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Unified Framework to Regularized Covariance
Estimation in Scaled Gaussian Models

Ami Wiesel, Member, IEEE

Abstract—We consider regularized covariance estimation
in scaled Gaussian settings, e.g., elliptical distributions, com-
pound-Gaussian processes and spherically invariant random
vectors. Asymptotically in the number of samples, the classical
maximum likelihood (ML) estimate is optimal under different cri-
teria and can be efficiently computed even though the optimization
is nonconvex. We propose a unified framework for regularizing
this estimate in order to improve its finite sample performance.
Our approach is based on the discovery of hidden convexity
within the ML objective. We begin by restricting the attention to
diagonal covariance matrices. Using a simple change of variables,
we transform the problem into a convex optimization that can be
efficiently solved. We then extend this idea to nondiagonal ma-
trices using convexity on the manifold of positive definite matrices.
We regularize the problem using appropriately convex penalties.
These allow for shrinkage towards the identity matrix, shrinkage
towards a diagonal matrix, shrinkage towards a given positive
definite matrix, and regularization of the condition number. We
demonstrate the advantages of these estimators using numerical
simulations.

Index Terms—Covariance estimation, hidden convexity, opti-
mization on manifolds, regularization, robust statistics.

I. INTRODUCTION

STIMATING a covariance matrix is a fundamental
E problem in statistical signal processing. Many techniques
for detection and estimation, varying from array processing to
functional genomics, rely on accurately estimated covariance
matrices [1], [2]. The problem is well understood when the
number of samples is much larger than the dimensions of the
matrix, and when the underlying multivariate distribution is
known to be Gaussian. In this case, the classical sample covari-
ance coincides with the maximum likelihood (ML) estimator
and is optimal under most criteria. In many modern applica-
tions neither of these assumptions holds. Dynamic large scale
systems involve a large number of variables whose statistical
properties remain stationary over a short period of samples.
In many of these, it was empirically shown that the heavy
tailed data does not fit a Gaussian distribution. Such settings
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require regularized and robust covariance estimation methods
as considered in this paper.

The classical statistical approaches to high dimensional
parameter estimation using a small number of samples are
regularization, shrinkage and/or Bayesian priors. Most of these
can be interpreted as adding constraints or penalties to the
maximum likelihood solution in order to incorporate additional
prior knowledge, and/or allow for a bias-variance tradeoff.
Typical examples in the context of covariance estimation in-
clude shrinkage towards identity [3]-[6], shrinkage towards a
diagonal structure [7], knowledge-aided estimation [8], [9], and
constraints on the condition number of the estimate [10].

Robust statistics provide estimation methods which are not
sensitive to small departures from the model assumption [11].
In the context of covariance estimation, a common approach is
to replace the Gaussian assumption with a more general scaled
Gaussian model. This model is related to the family of Elliptical
distributions, spherically invariant random vectors (SIRV) and
compound Gaussian processes. It has been empirically shown
that these models are appropriate for describing different real
worlds signals as speech, radar, wireless fading channels and
more [12]-[20]. A well-studied robust covariance estimator in
this setting is Tyler’s ML estimator [21]-[23]. This ML opti-
mization is nonconvex, yet it has been shown that its global
solution can be found using a simple fixed point iteration. Re-
cent contributions in this topic include the generalizations to the
complex case [23] and to the case of incomplete data [24], and
its asymptotic eigenstructure analysis [25], [26].

