible.

Our algorithm operates in the context of the Universal Product Represen-
tation (UPR) FBDE architecture [Rappoport03, Spitz04]. Nonetheless, the al-
gorithm is applicable to a wider class of architectures [Mun03], including the
extension of STEP to support FBDE [Pratt04]. Although the selections problem
was not explicitly recognized by the STEP effort, it should not be too difficult
to integrate our general algorithm into a STEP implementation.

As far as we know, the present paper is the first one that identifies two-
dimensional selections for FBDE as a non-trivial problem and offers a solution.
The STEP specification only specifies the file format and does not recognize
the problem explicitly, similarly to other related academic efforts such as the
EREP project [Hoffmann93], while [Mun05] presents a method that helps users
address some selections manually.

Sections 2 and 3 discuss 2-D selections, in feature-based design and in the
context of feature-based DE respectively. Section 4 reviews the UPR archi-
tecture. Section 5 describes the problem formally, and Section 6 presents the
first phase of the algorithm, the computation of a selection cover. The second
phase, dealing with the more complex case of rewrites, is described in Section
7. Section 8 discusses our implementation, and we conclude with a discussion.
We have made an effort to make the paper stand on its own; specifically, it
can be read without reading the previous 1-D selections paper. Some of the
presentation of the previous paper, mostly in Sections 4 and 5, is thus repeated
here.

2 2-D Selections in Parametric Feature-Based
Design

In parametric feature-based design, the model is represented by a directed a-
cyclic graph of operations called features. Most features either create new geom-
etry or modify a part’s existing geometry (some features only insert or modify
meta-data and other attributes). The graph can be ‘evaluated’ after each fea-
ture, generating an object that is represented using a boundary representation
(Brep). The Brep contains two components: a graph (topology) of vertices,
edges, faces and shells (Brep entities) and their interconnectivities, and con-
crete geometry corresponding to each of these entities.

During interactive design, the user defines new features or edits existing fea-
tures, and sees a 3-D graphical view of the current Brep on the screen. However,
the Brep is not used only for viewing; it is also used for defining the arguments
of some of the subsequent features. This is one of the major differences between
the parametric feature-based design paradigm and classic Constructive Solid
Geometry. Enabling such argument selection constitutes a primary constraint
on the nature of Brep representations, as discussed in [Rappoport96].



Every feature has arguments that define its semantics. Brep entities serve
as feature arguments in most of the useful and commonly used features. This is
done by letting the user select a set of Brep entities on the 3-D view and define
them as arguments to the present feature. There may be several different such
arguments for a single feature.

Brep entities can be 0-D (vertices, points), 1-D (edges, curves, loops), 2-D
(faces, surfaces) or 3-D (shells). The interesting cases in which those entities
serve as feature arguments are the 1-D and 2-D cases. In [Rappoport05] we
have given many examples for the 1-D case, perhaps the most central of which
is the edge round (or fillet) feature.

Here we focus on the 2-D case. In general, there are two types of 2-D
selections: selections whose goal is to select a surface, and selections whose goal
is to select a face (or a set of faces). The difference is that in the former case
the feature only needs the carrier surface, while in the latter case a bounded
subset of a carrier surface is needed, a subset which can be represented as the
union of a set of bounded faces.

Following are some central examples for features whose arguments include
user selected two-dimensional Brep entities:

e Extrude Until Face: the Extrude feature is the most common geometry
defining feature. It takes a parametric 2-D sketch and extrudes it to
create a 3-D shape. Extrude comes in many different variations. One
useful variation is when it is defined to be Until Face, where the created
3-D shape is trimmed when it is blocked by a selected existing Brep face
or by the carrier surface of that face. Other variants include Until Next
and Until Last, which terminate at the next or last face (or carrier surface)
encountered, respectively.

e Draft: this is a complex feature mostly used for plastic injection molding.
A set of Brep faces (or subsets of Brep faces) is skewed at a specified angle,
modifying prior geometry in a global manner. The user needs to select the
set of faces to be skewed, and to optionally sketch curves on those faces
to define face subsets.

e Shell: in this feature, the user selects a set of faces to be removed from
the current Brep. The remaining faces are ‘thickened’ and then trimmed
in order to create a valid 3-D solid.

e Offset: this feature creates a face (or a surface) defined as the offset (at
a specified distance) of a selected face (or of a set of faces, or of a carrier
surface.)

e Face Round (or Fillet, or Blend): this feature is very similar to the common
Edge Round. It creates smooth surfaces between selected faces (or sets
of selected faces), and removes from the Brep everything ‘covered’ or ‘cut
off” by those new surfaces such that the end result is a 3-D solid. Face
Round is in some sense more powerful than Edge Round, because it can
blend faces that are far from each other in the Brep topology.



e Sketch On Face: the user selects a face whose carrier surface is a plane
embedded in 3-D space, and draws a parametric 2-D sketch on this plane.
Usually, the sketch serves as one of the arguments of an Extrude feature.

