
Semi-Supervised Recognition of Sarcastic Sentences
in Twitter and Amazon

Dmitry Davidov
ICNC

The Hebrew University
Jerusalem, Israel

dmitry@alice.nc.huji.ac.il

Oren Tsur
Institute of Computer Science

The Hebrew University
Jerusalem, Israel

oren@cs.huji.ac.il

Ari Rappoport
Institute of Computer Science

The Hebrew University
Jerusalem, Israel

arir@cs.huji.ac.il

Abstract

Sarcasm is a form of speech act in which
the speakers convey their message in an
implicit way. The inherently ambiguous
nature of sarcasm sometimes makes it hard
even for humans to decide whether an ut-
terance is sarcastic or not. Recognition of
sarcasm can benefit many sentiment analy-
sis NLP applications, such as review sum-
marization, dialogue systems and review
ranking systems.

In this paper we experiment with semi-
supervised sarcasm identification on two
very different data sets: a collection of
5.9 million tweets collected from Twit-
ter, and a collection of 66000 product re-
views from Amazon. Using the Mechani-
cal Turk we created a gold standard sam-
ple in which each sentence was tagged by
3 annotators, obtaining F-scores of 0.78 on
the product reviews dataset and 0.83 on
the Twitter dataset. We discuss the dif-
ferences between the datasets and how the
algorithm uses them (e.g., for the Amazon
dataset the algorithm makes use of struc-
tured information). We also discuss the
utility of Twitter #sarcasm hashtags for the
task.

1 Introduction

Sarcasm (also known as verbal irony) is a sophis-
ticated form of speech act in which the speakers
convey their message in an implicit way. One in-
herent characteristic of the sarcastic speech act is
that it is sometimes hard to recognize. The dif-
ficulty in recognition of sarcasm causes misun-
derstanding in everyday communication and poses

problems to many NLP systems such as online
review summarization systems, dialogue systems
or brand monitoring systems due to the failure of
state of the art sentiment analysis systems to detect
sarcastic comments. In this paper we experiment
with a semi-supervised framework for automatic
identification of sarcastic sentences.

One definition for sarcasm is: the activity of
saying or writing the opposite of what you mean,
or of speaking in a way intended to make someone
else feel stupid or show them that you are angry
(Macmillan English Dictionary (2007)). Using the
former definition, sarcastic utterances appear in
many forms (Brown, 1980; Gibbs and O’Brien,
1991). It is best to present a number of examples
which show different facets of the phenomenon,
followed by a brief review of different aspects of
the sarcastic use. The sentences are all taken from
our experimental data sets:

1. “thank you Janet Jackson for yet another
year of Super Bowl classic rock!” (Twitter)

2. “He’s with his other woman: XBox 360. It’s
4:30 fool. Sure I can sleep through the gun-
fire” (Twitter)

3. “Wow GPRS data speeds are blazing fast.”
(Twitter)

4. “[I] Love The Cover” (book, amazon)

5. “Defective by design” (music player, ama-
zon)

Example (1) refers to the supposedly lame mu-
sic performance in super bowl 2010 and attributes
it to the aftermath of the scandalous performance
of Janet Jackson in the previous year. Note that the
previous year is not mentioned and the reader has
to guess the context (use universal knowledge).
The words yet and another might hint at sarcasm.

Example (2) is composed of three short sentences,
each of them sarcastic on its own. However, com-
bining them in one tweet brings the sarcasm to
its extreme. Example (3) is a factual statement
without explicit opinion. However, having a fast
connection is a positive thing. A possible sar-
casm emerges from the over exaggeration (‘wow’,
‘blazing-fast’).

Example (4) from Amazon, might be a genuine
compliment if it appears in the body of the review.
However, recalling the expression ‘don’t judge a
book by its cover’, choosing it as the title of the
review reveals its sarcastic nature. Although the
negative sentiment is very explicit in the iPod re-
view (5), the sarcastic effect emerges from the pun
that assumes the knowledge that the design is one
of the most celebrated features of Apple’s prod-
ucts. (None of the above reasoning was directly
introduced to our algorithm.)

Modeling the underlying patterns of sarcastic
utterances is interesting from the psychological
and cognitive perspectives and can benefit var-
ious NLP systems such as review summariza-
tion (Popescu and Etzioni, 2005; Pang and Lee,
2004; Wiebe et al., 2004; Hu and Liu, 2004) and
dialogue systems. Following the ‘brilliant-but-
cruel’ hypothesis (Danescu-Niculescu-Mizil et al.,
2009), it can help improve ranking and recommen-
dation systems (Tsur and Rappoport, 2009). All
systems currently fail to correctly classify the sen-
timent of sarcastic sentences.