In an attempt to enjoy the best of both worlds, different
authors proposed to regularize Tyler’s estimator and obtain
a robust high dimensional covariance estimator. A diagonal
loading approach has shown promising performance using
real data from high-frequency over-the-horizon-radar [27].
Minimum mean squared error and maximum a posteriori esti-
mation methods using Bayesian priors were considered in the
context of knowledge-aided space time adaptive processing [9].
Tyler’s estimator with shrinkage towards the identity, a variant
of diagonal loading, was recently proposed in [28]. This work
addressed the existence, uniqueness and convergence proper-
ties of the estimator, provided a closed form data-dependent
choice for the regularization parameter, and was successfully
applied to anomaly detection in a real-world sensor network.
These results demonstrated the advantages of regularized ro-
bust covariance estimation. However, they lacked many of the
appealing properties associated with Tyler’s original method.
The proposed methods were not always proven to converge;
were not scale invariant and required renormalization proce-
dures after each iteration; and were not shown to be the global
solution to any likelihood based optimization.
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Our main contribution is a unified framework for robust co-
variance estimation based on regularized ML estimation. As ex-
plained, the main difficulty with the ML criterion is that the
negative-log-likelihood is not convex in the classical sense. Re-
cently, [29], [30] showed that the negative-log-likelihood is in
fact convex on the geodesics of the quotient of positive definite
matrices with determinant one. Exploiting this remarkable re-
sult, we propose to regularize the problem in a similarly convex
manner. We begin with a low order diagonal model for the co-
variance. Through a simple change of variables, we convexify
this constrained ML problem and propose a simple numerical
method for finding its global solution. The resulting estimator
is a simple yet highly applicable robust estimator of variances.
In addition, its derivation leads the way to our unified regu-
larization framework which is based on a more complicated
notion of convexity. Here, we propose to regularize the nega-
tive-log-likelihood using penalty functions which are convex on
the geodesics of the manifold of positive definite matrices. Our
penalties are constructed to allow shrinkage towards the identity
matrix, shrinkage towards an arbitrary positive definite matrix,
shrinkage towards a diagonal matrix, and regularization of the
condition number. We provide simple fixed point iterations for
minimizing these optimization problems. Finally, we propose
a novel cross-validation procedure for tuning their regulariza-
tion parameters. This procedure takes into account the inherent
scaling ambiguity in scaled Gaussian distributions. We demon-
strate the accuracy advantages of our proposed methods using
numerical experiments.

The paper is organized as follows. Section II provides a brief
review of scaled Gaussian distributions, Tyler’s original covari-
ance estimation method and its generalizations. In Section III,
we derive the diagonal version of Tyler’s estimator and prepare
the grounds to the unified regularization framework proposed in
Section I'V. Simulations results are presented in Section IV, and
concluding remarks are offered in Section V.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. We use in-
dexes in the subscript [x],, or [x], , to denote subvectors or sub-
matrices, respectively. The superscripts (-)7 and (-)~! denote
the transpose and matrix inverse, respectively. The operator || - ||
denotes the Euclidean norm, and X > 0 means that X is posi-
tive definite. The vectors e; for7 = 1,. .., p denote the standard
length p unit vectors, and diag {a;} denotes a diagonal matrix
with the elements a;. For a vector z, we use e” and log z to de-
note vectors with the elements e and log z;, respectively. The
operators Amax(+) and Apin(+) denote the maximal and minimal
eigenvalues of a matrix, respectively. Finally, a \ b for indexes
sets a and b is the set difference operator.

II. BACKGROUND

In this section, we review Tyler’s covariance estimator
[21]-[23] and its previous generalizations [9], [27], [28].
Tyler’s estimator can be naturally derived as the ML estimator
of the covariance in scaled Gaussian distributions. We define

X =ru 6]
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where v is a random or deterministic scalar and u is an inde-
pendent zero mean Gaussian vector of length p with covariance
¥ 0. Letx; = v;u; fori = 1,...,n be independent and
identically distributed (i.i.d.) realizations of x. Given these ob-
servations, our goal is to estimate the unknown covariance ma-
trix. Without further assumptions on v;, there is a scaling am-
biguity and we only expect to estimate the covariance up to an
unknown scaling factor.