Some CAD systems allow the user to select only a subset of selection required
as the feature argument, completing the rest automatically. The main automatic
completion method is to recursively add to the entities explicitly selected by the
user all entities that are adjacent with smooth connectivity (e.g., G1 continuity).

In the following sections we will give examples for all of the above features
except Sketch On Face, which for the problem in this paper is conceptually
similar to Until Face.

3 Potential Problems with 2-D Selections in FBDE

CAD systems must represent selected Brep entities in a way that generalizes
over the current geometry, because at any point in time the user may modify
the parameters of any feature. When this happens, the system plays the feature
history again, a process which usually results in a different geometry. A purely
static geometric representation of the selections would hence not be valid. This
problem is known as the persistent naming problem.

To tackle this problem, CAD systems abstract away some of the properties of
the selected entities. Usually, usage is made of properties that are independent of
the numerical values in the model and are functions of more intrinsic properties,
such as Brep topology, identities of the features (or carrier surfaces) creating
Brep entities, qualitative geometric properties (such as convexity), etc. In other
words, they represent selections using generic names that are persistent under
parameter changes (hence the term). For a general solution to generic naming
of Brep entities see [Rappoport97], and for solutions in the context of CAD
systems see e.g. [Kripac97].

When performing feature-based data exchange there are in principle no im-
mediate parametric changes. On the contrary, the main goal is to construct a
model in the target system that is as similar as possible to the model in the
source system. Hence a full persistent naming solution is perhaps not needed.
It is possible, as we do in this paper, to use representational methods that are
different in character and are closer to Brep geometry.

In order to motivate the algorithm of this paper, we first discuss a naive
solution and why it is not adequate. Consider the following algorithm for sup-
porting selections for data exchange from system U to system W: (i) identify
the selected face f in system Uj; (ii) locate the face f in system W; (iii) select it
in W and use the selection as the argument of the desired feature (the one that
the data exchange system defines presently.)

As it is phrased, this algorithm is wrong. Consider Figure 1, which shows
a Draft feature. The top row shows the situation before defining the draft, in
two different CAD systems. Note that the face drafted on the system on the
right (B) does not exist as a single face on the system on the left (A). When



exchanging from B to A, Step (ii) above would thus return a ‘failure’ answer,
although it is clearly possible to complete the draft on the left by selecting two
faces, as shown in the middle row (left).

The problem stems from the fact that the Breps on the two sides, although
geometrically equivalent (as point sets), are topologically different. This sit-
uation may arise due to various reasons. For example, suppose that the box
has been created by extruding the bottom face upwards. If the 2-D sketch
defining the face contains the ‘extra’ vertex, the extrusion creates a correspond-
ing vertical edge. The vertex may be there for the use of other features, for
manufacturing information, for assembly operations, etc.

There is an even graver potential problem, when exchanging a draft from
system A to system B. Suppose only one of the two smaller faces in A was to
be drafted (the desired result is shown in the bottom row.) This face cannot
be expressed as a union of B faces, because it is a proper subset of a B face.
The result is thus impossible to exchange directly to system B, because it is
impossible to define the desired selection. In Section 7 we will discuss our
handling of such cases.

An example containing a cylinder and the Offset feature is shown in Figure
2. CAD systems differ in the way they represent cylinders in Breps. A cylinder
can be represented in several ways: (i) using two circular edges and three faces,
one cylindrical face and two disks (on the right); (ii) using an additional edge to
split the cylindrical face (usually, this is done in order to establish a well-defined
parameterization of the face or to avoid a single face having two bounding
unconnected loops); and (iii) using two edges to split the cylinder (on the left.
Usually, this is done in order to avoid the same edge appearing twice in the
same loop.) Figure 2, left, shows the latter situation, where the user selected
the top half-cylinder face and the offset is done on that face alone. Figure 2,
right, shows the first situation, where the offset is done on the whole cylindrical
face. Again, exchanging from right to left requires selection of two faces rather
than a single one, and exchanging from left to right necessitates a wider rewrite.