In this paper we utilize the semi-supervised sar-
casm identification algorithm (SASI) of (Tsur et
al., 2010). The algorithm employs two modules:
semi supervised pattern acquisition for identify-
ing sarcastic patterns that serve as features for a
classifier, and a classification stage that classifies
each sentence to a sarcastic class. We experiment
with two radically different datasets: 5.9 million
tweets collected from Twitter, and 66000 Amazon
product reviews. Although for the Amazon dataset
the algorithm utilizes structured information, re-
sults for the Twitter dataset are higher. We discuss
the possible reasons for this, and also the utility
of Twitter #sarcasm hashtags for the task. Our al-
gorithm performed well in both domains, substan-
tially outperforming a strong baseline based on se-
mantic gap and user annotations. To further test its
robustness we also trained the algorithm in a cross
domain manner, achieving good results.

2 Data

The datasets we used are interesting in their own
right for many applications. In addition, our algo-
rithm utilizes some aspects that are unique to these
datasets. Hence, before describing the algorithm,
we describe the datasets in detail.

Twitter Dataset. Since Twitter is a relatively
new service, a somewhat lengthy description of
the medium and the data is appropriate.

Twitter is a very popular microblogging service.
It allows users to publish and read short messages
called tweets (also used as a verb: to tweet: the act
of publishing on Twitter). The tweet length is re-
stricted to 140 characters. A user who publishes a
tweet is referred to as a tweeter and the readers are
casual readers or followers if they are registered to
get all tweets by this tweeter.

Apart from simple text, tweets may contain ref-
erences to url addresses, references to other Twit-
ter users (these appear as @<user>) or a con-
tent tag (called hashtags) assigned by the tweeter
(#<tag>). An example of a tweet is: “listen-
ing to Andrew Ridgley by Black Box Recorder on
@Grooveshark: http://tinysong.com/cO6i #good-
music”, where ‘grooveshark’ is a Twitter user
name and #goodmusic is a tag that allows to
search for tweets with the same tag. Though fre-
quently used, these types of meta tags are optional.
In order to ignore specific references we substi-
tuted such occurrences with special tags: [LINK],
[USER] and [HASHTAG] thus we have “listen-
ing to Andrew Ridgley by Black Box Recorder on
[USER]: [LINK] [HASHTAG]”. It is important
to mention that hashtags are not formal and each
tweeter can define and use new tags as s/he likes.

The number of special tags in a tweet is only
subject to the 140 characters constraint. There is
no specific grammar that enforces the location of
special tags within a tweet.

The informal nature of the medium and the 140
characters length constraint encourages massive
use of slang, shortened lingo, ascii emoticons and
other tokens absent from formal lexicons.

These characteristics make Twitter a fascinat-
ing domain for NLP applications, although posing
great challenges due to the length constraint, the
complete freedom of style and the out of discourse
nature of tweets.

We used 5.9 million unique tweets in our
dataset: the average number of words is 14.2

words per tweet, 18.7% contain a url, 35.3% con-
tain reference to another tweeter and 6.9% contain
at least one hashtag1.

The #sarcasm hashtag One of the hashtags
used by Twitter users is dedicated to indicate sar-
castic tweets. An example of the use of the tag
is: ‘I guess you should expect a WONDERFUL
video tomorrow. #sarcasm’. The sarcastic hashtag
is added by the tweeter. This hashtag is used in-
frequently as most users are not aware of it, hence,
the majority of sarcastic tweets are not explicitly
tagged by the tweeters. We use tagged tweets as
a secondary gold standard. We discuss the use of
this tag in Section 5.

Amazon dataset. We used the same dataset
used by (Tsur et al., 2010), containing 66000 re-
views for 120 products from Amazon.com. The
corpus contained reviews for books from differ-
ent genres and various electronic products. Ama-
zon reviews are much longer than tweets (some
reach 2000 words, average length is 953 charac-
ters), they are more structured and grammatical
(good reviews are very structured) and they come
in a known context of a specific product. Reviews
are semi-structured as besides the body of the re-
view they all have the following fields: writer,
date, star rating (the overall satisfaction of the re-
view writer) and a one line summary.

Reviews refer to a specific product and rarely
address each other. Each review sentence is, there-
fore, part of a context – the specific product, the
star rating, the summary and other sentences in
that review. In that sense, sentences in the Ama-
zon dataset differ radically from the contextless
tweets. It is worth mentioning that the majority
of reviews are on the very positive side (star rating
average of 4.2 stars).

3 Classification Algorithm

Our algorithm is semi-supervised. The input is
a relatively small seed of labeled sentences. The
seed is annotated in a discrete range of 1 . . . 5
where 5 indicates a clearly sarcastic sentence and
1 indicates a clear absence of sarcasm. A 1 . . . 5
scale was used in order to allow some subjectiv-
ity and since some instances of sarcasm are more
explicit than others.

1The Twitter data was generously provided to us by Bren-
dan O’Connor.

Given the labeled sentences, we extracted a set
of features to be used in feature vectors. Two basic
feature types are utilized: syntactic and pattern-
based features. We constructed feature vectors for
each of the labeled examples in the training set and
used them to build a classifier model and assign
scores to unlabeled examples. We next provide a
description of the algorithmic framework of (Tsur
et al., 2010).