There are two approaches to this problem which both lead to
same solution. First, we can use the normalized vectors which
are invariant to v;:

X; u;

Si=—— =t i=1,...,n. )
lI=ill [l

Computing the distribution of these normalized samples leads
to the following ML estimation problem [31]:

minl ({si};_, ; %) )

where the negative-log-likelihood is given by

[({siiy ) = 2 Y log (sT87'si ) +log . &)
=1

An alternative approach is to treat the scalings v; as determin-
istic unknown parameters, solve for them and use the concen-
trated likelihood [15], [22]. This leads to an identical optimiza-
tion problem. As expected, the negative-log-likelihood objec-
tive is invariant to scaling of ¥ by a positive constant.

Tyler and others proved that a global solution to (3)—(4) ex-
ists and can be efficiently found when n > p. These results are
highly nontrivial as the optimization is nonconvex. Tyler’s orig-
inal solution to (3) was based on a simple fixed point iteration.
We provide an alternative derivation of the same iteration using
a majorization-minimization algorithm, e.g., [32]. This iteration
will be easier to generalize in the sequel. Specifically, we pro-
pose to solve (3) using the iterations

Ypi1 =argminQ (X, X 5
k+1 g = Q (%, Xy) ®)
where the majorization function satisfies

Q(B,%k) 21({si}i=:8), V Ik (©)
QEE) =1({si}ioi; 5). )
Under suitable technical conditions, these properties ensure

monotonicity of the algorithm and attainment of a local min-
imum. In particular, we use the following surrogate function

- " Tyl
Q(X, %) = % glog (siTE,:lsi) + % Z Si % Si

Pt 5?2;152'
—p+log|X| (8)

which bounds the negative-log-likelihood due to the inequality

log () < log (a) + (2 ~1) >0, )
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and the concavity of the logarithm function. Ignoring constants,
each iteration is then

T
. P S;S;
Y1 =argminTr{ [ = E Li_ll
-0 n 4 s??k S;

1=

71 4 log Y.

(10)
When n > p the matrix in the squared brackets is positive defi-
nite with probability one, and the iteration reduces to

S,‘,S;-T

P
S =2y
+1 = ’
n siTEklsi

i=1

k=1,2,... (11)

beginning with any initial ¥y > 0. Some intuition to this itera-
tion can be obtained by rewriting it as an iteratively reweighted
sample covariance

1 n
k+1 n;[ﬂ]kssz7 (12)
with the adaptive weights
p
], = ————, 13
[IB ]k 5?2;15i ( )

fork=1,2,...andi = 1,...,n.

Asymptotically, when n > p, Tyler’s estimator is optimal
under many criteria. Unfortunately, this is not true in many
practical applications involving finite sample settings. The
traditional approach for improving finite sample performance is
known as regularization. To our knowledge, the first regularized
version of Tyler’s method was considered in [27]. Specifically,
the authors proposed to regularize the fixed point iteration in
(11) using diagonal loading!

T
.- p S;iS;
2k+1 = ﬁ Z ﬁ + al (14)
i=1 "1 H
=
Thp1 = — e (15)
Tr {Ek-l—l}

where « is a diagonal loading coefficient. This approach has
shown significant performance advantages in numerical simula-
tions. Following this work, a rigorous existence, uniqueness and
convergence analysis based on concave Perron Frobenius theory
was provided in [28]. An important difference between the orig-
inal iteration in (11) and the regularized iteration in (14)-(15) is
the rescaling in (15). Indeed, unlike the original iteration, its di-
agonally loaded version is not scale invariant and rescaling is re-
quired in order to ensure convergence. Moreover, unlike Tyler’s
method, it is unclear what optimization (if any) these iterations
are trying to solve.

Recently, a different class of regularized Tyler’s estimators
was considered in [9]. Here, a knowledge-aided approach was
considered which exploits prior knowledge in the form a prior
Bayesian distribution on ¥. Maximum a posteriori optimiza-
tions and their corresponding fixed point iterations were pro-
posed, as well as promising numerical results. However, the op-

!More precisely, the original iteration allowed an adaptive regularization co-
efficient o, which depends on the iteration index k.

timization problems were not convex nor scale invariant. The
iterations were also not scale invariant but were not rescaled,
and it is not clear whether convergence was guaranteed.