4 Review of the UPR FBDE Solution

The solution presented in this paper for 2-D selections is applicable to a wide
variety of FBDE architectures. However, our specific formal problem definition
is done in the context of our UPR architecture. Therefore, in this section we
describe it briefly, emphasizing those aspects that are relevant to this paper.

The UPR is a star architecture, like most other data exchange architectures.
Export and import modules are responsible for communication with the source
and target CAD systems respectively. Starness is not a requirement for our
selection algorithms, which are applicable also to other FBDE architectures, for
example direct source to target translations.

The UPR differs from all other data exchange approaches in that it rec-
ognizes that CAD systems differ from each other, both in terms of functional
semantics and in terms of implementation of theoretically equivalent operations.
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Figure 1: Draft. Top: situation in CAD systems A (left) and B (right) before
the definition of a Draft. Note that in system A there is a Brep edge that does
not exist in system B. Middle: one possibility for the situation after the draft.
Bottom: another possibility for the situation after the draft. The small drafted
face in A does not correspond to any face in B, so the draft cannot be directly
defined in B. We address this using rewrites.



Figure 2: Offset. A cylinder can be represented using one or two cylindrical faces
(right and left respectively.) If the user selects a single face as the argument
of the offset feature, the results are different in the two cases (assuming no
automatic propagation of selections is done by the system on the left.)

Due to market forces and the richness of the feature-based design paradigm, it
is not realistic to dictate an ultimate set of features that are supported by a
CAD system. Each CAD system provides features and sub-features that are not
directly provided by other systems. In addition, due to the complexity of the
semantics of certain features, a feature’s implementation in one CAD system
might result in geometry that is somewhat different from the geometry that a
different system generates from the ‘same’ feature. That is, the feature is the
same at a certain level of abstraction (usually, overall function as perceived by
the user), but different at a detailed geometric level of abstraction. Finally, we
should expect the geometry generated by features to be different due to the
fact that different systems utilize different tolerances for different operations, a
phenomenon that plagues ordinary geometric data exchange [Qi04].

The UPR is thus explicitly designed to handle the following two cases: (i)
a data item explicitly supported by one system and not by another, and (ii)
incompatibilities between systems that can be identified only during run-time
due to lack of formal specification of implementational differences.

The UPR representation of a feature makes use of two central concepts to
address the above: rewrites and verifications. Each feature has an associated
set of rewrites, which intuitively are different ways to import that feature into
a system that had not succeeded importing it using other means. Instead of
dictating a certain fixed representation, the UPR allows an unlimited number
of representations that attempt to simulate the semantics of a feature. Rewrites
are applied at decreasing levels of abstraction, starting from fully parametric
and ending at fully geometric. In [Spitz04] we have described an algorithm for
implementing a ‘Geometry Per Feature’ rewrite, which replaces any feature by a
piece of geometry identical to the feature’s geometric effect. The Geometry Per
Feature rewrite is the first geometric rewrite attempted when all parametric
rewrites fail. There are additional geometric rewrites, e.g., replacing a set of
features by their geometric effect.



In addition to rewrites, each feature stores a set of verification data, used to
dynamically identify whether feature import has succeeded or not. Verification
data is of three main types: volume and surface area, various higher order
moments of inertia of the solid, and a cloud of points lying on the boundary of
the solid or on the faces generated (or removed) by the feature alone. Verification
data is computed at the source CAD system after invocation of the feature, then
stored at the UPR. Verification data is computed at the target system during
import and compared to the data stored at the UPR, to verify success of feature
import.

When verification fails the system attempts a graceful recovery, e.g. by ap-
plying a different rewrite. Note that a source and target system feature may
generate geometries that are slightly different but would still be regarded as
equivalent for the sake of feature-based data exchange. For example, fillets are
not necessarily required to produce the exact same geometry. Hence care must
be taken when interpreting verification results.

All of those mechanisms are taken care of at the global architectural level
and do not form a part of the selection algorithms, which operate at the feature
internal level.

5 Assumptions

In this section we state and explain our assumptions on the context in which
the selection problem occurs.