Data preprocessing A sarcastic utterance usu-
ally has a target. In the Amazon dataset these
targets can be exploited by a computational al-
gorithm, since each review targets a product, its
manufacturer or one of its features, and these are
explicitly represented or easily recognized. The
Twitter dataset is totally unstructured and lacks
textual context, so we did not attempt to identify
targets.

Our algorithmic methodology is based on
patterns. We could use patterns that include
the targets identified in the Amazon dataset.
However, in order to use less specific patterns,
we automatically replace each appearance
of a product, author, company, book name
(Amazon) and user, url and hashtag (Twitter)
with the corresponding generalized meta tags
‘[PRODUCT]’,‘[COMPANY]’,‘[TITLE]’ and
‘[AUTHOR]’ tags2 and ‘[USER]’,‘[LINK]’ and
‘[HASHTAG]’. We also removed all HTML tags
and special symbols from the review text.

Pattern extraction Our main feature type is
based on surface patterns. In order to extract such
patterns automatically, we followed the algorithm
given in (Davidov and Rappoport, 2006). We clas-
sified words into high-frequency words (HFWs)
and content words (CWs). A word whose cor-
pus frequency is more (less) than FH (FC) is con-
sidered to be a HFW (CW). Unlike in (Davidov
and Rappoport, 2006), we consider all punctuation
characters as HFWs. We also consider [product],
[company], [title], [author] tags as HFWs for pat-
tern extraction. We define a pattern as an ordered
sequence of high frequency words and slots for
content words. The FH and FC thresholds were
set to 1000 words per million (upper bound for
FC) and 100 words per million (lower bound for
FH)3.

2Appropriate names are provided with each review so this
replacement can be done automatically.

3Note that FH and FC set bounds that allow overlap be-
tween some HFWs and CWs.

The patterns allow 2-6 HFWs and 1-6 slots for
CWs. For each sentence it is possible to gener-
ate dozens of patterns that may overlap. For ex-
ample, given a sentence “Garmin apparently does
not care much about product quality or customer
support”, we have generated several patterns in-
cluding “[COMPANY] CW does not CW much”,
“does not CW much about CW CW or”, “not CW
much” and “about CW CW or CW CW.”. Note
that “[COMPANY]” and “.” are treated as high
frequency words.

Pattern selection The pattern extraction stage
provides us with hundreds of patterns. However,
some of them are either too general or too specific.
In order to reduce the feature space, we have used
two criteria to select useful patterns.

First, we removed all patterns which appear
only in sentences originating from a single prod-
uct/book (Amazon). Such patterns are usually
product-specific. Next we removed all patterns
which appear in the seed both in some example la-
beled 5 (clearly sarcastic) and in some other exam-
ple labeled 1 (obviously not sarcastic). This filters
out frequent generic and uninformative patterns.
Pattern selection was performed only on the Ama-
zon dataset as it exploits review’s meta data.

Pattern matching Once patterns are selected,
we have used each pattern to construct a single en-
try in the feature vectors. For each sentence we
calculated a feature value for each pattern as fol-
lows:

1 : Exact match – all the pattern components
appear in the sentence in correct
order without any additional words.

α : Sparse match – same as exact match
but additional non-matching words can be
inserted between pattern components.

γ ∗ n/N : Incomplete match – only n > 1 of N pattern
components appear in the sentence,
while some non-matching words can
be inserted in-between. At least one of the
appearing components should be a HFW.

0 : No match – nothing or only a single
pattern component appears in the sentence.

0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are parameters we use
to assign reduced scores for imperfect matches.
Since the patterns we use are relatively long, ex-
act matches are uncommon, and taking advantage
of partial matches allows us to significantly re-
duce the sparsity of the feature vectors. We used

α\γ 0.05 0.1 0.2
0.05 0.48 0.45 0.39
0.1 0.50 0.51 0.40
0.2 0.40 0.42 0.33

Table 1: Results (F-Score for ”no enrichment” mode) of
cross validation with various values for α and γ on Twit-
ter+Amazon data

α = γ = 0.1 in all experiments. Table 1 demon-
strates the results obtained with different values
for α and γ.

Thus, for the sentence “Garmin apparently does
not care much about product quality or customer
support”, the value for “[company] CW does not”
would be 1 (exact match); for “[company] CW
not” would be 0.1 (sparse match due to insertion
of ‘does’); and for “[company] CW CW does not”
would be 0.1 ∗ 4/5 = 0.08 (incomplete match
since the second CW is missing).

Punctuation-based features In addition to
pattern-based features we used the following
generic features: (1) Sentence length in words,
(2) Number of “!” characters in the sentence, (3)
Number of “?” characters in the sentence, (4)
Number of quotes in the sentence, and (5) Num-
ber of capitalized/all capitals words in the sen-
tence. All these features were normalized by di-
viding them by the (maximal observed value · av-
eraged maximal value of the other feature groups),
thus the maximal weight of each of these fea-
tures is equal to the averaged weight of a single
pattern/word/n-gram feature.