III. DIAGONAL TYLER’S ESTIMATOR

In this section, we consider an extension to Tyler’s estimator
assuming a diagonal covariance matrix. This estimator is a non-
trivial extension which may be useful in some applications. In
addition, it is valuable as an introduction to our unified frame-
work for regularized Tyler’s estimator presented in the next sec-
tion.

A classical approach to high dimensional parameter estima-
tion in finite sample setting is to resort to simple low order
models. In the context of covariance estimation an appealing
model is the diagonal case. Clearly, estimating only the vari-
ances on the diagonal is much easier than estimating the full co-
variance matrix, and may provide a good bias-variance tradeoff.
A typical application is high dimensional classification. Indeed,
the successful diagonal linear discriminant analysis (DLDA) is
based on plugging a diagonal Gaussian covariance estimate into
the standard linear discriminant [33]. We now extend this esti-
mate to the scaled Gaussian case.

Before we continue it is important to emphasize that this ex-
tension is not trivial. In the Gaussian case, a diagonal covariance
means uncorrelated elements and the solution is decoupled and
trivial:

n

1 2
0j = EZ[&]p

i=1

ji=1,...,p. (16)

This is not true in the non-Gaussian case in (1), where the el-
ements of x are stochastically correlated (or deterministically
coupled) through their common scaling v.

We define the diagonal Tyler’s estimator as the diagonal pos-
itive definite matrix

Y = diag {0} (17
which minimizes the negative-log-likelihood
min [ ({s;};_, ;diag {o;}). (18)

T1,...,05 >0

The estimator requires the solution of the following p dimen-
sional optimization problem:

01’{1.1}7111)0 " Zz:; log (si diag { p } sz> + log |diag {o;}] .
19)
Like Tyler’s original ML, this optimization is nonconvex and
seems difficult. It is possible to follow Tyler’s original deriva-
tions and show that its local minimas are also global and can
be found efficiently, but this approach is cumbersome, noncon-
structive and does not provide any insight. Instead, we now
present an alternative approach based on hidden convexity.
Problem (19) can be transformed into a convex form using a
simple change of variables. Defining

(20)
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the problem can be expressed as

Z log leag {e

Zi }s,;)—l—log |diag {7 }], (21)

P
gD [sidje™ +Z7] (22)
7j=1

This last optimization is convex in 2; . . ., 2, since the first sum
involves convex log-sum-exp expressions and the second term
is linear. As such, it can be efficiently solved using standard
methods with provable convergence to the global solution.
Indeed, this problem is a special case of geometric program-
ming (GP) which has recently made considerable impact in the
signal processing community [34], [35].

Numerical solutions to (19) can be obtained via off-the-
shelves GP toolboxes, or any unconstrained convex opti-
mization technique. For simplicity, we follow our previous
majorization-minimization approach in (5)—(8), and note that
the upper bound holds for diagonal matrices. Its minimizer
yields the following fixed point iteration:

n 2

0o = 2 i

Jk+1 n =1 sz—‘dlag{ﬁ} S;
ilk

where F is the iteration index, and the starting point is [o;], > 0
for j = 1,...,p. Similarly to Tyler’s estimator, some intuition
to this procedure can be obtained by expressing it as iteratively
reweighted sample variances

? j:17"'7p

n

1
[0lpr =~ D [Bili [l (24)
i=1
with the adaptive weights
[, = 4 (25)

sT diag { [ajl_]k } S; 7

fory=1,...;p,i=1,...,nand k =1,.