Our goal is to provide support for two-dimensional user selections that serve
as feature arguments in feature-based data exchange systems. We assume the
following assumptions, which do not pose any restriction on our algorithms
because all parametric CAD systems obey them: (i) The FBDE system defines
features one after the other in the target CAD system; (ii) When selections are
specified the target CAD system holds a boundary representation (Brep) of the
current model; (iii) The Brep conforms to the theoretical definition of a Brep, as
embodied in the concept of a selective geometric complex (SGC) [Rossignac88|;
(iv) The Brep is available for inspection and usage by the selections support
algorithm. Selections can thus be specified to the target system in terms of
identifiers of current Brep entities.

The model defined by the features up to F' (the feature containing the se-
lection that needs to be defined) is thus assumed to be correct in the sense
that the pointset at the target system is identical up to a geometric tolerance to
that at the source system. The geometric tolerance issue, resulting from floating
point computation and inexact algorithms, is one of the major problems in solid
modeling and here we do not attempt to deal with it completely.

We also assume here that identity of selection geometry is accessible through
the API of the source CAD system. Virtually all modern CAD systems provide
such access to Breps. They usually do not provide an interface to the persistent
names, but they do provide Brep interfaces to selections.

We do not assume that feature histories or Brep topologies are identical



at the source and target systems. Feature histories may be different owing to
rewrites or different feature repertoires of the source and target systems. Brep
topology (the boundary graph that represents the vertices, edges and faces and
their interconnectivity relationships) varies from system to system, as discussed
in Section 3.

For simplicity of exposition we assume in this paper that the Brep scheme in
both source and target systems is 2-manifold. Extension to non-manifold geom-
etry is beyond our scope here. Regarding terminology, ‘face’ is used for a single
bounded connectivity component of a two-dimensional part of the boundary of
the solid, lying on a single carrier surface.

6 The Selection Cover Algorithm

In this section we present the first phase of our 2-D selection algorithm. In
this phase we export selection information from the source system, find a target
model cover of the source selection, and classify its status with respect to further
actions needed to complete a proper selection. We describe the general scheme
(6.1), the export process and what data is stored in the UPR (6.2), and the
import selection cover algorithm (6.3).

6.1 The General Scheme

We had already noted above that a generic selection representation in the style
of persistent naming solutions is not essential in our case, because the geometries
on both sides can be assumed to be identical up to a tolerance. It is thus of
conceptual elegance to try to utilize only that static geometry. The general idea
is then:

e Export the geometry of the selection into the UPR.

e When selections need to be defined during import, select a subset of the
current Brep (in the target system) that covers as tightly as possible the
selections stored in the UPR.

e If there are faces in the UPR selection that cannot be exactly covered
by faces in the current Brep, create new faces or split existing faces in
the current model so that an exact cover is obtained, or use other feature
rewrites to preserve feature semantics as much as possible.

Section 3 showed that the second step is not trivial. It is not the case that
every selected face in the source system corresponds to exactly one face in the
target system. We cannot make assumptions regarding the topology of the two
Breps, only about their geometry.



6.2 Export to UPR

The goal of the export process is to make sure that all data needed during the
import phase is available in the UPR. Since the import algorithm only needs
the geometric pointset defining the selection, it is straightforward to represent
it in the UPR. Due to the philosophy behind the UPR, which is designed to
support the union of object types generated by CAD systems, we use the same
surface types used in the source CAD system. In principle there should not
be any degradation in the quality of the representation, and specifically no loss
of tolerance. We refer to the selection as stored in the UPR as the ‘source
selection’.

In some situations we may export relevant symbolic model data along with
the selection geometry. For example, when the model contains several para-
metric history graphs, the ID of the graph containing each part of the selection
can be stored with the selection geometry, in order to make it easier to locate
the target image of that body during import or in order to identify the correct
body if several bodies overlap geometrically. The IDs of the owning features of
each selection part can be used in the same manner (in the terminology of some
CAD systems, an owning feature of a Brep entity is the first feature that had
caused the entity to be added to the model’s Brep). These kinds of techniques
are obvious and we will not elaborate on them further in this paper.