Data enrichment Since we start with only a
small annotated seed for training (particularly, the
number of clearly sarcastic sentences in the seed is
modest) and since annotation is noisy and expen-
sive, we would like to find more training examples
without requiring additional annotation effort.

To achieve this, we posited that sarcastic sen-
tences frequently co-appear in texts with other sar-
castic sentences (i.e. example (2) in Section 1).
We performed an automated web search using the
Yahoo! BOSS API4, where for each sentence s in
the training set (seed), we composed a search en-
gine query qs containing this sentence5. We col-
lected up to 50 search engine snippets for each
example and added the sentences found in these
snippets to the training set. The label (level of sar-

4http://developer.yahoo.com/search/boss.
5If the sentence contained more than 6 words, only the

first 6 words were included in the search engine query.

casm) Label(sq) of a newly extracted sentence sq
is similar to the label Label(s) of the seed sen-
tence s that was used for the query that acquired it.
The seed sentences together with newly acquired
sentences constitute the (enriched) training set.

Data enrichment was performed only for the
Amazon dataset where we have a manually tagged
seed and the sentence structure is closer to stan-
dard English grammar. We refer the reader to
(Tsur et al., 2010) for more details about the en-
richment process and for a short discussion about
the usefulness of web-based data enrichment in the
scope of sarcasm recognition.

Classification In order to assign a score to new
examples in the test set we use a k-nearest neigh-
bors (kNN)-like strategy. We construct feature
vectors for each example in the training and test
sets. We would like to calculate the score for each
example in the test set. For each feature vector v in
the test set, we compute the Euclidean distance to
each of the matching vectors in the extended train-
ing set, where matching vectors share at least one
pattern feature with v.

Let ti, i = 1..k be the k vectors with lowest
Euclidean distance to v6. Then v is classified with
a label l as follows:

Count(l) = Fraction of training vectors with label l

Label(v) =

[
1

k

∑
i

Count(Label(ti)) · Label(ti)∑
j Count(label(tj))

]
Thus the score is a weighted average of the k clos-
est training set vectors. If there are less than k
matching vectors for the given example then fewer
vectors are used in the computation. If there are
no matching vectors found for v, we assigned the
default value Label(v) = 1, since sarcastic sen-
tences are fewer in number than non-sarcastic ones
(this is a ‘most common tag’ strategy).

4 Evaluation Setup

Seed and extended training sets (Amazon). As
described in the previous section, SASI is semi su-
pervised, hence requires a small seed of annotated
data. We used the same seed of 80 positive (sar-
castic) examples and 505 negative examples de-
scribed at (Tsur et al., 2010).

After automatically expanding the training set,
our training data now contains 471 positive exam-
ples and 5020 negative examples. These ratios are

6We used k = 5 for all experiments.

to be expected, since non-sarcastic sentences out-
number sarcastic ones, definitely when most on-
line reviews are positive (Liu et al., 2007). This
generally positive tendency is also reflected in our
data – the average number of stars is 4.12.

Seed training set with #sarcasm (Twitter). We
used a sample of 1500 tweets marked with the
#sarcasm hashtag as a positive set that represents
sarcasm styles special to Twitter. However, this set
is very noisy (see discussion in Section 5).

Seed training set (cross domain). Results ob-
tained by training on the 1500 #sarcasm hash-
tagged tweets were not promising. Examination of
the #sarcasm tagged tweets shows that the annota-
tion is biased and noisy as we discuss in length
in Section 5. A better annotated set was needed
in order to properly train the algorithm. Sarcas-
tic tweets are sparse and hard to find and annotate
manually. In order to overcome sparsity we used
the positive seed annotated on the Amazon dataset.
The training set was completed by manually se-
lected negative example from the Twitter dataset.
Note that in this setting our training set is thus of
mixed domains.

4.1 Star-sentiment baseline
Many studies on sarcasm suggest that sarcasm
emerges from the gap between the expected utter-
ance and the actual utterance (see echoic mention,
allusion and pretense theories in Related Work
Section(6)). We implemented a baseline designed
to capture the notion of sarcasm as reflected by
these models, trying to meet the definition “saying
the opposite of what you mean in a way intended
to make someone else feel stupid or show you are
angry”.

We exploit the meta-data provided by Amazon,
namely the star rating each reviewer is obliged
to provide, in order to identify unhappy review-
ers. From this set of negative reviews, our base-
line classifies as sarcastic those sentences that ex-
hibit strong positive sentiment. The list of positive
sentiment words is predefined and captures words
typically found in reviews (for example, ‘great’,
‘excellent’, ‘best’, ‘top’, ‘exciting’, etc).

4.2 Evaluation procedure
We used two experimental frameworks to test
SASI’s accuracy. In the first experiment we eval-
uated the pattern acquisition process, how consis-
tent it is and to what extent it contributes to correct

classification. We did that by 5-fold cross valida-
tion over the seed data.