IV. REGULARIZED TYLER’S ESTIMATOR

We now present a unified framework for regularizing Tyler’s
estimator. As explained, the main difficulty in this extension is
that the negative-log-likelihood in (4) is nonconvex in X. In the
diagonal case, we detected a hidden convexity which simpli-
fied the process. Similarly, the way to efficient regularization of
Tyler’s estimator is through a deeper understanding of its hidden
convexity. In particular, [29] and [30] recently showed that the
function is actually convex on the geodesics (shortest paths) of
the quotient of positive definite matrices with determinant one.
In a continuation of these works, we now relate this property to
the diagonal case, and give a simple proof that the problem is
convex on the geodesics of the Riemmanian manifold of posi-
tive definite matrices with a logarithmic metric which is more

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

commonly used in signal processing [36]. Based on this under-
standing, we then provide a unified framework for regularizing
Tyler’s estimator.

A function f(x) is convex in the standard definition if for any
Xo and x7 in its convex domain, it satisfies

f(xe) <tf (x) + (1= 1) f (%0) (26)
where x; belongs to the line segment
x: =tx1 4+ (1 —t) %o 27
and
€ [0,1]. (28)

Convexity on manifolds replaces this line definition with a
geodesic? [37], [38]

x; = geodesic (t;xo,x1), £ €[0,1] (29

which is the shortest path using a specific metric between x
and x; parameterized by ¢. Thus, a function f (x) is convex on
the manifold if and only if f (x;) is convex in ¢ in the standard
definition.

Let us illustrate these definitions in the diagonal case dis-
cussed in Section III. The function f(+) is now the negative-log-
likelihood restricted to diagonal matrices

f(o) = 1({si}izy s diag{os}) -

It is not convex, but we used a change of variables in (20) to
convexify it so that

J (e amnm) < () + (1= 1) f (%),

for all zp, z1 and ¢ € [0

(30)

3D

,1]. In terms of ¢ = €% and o1 = €%

we have
etzl+(1—t)z0 _ etlog o1+(1—t)log op -0 a_[l) 1‘7 (32)
and the inequality becomes
flotos™) <tf(o1)+ (1—1t)f(o0). (33)

In the nomenclature of manifolds, this means that the negative-
log-likelihood is convex on the geodesics defined as

_ 1-t
Ot 0-10-0 ’

€ [0,1]. (34)

In the positive matrix case, we are not aware of any change
of variables which transforms the problem into a convex one.3
However, the geodesic in (34) has a well known generalization
to the geodesic in the Riemmanian manifold of positive definite

matrices with a logarithmic metric [36]:

1 _1 _LINt 1
B, =2 (20221202) 2, tel0,1], (35

2We assume that the geodesic lies within the domain of the function.

3The natural generalization of (20) is to parameterize £ > O via the ma-
trix exponential operation expm (T') where T is a symmetric matrix. Unfortu-
nately, log (s”'expm ('T) s) is not a convex function of T.
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for any ¥y > 0 and ¥; > 0. Indeed, in the diagonal case in
which ¥; = diag {[at] }
(34). The readers may also recognize the matrix X1 known as
the geometric mean of the positive definite matrices 20 and ¥
which has recently attracted considerable attention in statistical
signal processing [39]-[41]. Similarly to the diagonal case, our
next result reveals the hidden convexity on the manifold.
Proposition 1: The negative-log-likelihood I ({s;}:_, ; X¢)
in (4) is convex in ¢ € [0, 1] on the geodesic in (35).
Proof: Consider the eigenvalue decomposition

D>

it is easy to see that (35) reduces to

? = Udiag {d,;} UT (36)

where d; > 0 are the eigenvalues and U is the matrix of eigen-
vectors. When we substitute X; for X, the first terms in (4) be-
come
_1 _1 _i1\—"t__1
log sFS;'s; = log sT'%;? (20 EDYPIN 2) ¥, %s;
1 1
= log s ¥, > Udiag {dj_t} U’y %s;

= log ; Uz, %si]jd;f

= log Z [Ung %sl} 2 etlos d; (37)
N J
J

which are convex log-sum-exp expressions in ¢. The second
term is linearized since

1 _1 _1\t _ 1
log || = log |%5 (20 *E, 5, 2) ¥

= log [So| +tlog [ 'Ei% | G8)
]

Geodesic convexity is useful as it gives a local characteriza-
tion to global optimality [37], [38], [42]:

Proposition 2: Let f(X;) be convex in ¢ € [0,1] on the
geodesic in (35). Then, any local minimum of f (X) over the
set of positive definite matrices is a global minimum.