6.3 Import: Selection Cover

Recall that the Brep generated by the features preceding the feature whose
arguments are our selections is assumed to be present in the target system.
What we seek in phase 1 of the import algorithm is a set of entities belonging
to that Brep that are an exact cover of the selection geometric pointset. If there
is such a set, we are done. We may need to compute the connectivity structure
of the entities to be selected as well as the entity set, in case the target system
does not allow an arbitrary selection order. If there is no exact cover, we need to
know this and provide as much information as possible to phase 2 of the import
process, the rewrite phase. For simplicity the algorithm is described for a single
connectivity component of the selection set. We assume a preprocessing stage
in which all such components have been identified. The algorithm should be
invoked on those iteratively. The algorithm targets the case where the selection
is comprised of a face or a set of faces; selection of a carrier surface is easily
implemented using a point and the normal at the point.

There are many potential methods to compute an exact cover. Below we
describe a method that relies on the power of the 1-D selection algorithm from
[Rappoport05]. That algorithm computes a cover for each source selection edge
separately, using point projection for an initial mapping plus a recursive search
based on edge overlap tests. It is possible that the cover computed for an edge
is not an exact cover, but the algorithm ensures that the union of the covers of
all selection edges is an exact cover of the whole 1-D selection set.

The 2-D selection cover algorithm (Figure 3) is different from the 1-D algo-
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Import: Selection Cover Algorithm

Denote by c the 1-D boundary of the whole source selection set.

Use the 1-D selection algorithm in order to identify c in the target
system (call it c’).

If c was covered exactly by c’
Find in the source system a single point p strictly inside the selection.
In the target system, locate a face f’ containing p.
Recursively tag adjacent faces starting from f’ and ending when

reaching an edge of c’.

Return successfully.
// note: the above works even when c is empty.

Else
// c contains points that are not in c’
// (happens when there are missing edges in the target system model)
// or ¢’ contains points that are not in ¢
// (happens when the 1-D selection algorithm finds a cover that’s too large)
// or both
compute c-c’ and give it to a rewrite algorithm.
// these are edges we want to insert explicitly into the model, if we can.

Figure 3: The selection cover phase in the import part of the 2-D selections
algorithm.

rithm in that it deals with all selection faces simultaneously, not separately. We
start by invoking the 1-D selection algorithm for the 1-D boundary (denoted
by c) of the 2-D selection set. The 1-D boundary c is always well defined; it
could be empty when the selection set contains all of the boundary of the solid.
The reader may be surprised to learn that this case does happen in practice,
when users use the Copy Faces feature in order to copy the whole connectivity
component of a solid (this is not good design practice when the CAD system
provides a Copy Body feature, of course.)

If the 1-D selection algorithm has succeeded in finding an exact cover ¢’ at
the target system, all we have to do is collect the faces that its bounds. We can
do that by finding an arbitrary point strictly inside the selection, locating a face
f> on which it lies in the target system (there may be more than one such face,
but it doesn’t matter), and performing a recursive search from f’ that ends when
reaching the 1-D selection boundary ¢’. Alternatively, we can start the search
from any edge in ¢’ in a direction determined by orientation considerations to be
in the selection (we would need to synchronize orientations to do that reliably.)
Note that this method works even if the 1-D boundary c is empty — it would
simply select all faces in the connectivity component of the solid.

Note that the halting criterion is different from that used in the 1-D al-
gorithm, where we halted when reaching an edge that does not overlap the
selection pointset. The 2-D criterion is more efficient, because it does not re-

11



quire expensive face overlap tests. It utilizes the power of the 1-D selection
algorithm. We could not have used a similar condition in the 1-D algorithm
(‘halt the edge propagation when reaching vertices that constitute the selec-
tion boundary’), because edge propagation can reach a specified vertex in many
different and complex paths across the 2-D boundary of a 3-D 2-manifold solid.

If the 1-D selection algorithm has not succeeded in finding an exact cover, it
says so and marks source edges that were exactly covered, source edges that were
partially covered, source edges that were not covered at all, and target edges
that are not fully covered by the source selection (note that here the cover is in
the opposite direction.)

Source edges that are partially covered or not covered correspond to edges
that are ‘missing’ (completely or partially) from the target system. Examples
are the vertical edge of the drafted face in Figure 1, left, and the straight edge
on the cylindrical face in Figure 2, left.

Target edges that are not fully covered by the source selection exist when
a target face covers ‘too much’ of a source face. Examples are the horizontal
edges of the drafted face in Figure 1, right, and the circular edges (at the top
and bottom) of the cylinder in Figure 2, right.