In the second experiment we evaluated SASI on
a test set of unseen sentences, comparing its out-
put to a gold standard annotated by a large number
of human annotators (using the Mechanical Turk).
This way we verify that there is no over-fitting and
that the algorithm is not biased by the notion of
sarcasm of a single seed annotator.

5-fold cross validation (Amazon). In this ex-
perimental setting, the seed data was divided to 5
parts and a 5-fold cross validation test is executed.
Each time, we use 4 parts of the seed as the train-
ing data and only this part is used for the feature
selection and data enrichment. This 5-fold pro-
cess was repeated ten times. This procedure was
repeated with different sets of optional features.

We used 5-fold cross validation and not the
standard 10-fold since the number of seed exam-
ples (especially positive) is relatively small hence
10-fold is too sensitive to the broad range of possi-
ble sarcastic patterns (see the examples in Section
1).

Classifying new sentences (Amazon & Twitter).
Evaluation of sarcasm is a hard task due to the
elusive nature of sarcasm, as discussed in Sec-
tion 1. In order to evaluate the quality of our al-
gorithm, we used SASI to classify all sentences
in both corpora (besides the small seed that was
pre-annotated and was used for the evaluation in
the 5-fold cross validation experiment). Since it
is impossible to created a gold standard classifica-
tion of each and every sentence in the corpus, we
created a small test set by sampling 90 sentences
which were classified as sarcastic (labels 3-5) and
90 sentences classified as not sarcastic (labels 1,2).
The sampling was performed on the whole corpus
leaving out only the seed data.

Again, the meta data available in the Amazon
dataset allows us a stricter evaluation. In order
to make the evaluation harder for our algorithm
and more relevant, we introduced two constraints
to the sampling process: i) we sampled only sen-
tences containing a named-entity or a reference to
a named entity. This constraint was introduced in
order to keep the evaluation set relevant, since sen-
tences that refer to the named entity (the target of
the review) are more likely to contain an explicit
or implicit sentiment. ii) we restricted the non-
sarcastic sentences to belong to negative reviews

(1-3 stars) so that all sentences in the evaluation
set are drawn from the same population, increas-
ing the chances they convey various levels of di-
rect or indirect negative sentiment7.

Experimenting with the Twitter dataset, we sim-
ply classified each tweet into one of 5 classes
(class 1: not sarcastic, class 5: clearly sarcastic)
according to the label given by the algorithm. Just
like the evaluation of the algorithm on the Amazon
dataset, we created a small evaluation set by sam-
pling 90 sentences which were classified as sarcas-
tic (labels 3-5) and 90 sentences classified as not
sarcastic (labels 1,2).

Procedure Each evaluation set was randomly
divided to 5 batches. Each batch contained 36 sen-
tences from the evaluation set and 4 anchor sen-
tences: two with sarcasm and two sheer neutral.
The anchor sentences were not part of the test set
and were the same in all five batches. The purpose
of the anchor sentences is to control the evaluation
procedure and verify that annotation is reasonable.
We ignored the anchor sentences when assessing
the algorithm’s accuracy.

We used Amazon’s Mechanical Turk8 service
in order to create a gold standard for the evalua-
tion. We employed 15 annotators for each eval-
uation set. We used a relatively large number of
annotators in order to overcome the possible bias
induced by subjectivity (Muecke, 1982). Each an-
notator was asked to assess the level of sarcasm of
each sentence of a set of 40 sentences on a scale of
1-5. In total, each sentence was annotated by three
different annotators.

Inter Annotator Agreement. To simplify the
assessment of inter-annotator agreement, the scal-
ing was reduced to a binary classification where 1
and 2 were marked as non-sarcastic and 3-5 as sar-
castic (recall that 3 indicates a hint of sarcasm and
5 indicates ‘clearly sarcastic’). We checked the
Fleiss’ κ statistic to measure agreement between
multiple annotators. The inter-annotator agree-
ment statistic was κ = 0.34 on the Amazon dataset
and κ = 0.41 on the Twitter dataset.

These agreement statistics indicates a fair
agreement. Given the fuzzy nature of the task at

7Note that the second constraint makes the problem less
easy. If taken from all reviews, many of the sentences would
be positive sentences which are clearly non-sarcastic. Doing
this would bias selection to positive vs. negative samples in-
stead of sarcastic-nonsarcastic samples.

8https://www.mturk.com/mturk/welcome

Prec. Recall Accuracy F-score
punctuation 0.256 0.312 0.821 0.281

patterns 0.743 0.788 0.943 0.765
pat+punct 0.868 0.763 0.945 0.812

enrich punct 0.4 0.390 0.832 0.395
enrich pat 0.762 0.777 0.937 0.769
all: SASI 0.912 0.756 0.947 0.827

Table 2: 5-fold cross validation results on the Amazon gold
standard using various feature types. punctuation: punctua-
tion mark;, patterns: patterns; enrich: after data enrichment;
enrich punct: data enrichment based on punctuation only; en-
rich pat: data enrichment based on patterns only; SASI: all
features combined.

hand, this κ value is certainly satisfactory. We at-
tribute the better agreement on the twitter data to
the fact that in twitter each sentence (tweet) is con-
text free, hence the sentiment in the sentence is ex-
pressed in a way that can be perceived more easily.
Sentences from product reviews come as part of a
full review, hence the the sarcasm sometimes re-
lies on other sentences in the review. In our evalu-
ation scheme, our annotators were presented with
individual sentences, making the agreement lower
for those sentences taken out of their original con-
text. The agreement on the control set (anchor sen-
tences) had κ = 0.53.

Using Twitter #sarcasm hashtag. In addition to
the gold standard annotated using the Mechanical
Turk, we collected 1500 tweets that were tagged
#sarcastic by their tweeters. We call this sample
the hash-gold standard. It was used to further eval-
uate recall. This set (along with the negative sam-
ple) was used for a 5-fold cross validation in the
same manner describe for Amazon.

5 Results and discussion

5-fold cross validation (Amazon). Results are
analyzed and discussed in detail in (Tsur et al.,
2010), however, we summarize it here (Table 2)
in order to facilitate comparison with the results
obtained on the Twitter dataset. SASI, including
all components, exhibits the best overall perfor-
mances with 91.2% precision and with F-Score
of 0.827. Interestingly, although data enrichment
brings SASI to the best performance in both preci-
sion and F-score, patterns+punctuations achieves
almost comparable results.

Newly introduced sentences (Amazon). In the
second experiment we evaluated SASI based on a
gold standard annotation created by 15 annotators.
Table 3 presents the results of our algorithm as
well as results of the heuristic baseline that makes

Prec. Recall FalsePos FalseNeg F Score
Star-sent. 0.5 0.16 0.05 0.44 0.242

SASI (AM) 0.766 0.813 0.11 0.12 0.788
SASI (TW) 0.794 0.863 0.094 0.15 0.827

Table 3: Evaluation on the Amazon (AM) and the Twitter
(TW) evaluation sets obtained by averaging on 3 human an-
notations per sentence. TW results were obtained with cross-
domain training.

Prec. Recall Accuracy F-score
punctuation 0.259 0.26 0.788 0.259

patterns 0.765 0.326 0.889 0.457
enrich punct 0.18 0.316 0.76 0.236

enrich pat 0.685 0.356 0.885 0.47
all no enrich 0.798 0.37 0.906 0.505

all SASI: 0.727 0.436 0.896 0.545

Table 4: 5-fold cross validation results on the Twitter hash-
gold standard using various feature types. punctuation: punc-
tuation marks; patterns: patterns; enrich: after data enrich-
ment; enrich punct: data enrichment based on punctuation
only; enrich pat: data enrichment based on patterns only;
SASI: all features combined.

use of meta-data, designed to capture the gap be-
tween an explicit negative sentiment (reflected by
the review’s star rating) and explicit positive senti-
ment words used in the review. Precision of SASI

is 0.766, a significant improvement over the base-
line with precision of 0.5.

The F-score shows more impressive improve-
ment as the baseline shows decent precision but a
very limited recall since it is incapable of recog-
nizing subtle sarcastic sentences. These results fit
the works of (Brown, 1980; Gibbs and O’Brien,
1991) claiming many sarcastic utterances do not
conform to the popular definition of “saying or
writing the opposite of what you mean”. Table 3
also presents the false positive and false negative
ratios. The low false negative ratio of the baseline
confirms that while recognizing a common type
of sarcasm, the naive definition of sarcasm cannot
capture many other types sarcasm.

Newly introduced sentences (Twitter). Results
on the Twitter dataset are even better than those
obtained on the Amazon dataset, with accuracy of
0.947 (see Table 3 for precision and recall).

Tweets are less structured and are context free,
hence one would expect SASI to perform poorly
on tweets. Moreover, the positive part of the seed
is taken from the Amazon corpus hence might
seem tailored to sarcasm type targeted at prod-
ucts and part of a harsh review. On top of that,
the positive seed introduces some patterns with
tags that never occur in the Twitter test set ([prod-
uct/company/title/author]).