Any connected two-dimensional subset of the boundary of a 3-D solid is
completely determined by its one-dimensional boundary and a single point in
it. Asaresult, if the 1-D selection algorithm is correct (proven in [Rappoport05])
then the algorithm above is correct as well.

7 Rewrites

The second and more complex phase of the import 2-D selection algorithm is
when rewrites are necessary because an exact selection cover could not be found.
In this section we classify the possible types of rewrites and give examples and
algorithms for most of them.

7.1 Face/Carrier Rewrite

The simplest type of rewrite is when the feature semantics really needs only
the carrier surface of a face, but for some reason it is not possible to define the
carrier in exactly the same manner in both source and target systems.

As an example, take the ‘Mirror By Plane’ feature, which requires the selec-
tion of a datum plane (introduced to the model by some earlier operation), and
unites the current model with its mirror across the plane. Suppose that in the
source system there is no such feature but there is a ‘Mirror By Face’ feature,
having exactly the same semantics but which requires the user to select a face,
not a plane, and uses the face’s plane. Suppose that the target system has only
Mirror By Plane and does not have Mirror By Face. The selection algorithm
from the previous section will succeed finding the face, but the feature import
will fail as a whole because the target system doesn’t have the corresponding
feature.
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A simple rewrite of the source Mirror By Face to a target Mirror By Plane
will solve the problem. The rewrite should modify the name of the feature
and also convert the selection of a plane to the selection of a face. The face is
specified by ‘any planar face lying on a given plane’. Implementing this selection
is easy.

Note that in this case the selection algorithm from Section 6 is not entered
at all. This rewrite is done at a higher level in the system, and is a feature
rewrite, not a selection-only rewrite.

7.2 Face/Edge Round Rewrite

A situation that is somewhat similar to the previous one is with the Round
(Fillet) features. In Figure 4, we see two CAD systems (left, right), before (top)
and after (bottom) a Face Round feature (in this case it creates a fillet.) On
the right, the fillet is around the full perimeter of the vertical cylinder, because
the cylinder is represented as a single cylindrical face. On the left, the cylinder
is broken into two faces, and the fillet does not go beyond the thin box.

When exchanging from left to right, we get a wrong result. In this case
rewriting the Face Round feature to an ordinary (edge based) Round feature
solves the problem. The rewrite should identify which edges between the two
selected faces were covered (replaced) by the fillet, and provide those edges to
the Round feature on the right.

Note that this solution is not always possible, because it is in principle
possible that there are no intersection edges between the two faces of a Face
Round feature; the power of this feature is in defining long distance fillets and
rounds (imagine the intersection edge on the left as a small face completely
obliterated by the fillet.) If this is the case there is no simple symbolic solution,
and the situation can be addressed by the rewrite described next (Edge or Face
Insertion), or by the general Geometry Per Feature rewrite [Spitz04].

7.3 Edge or Face Insertion Rewrite

The most common case in which the algorithm of Section 6 fails is when there are
‘missing’ edges in the target system. A direct rewrite for tackling this problem
is to explicitly insert those edges into the model. Some CAD systems support
a ‘split face by adding a new edge’ feature. In this case this feature is used for
inserting the required edges.

This is a nice example of the power of the rewrite concept in the UPR
architecture — as we see here, a rewrite can insert a wholly new feature if it
is needed in order to enable the parametric import of another feature into the
target system.

Unfortunately, not all CAD systems provide to the user a Split Face feature.
It is still possible that this operations is available to CAD extension program-
mers through the CAD system’s API, and can be added internally to the feature
graph. In this case we proceed as before.
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Figure 4: Face Round. Two CAD systems (left, right), before (top) and after
(bottom) of the Face Round feature.

When the above is not possible, in many systems it can still be emulated.
Many systems contain a Patch feature whose arguments are a solid Brep B and
an open surface sheet S having a material side and boundary edges that are
assumed to lie on the boundary of the solid B. The result of the feature is to
glue S to the boundary of B and discard that part of B’s boundary that lies on
the non-material side of S. We had used the Patch feature in our algorithm for
solving the Geometry Per Feature (GPF) problem [Spitz04].