Our explanation of the excellent results is three-
fold: i) SASI’s robustness is achieved by the sparse
match (α) and incomplete match (γ) that toler-
ate imperfect pattern matching and enable the use
of variations of the patterns in the learned feature
vector. α and γ allow the introduction of patterns
with components that are absent from the posi-
tive seed, and can perform even with patterns that
contain special tags that are not part of the test
set. ii) SASI learns a model which spans a feature
space with more than 300 dimensions. Only part
of the patterns consist of meta tags that are spe-
cial to product reviews, the rest are strong enough
to capture the structure of general sarcastic sen-
tences and not product-specific sarcastic sentences
only. iii) Finally, in many cases, it might be that
the contextless nature of Twitter forces tweeters to
express sarcasm in a way that is easy to understand
from individual sentence. Amazon sentences co-
appear with other sentences (in the same review)
thus the sarcastic meaning emerges from the con-
text. Our evaluation scheme presents the annota-
tors with single sentences therefore Amazon sen-
tences might be harder to agree on.

hash gold standard (Twitter). In order to fur-
ther test out algorithm we built a model consist-
ing of the positive sample of the Amazon training,
the #sarcasm hash-tagged tweets and a sample of
non sarcastic tweets as the negative training set.
We evaluated it in a 5-fold cross validation man-
ner (only against the hash-gold standard). While
precision is still high with 0.727, recall drops to
0.436 and the F-Score is 0.545.

Looking at the hash-gold standard set, we ob-
served three main uses for the #sarcasm hashtag.
Differences between the various uses can explain
the relatively low recall. i) The tag is used as a
search anchor. Tweeters add the hashtag to tweets
in order to make them retrievable when searching
for the tag. ii) The tag is often abused and added
to non sarcastic tweets, typically to clarify that a
previous tweet should have been read sarcastically,
e.g.: “@wrightfan05 it was #Sarcasm ”. iii) The
tag serves as a sarcasm marker in cases of a very
subtle sarcasm where the lack of context, the 140
length constraint and the sentence structure make
it impossible to get the sarcasm without the ex-
plicit marker. Typical examples are: “#sarcasm
not at all.” or “can’t wait to get home tonite #sar-
casm.”, which cannot be decided sarcastic without
the full context or the #sarcasm marker.

These three observations suggest that the hash-
gold standard is noisy (containing non-sarcastic
tweets) and is biased toward the hardest (insepa-
rable) forms of sarcasm where even humans get
it wrong without an explicit indication. Given
the noise and the bias, the recall is not as bad as
the raw numbers suggest and is actually in synch
with the results obtained on the Mechanical Turk
human-annotated gold standard. Table 4 presents
detailed results and the contribution of each type
of feature to the classification.

We note that the relative sparseness of sarcas-
tic utterances in everyday communication as well
as in these two datasets make it hard to accurately
estimate the recall value over these huge unanno-
tated data sets. Our experiment, however, indi-
cates that we achieve reasonable recall rates.

Punctuation Surprisingly, punctuation marks
serve as the weakest predictors, in contrast to Tep-
permann et al. (2006). An exception is three con-
secutive dots, which when combine with other fea-
tures constitute a strong predictor. Interestingly
though, while in the cross validation experiments
SASI performance varies greatly (due to the prob-
lematic use of the #sarcasm hashtag, described
previously), performance based only on punctua-
tion are similar (Table 2 and Table 4).

Tsur et al. (2010) presents some additional ex-
amples for the contribution of each type of feature
and their combinations.

6 Related Work

While the use of irony and sarcasm is well stud-
ied from its linguistic and psychologic aspects
(Muecke, 1982; Stingfellow, 1994; Gibbs and Col-
ston, 2007), automatic recognition of sarcasm is a
novel task, addressed only by few works. In the
context of opinion mining, sarcasm is mentioned
briefly as a hard nut that is yet to be cracked, see
comprehensive overview by (Pang and Lee, 2008).

Tepperman et al. (2006) identify sarcasm in
spoken dialogue systems, their work is restricted
to sarcastic utterances that contain the expres-
sion ‘yeah-right’ and it depends heavily on cues
in the spoken dialogue such as laughter, pauses
within the speech stream, the gender (recognized
by voice) of the speaker and prosodic features.

Burfoot and Baldwin (2009) use SVM to deter-
mine whether newswire articles are true or satir-
ical. They introduce the notion of validity which
models absurdity via a measure somewhat close to

PMI. Validity is relatively lower when a sentence
includes a made-up entity or when a sentence con-
tains unusual combinations of named entities such
as, for example, those in the satirical article be-
ginning “Missing Brazilian balloonist Padre spot-
ted straddling Pink Floyd flying pig”. We note
that while sarcasm can be based on exaggeration
or unusual collocations, this model covers only a
limited subset of the sarcastic utterances.

Tsur et al. (2010) propose a semi supervised
framework for recognition of sarcasm. The pro-
posed algorithm utilizes some features specific to
(Amazon) product reviews. This paper continues
this line, proposing SASI a robust algorithm that
successfully captures sarcastic sentences in other,
radically different, domains such as twitter.

Utsumi (1996; 2000) introduces the implicit dis-
play theory, a cognitive computational framework
that models the ironic environment. The complex
axiomatic system depends heavily on complex for-
malism representing world knowledge. While
comprehensive, it is currently impractical to im-
plement on a large scale or for an open domain.