To emulate Split Face using Patch, we first prepare surface sheets that coin-
cide with part of the target face and whose boundary edges include the desired
selection edges. We compute these sheets by traversing the edges returned by
the algorithm in Figure 3, and piecing them together to form connectivity com-
ponents (there may be several connectivity components, and each is patched
into the model using a different Patch feature.) Once we have those edges,
we intersect them with the carrier surface of the target system face, creating
trimming curves that specify the sheet to be patched in a well defined man-
ner. Equivalently, we can simply invoke a face-face intersection algorithm [Pa-
trikalakis02] between the source and target faces. However, care should be taken
in the implementation of this algorithm, because the faces are known to over-
lap substantially, possibly resulting in numerical problems for the intersection
algorithm.
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Having computed the desired sheets to be patched, the material side for each
is specified to be identical to that of the face. We then use each of these sheets
as the argument of a Patch feature. This process usually results in the desired
selection edges being added to the current Brep.

Figure 5 shows an example (the full solid is shown at the top, and cross
sections in the middle and bottom.) A circle is sketched on the top planar face,
and an Extrude Cut Until Face feature is performed. The face that serves as the
‘until face’ is a cylindrical face. However, when the cylinder is represented using
only a single face, it is not clear whether the cut should stop as in the middle row
or as in the last row. Initially it seems that the latter is wrong, but the reader
should note that the intersection of the initial box with the cylinder creates a
loop in the top part of the cylinder, so the Extrude Cut passes through that loop.
The problem occurs whenever the cylinder (or any other non-planar surface) is
represented using a single cylindrical face (on the left, the face contains a single
edge, and on the right it does not contain any such edges.)

The problem can be solved by preparing the desired target face and patching
it to the model. The desired target face is represented as the geometry of the
place where the Extrude Cut is supposed to stop, which is the intersection of
the Extrude Cut section and the desired part of the cylinder. That face, after
the Patch, is used as the Until Face of the Extrude Cut in the target system.

Unfortunately this solution is not guaranteed to work in every CAD system,
because it depends on the specific implementation of the patch feature and
on the target system’s general Brep policy. Many systems actively unify faces
by removing edges separating them when those faces are considered to be the
‘same’ face, e.g., when they are co-planar. The system may refuse to do the
Patch simply because it detects that no portion of the previous Brep is removed
and hence the feature is considered redundant. The problems here are the classic
problems of what is considered by CAD systems to be a valid face [Mantylag8].

Figure 6 shows another example in which Patch solves the problem. However,
in this case the problem stems from a totally different reason. Suppose that
before the Shell, the object is defined as a box from which a slot is subtracted.
In some systems, the associativity between the two top faces is retained to an
extreme extent — the system remembers that they were originally the same face,
and does not let users select each one individually. In such systems, exchanging
the middle row is not possible, and the bottom row is the only possible outcome.

In such cases what we need to do is ‘disconnect’ the associativity between
the problematic faces. In all of the systems that we handled, this can be done
by patching into the model an orphan face identical to one of the top faces.
Because the patched face can have an arbitrary geometry, the CAD system no
longer assumes that the patched face lies on the same plane as the other top
face, and breaks the associativity requirements between them. Now selecting
only the patched face is possible, so Shell produces the desired results.

This example is of course related to the ‘real’ persistent naming problem, but
implementing selections in terms of persistent naming (instead of in geometric
terms like we do in this paper) would not solve the problem — in any case the
two faces have the same persistent name and this must be broken by applying

15



& &
& &

Figure 5: Until Face. Top: solid view of an Extrude Cut of a circle sketched on
the top face, defined to be Until Face of the cylinder. On the CAD system on the
left, a cylinder is represented using three faces (two circles and one cylindrical
face) and three edges (two circular edges and one straight edge). On the right,
a cylinder is represented using a single cylindrical face, two circular faces, and
two circular edges. Middle: cross section of one option for when the Extrude
Cut stops. Bottom: cross section of another option for when the Extrude Cut
stops. (On the left, cylinders are represented using an edge that cuts across the
cylindrical face, and on the right there are no such edges.) An example such as
this can occur with any non-planar surface, not necessarily a cylinder.
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Figure 6: Shell. Left: solid view. Right: cross section view. Top: before a Shell
feature. Middle: the selection argument of the Shell feature is the top right
face. Bottom: the selection argument of the Shell feature are both top faces. In
some CAD systems, the middle option is not possible when the two top faces
have originated from the same operation.
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an explicit operation that creates another name to one of the faces.

7.4 Orphan Face Insertion Rewrite

In some cases, it is sufficient to add the desired until face as an ‘orphan’ (or
datum) face of the part, without actually patching it so that it becomes a part
of the solid’s Brep. For example, in Figure 5 this is possible. In Figure 6 it is
not possible, because the argument of the Shell feature must be a Brep face of
the solid.

Note that both options exhibit the same degree of loss of associativity, so the
orphan option may be preferable due to performance and tolerancing consider-
ations. Another consideration is which option is better from the point of view
of user interaction in case people would need to look at the resulting model. In
both options the feature graph at the target system does not look the same as
that in the source system, and it is unclear which option is less confusing. We
tend to feel that the orphan option is better because it uses fewer operations: it
only uses one additional feature (inserting the orphan), while the Patch option
uses two additional features (inserting the orphan and then patching it).

7.5 Reparameterization Rewrite

Consider again Figure 6. What if the target system does not allow patching a
new face and calling it a different face? in other words, what if the associativity
between the two top faces simply cannot be broken?

In this case we would need to rebuild the solid using different operations.
For example, instead of defining a box and removing a slot from it, we could
have sketched the vertical face as a 2-D sketch and use the Extrude feature in
order to create the solid. In both cases the same pointset is created using two
features, but the parameterization (feature history) is totally different.

General reparameterization of feature-based solids is an extremely difficult
open problem in solid modeling. In our opinion it is one of the fundamental
problems of the field, whose solution would throw light on many aspects of
general shape modeling. It is certainly beyond the scope of the present paper.
We have given the above example in order to complete the description of cases
in which 2-D selections might need rewrites.

7.6 Summary

To summarize this section, in some cases rewrites can be completely symbolic.
In most cases, our capability of creating selection faces explicitly where they did
not previously exist is a function of the feature repertoire of the target system.
When the target system does not allow a direct or emulated Split Face feature,
it may still be possible to import the feature parametrically, by replacing it by
a totally different feature combination that achieves the same geometric effect.
This should be examined on an individual feature basis. The UPR architecture
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enables doing that through its support of feature rewrites, using a single feature
or a number of features.

8 Implementation

The 2-D selection framework described in this paper has been implemented in
the UPR architecture at Proficiency. The current UPR implementation supports
the five high-end CAD systems in the market: Catia V4, Unigraphics, I-DEAS,
ProEngineer, and Catia V5. Several versions and most of the design features
of each system are supported. The data exchange process is controlled by a
web server through a web-based user interface. The server locates export and
import ‘agents’ over a network and distributes export and import jobs according
to load parameters. The software is being used routinely in production. The
number of real parts that have been successfully exchanged is in the hundreds
of thousands.

In our implementation, the UPR file stores all relevant data, including the
selection data, represented geometrically as described in this paper. Interme-
diate computations are done on the UPR data structure or using the software
library of the target CAD system, according to implementational convenience.

We implemented the rewrites concepts of the first three types (face-carrier,
adding edges, adding faces). Patching faces is done as part of the general Ge-
ometry Per Feature rewrite. Faces are added as separate bodies (orphans) when
needed. Missing edges were added for import into I-DEAS. The fourth rewrite
type was implemented for the very small number of cases that were encountered
in practice.

9 Discussion

The issue of supporting two-dimensional selections is a crucial one in feature-
based data exchange systems and algorithms. 2-D selections are used as feature
arguments in important features such as Extrude, Draft, Offset, Shell and Face
Round. Selections are what endows models with true associativity, and FBDE
systems must support selections in a way that is as close as possible to the
design intent as expressed in the source CAD system.

In this paper we have presented the first solution to this important problem,
following our solution to the twin problem of 1-D selections [Rappoport05]. Our
solution is applicable to a wide variety of FBDE architectures, among them
the UPR and the STEP architectures, which are the only documented ones
at present (note that the UPR has been fully implemented in practice, unlike
STEP.) Our algorithms have been implemented in the UPR, architecture, and
are being used on a daily basis in real projects.

An interesting future work on our problem is to base the algorithm on the
persistent names used by CAD systems rather than on geometric data alone.
At present CAD systems do not expose those names, but the reliability and
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perhaps performance of selection exchange could be increased when utilizing
persistent names.

A highly challenging topic arising from our problem (as well as from other
problems) is that of reparameterization of parametric feature-based models.
This topic is both very deep theoretically and has useful practical applications.

Acknowledgements. The Proficiency UPR implementation is a collective
effort of the Proficiency development team, headed by Alex Tsechansky.
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