Mihalcea and Strapparava (2005) and Mihalcea
and Pulman (2007) present a system that identi-
fies humorous one-liners. They classify sentences
using naive Bayes and SVM. They conclude that
the most frequently observed semantic features are
negative polarity and human-centeredness. These
features are also observed in some sarcastic utter-
ances.

Some philosophical, psychological and linguis-
tic theories of irony and sarcasm are worth refer-
encing as a theoretical framework: the constraints
satisfaction theory (Utsumi, 1996; Katz, 2005),
the role playing theory (Clark and Gerrig, 1984),
the echoic mention framework (Wilson and Sper-
ber, 1992) and the pretence framework (Gibbs,
1986). These are all based on violation of the max-
ims proposed by Grice (1975).

7 Conclusion

We used SASI, the first robust algorithm for recog-
nition of sarcasm, to experiment with a novel
Twitter dataset and compare performance with an
Amazon product reviews dataset. Evaluating in
various ways and with different parameters con-
figurations, we achieved high precision, recall and
F-Score on both datasets even for cross-domain
training and with no need for domain adaptation.

In the future we will test the contribution of

sarcasm recognition for review ranking and sum-
marization systems and for brand monitoring sys-
tems.

References

R. L. Brown. 1980. The pragmatics of verbal irony.
In R. W. Shuy and A. Snukal, editors, Language use
and the uses of language, pages 111–127. George-
town University Press.

Clint Burfoot and Timothy Baldwin. 2009. Automatic
satire detection: Are you having a laugh? In Pro-
ceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 161–164, Suntec, Singapore, August.
Association for Computational Linguistics.

H. Clark and R. Gerrig. 1984. On the pretence the-
ory of irony. Journal of Experimental Psychology:
General, 113:121–126.

Cristian Danescu-Niculescu-Mizil, Gueorgi Kossinets,
Jon Kleinberg, and Lillian Lee. 2009. How opinions
are received by online communities: A case study on
amazon.com helpfulness votes. Jun.

D. Davidov and A. Rappoport. 2006. Efficient
unsupervised discovery of word categories using
symmetric patterns and high frequency words. In
COLING-ACL.

Macmillan English Dictionary. 2007. Macmillan En-
glish Dictionary. Macmillan Education, 2 edition.

Raymond W Gibbs and Herbert L. Colston, editors.
2007. Irony in Language and Thought. Routledge
(Taylor and Francis), New York.

R. W. Gibbs and J. E. O’Brien. 1991. Psychological
aspects of irony understanding. Journal of Pragmat-
ics, 16:523–530.

R. Gibbs. 1986. On the psycholinguistics of sar-
casm. Journal of Experimental Psychology: Gen-
eral, 105:3–15.

H. P. Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax and se-
mantics, volume 3. New York: Academic Press.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In KDD ’04: Proceed-
ings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 168–177, New York, NY, USA. ACM.

A. Katz. 2005. Discourse and social-cultural factors
in understanding non literal language. In Colston H.
and Katz A., editors, Figurative language compre-
hension: Social and cultural influences, pages 183–
208. Lawrence Erlbaum Associates.

Jingjing Liu, Yunbo Cao, Chin-Yew Lin, Yalou Huang,
and Ming Zhou. 2007. Low-quality product re-
view detection in opinion summarization. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 334–342.

Rada Mihalcea and Stephen G. Pulman. 2007. Char-
acterizing humour: An exploration of features in hu-
morous texts. In CICLing, pages 337–347.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. pages 531–538, Vancouver, Canada.

D.C. Muecke. 1982. Irony and the ironic. Methuen,
London, New York.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the ACL, pages 271–278.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Now Publishers Inc, July.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
HLT ’05: Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, pages 339–346,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Frank Jr. Stingfellow. 1994. The Meaning of Irony.
State University of NY, New York.

J. Tepperman, D. Traum, and S. Narayanan. 2006.
Yeah right: Sarcasm recognition for spoken dialogue
systems. In InterSpeech ICSLP, Pittsburgh, PA.

Oren Tsur and Ari Rappoport. 2009. Revrank: A fully
unsupervised algorithm for selecting the most help-
ful book reviews. In International AAAI Conference
on Weblogs and Social Media.

Oren Tsur, Dmitry Davidiv, and Ari Rappoport. 2010.
Icwsm – a great catchy name: Semi-supervised
recognition of sarcastic sentences in product re-
views. In International AAAI Conference on We-
blogs and Social Media.

Akira Utsumi. 1996. A unified theory of irony and
its computational formalization. In COLING, pages
962–967.

Akira Utsumi. 2000. Verbal irony as implicit dis-
play of ironic environment: Distinguishing ironic
utterances from nonirony. Journal of Pragmatics,
32(12):1777–1806.

Janyce Wiebe, Theresa Wilson, Rebecca Bruce,
Matthew Bell, and Melanie Martin. 2004. Learn-
ing subjective language. Computational Linguistics,
30(3):277– 308, January.

D. Wilson and D. Sperber. 1992. On verbal irony. Lin-
gua, 87:53–76.