Proof: Assume ¥y > 0 and ¥; > 0 are local minimums
of f (X). Assume in contradiction that only ¥ is a global min-
imum. Let ¥, be the geodesic between these two points as de-
fined in (35). Then,

f(B) <tf (1) +
<f(%o),

where the first inequality is due to geodesic convexity and the
second dueto f (£1) < f (Xo). For sufficiently small ¢, this is a
contradiction to local optimality of ¥g. See [37], [38], and [42]
for more details.

These results shed more light on the convergence of Tyler’s
original estimator to the global solution. The seemingly non-
convex ML problem is convex in a more generalized definition,
and simple descent algorithms can attain its global solution. This
observation is the starting point to our unified framework for
regularizing Tyler’s estimator. We define our regularized esti-
mator as the solution to

min ({si} %) + ah ()

(1—1) f(30)
forall ¢ e (0,1]

(39)
(40)

(41)

where « is a regularization parameter, and h (X)) is a penalty
function which satisfies

* h(X) is scale invariant;

* h(X) is convex on the geodesics.
These ensure that the overall objective function, i.e., the nega-
tive-log-likelihood plus its regularization, is also scale invariant
and convex on the geodesics. In the next subsections, we pro-
vide a few promising penalties that satisfy these requirements.

A. Shrinkage to an Identity Matrix

The most common approach to covariance regularization is
shrinkage towards the identity matrix, also known as diagonal
loading or ridge regularization [3]-[6]. It results in a well con-
ditioned matrix and has an appealing bias-variance tradeoff. In
our framework, such a regularization can be achieved using the
following result.

Proposition 3: Consider the penalty function

pitenti (5) = plog (Tr {7 }) +1og[B].  42)
It is scale invariant and convex on the geodesics in (35). The
solution to

min hidcntity (2)

>0 “43)

is the set of positively scaled identity matrices.

Proof: The scale invariance is due to the difference of log-
arithms. The function is convex on the geodesics in (35) since
the first term is a convex log-sum-exp function and the second
is linear. Finally, taking the gradient with respect to ¥ and
equating to zero yields the condition

ahidentity p)
_1( LSS R Y (44)
)Y Tr {2_1 }
which is satisfied if and only if ¥ = cI for some c. |

Thus, our shrinkage towards the identity estimator is defined
as the solution to

Hllnl({sq}Z 1 72) + ahidentity (2)

>0 “45)

and penalizes estimates that are far from the identity. The
problem can be addressed using standard descent methods, or
advanced optimization on manifold techniques [38], [43]. The
convexity properties guarantee that any local minimum found
is globally optimal. For simplicity, we propose to extend our
previous majorization-minimization approach. We bound the
negative-log-likelihood by @ (X,Xy) in (8) and the penalty
function by

j,identity (£) < plog (Tr {2;1}) +pTr {2—1}

Tr {2;1}

Ignoring constants, each iteration is then defined as
apl

P
Z TEk s; Tr{E,;l}

+ (14 a)log|X],

—p+log|X].

(46)

2—1

Yri1=argmin Tr
+ g2>0

(47)
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and results in

L p s;sT L@ P
l+an“ —~sTe; s 1+0‘Tr{2;1}

Ypp = I, 43

starting at any initial point ¥y > 0.

It is interesting to compare (48) with (14)-(15) proposed in
[27] and [28]. The iterations are very similar. Other than the def-
inition of the regularization parameters, the main difference is
that the diagonal loading in (48) is scaled by # whereas

(14)-(15) uses rescaling after each iteration. Both achieve scale
invariance, but previous work does it indirectly and normal-
izes Tr {¥} whereas our normalization is done automatically
through Tr ¢ ¥~
been shown that (14)-(15) always converges to a fixed point,
whereas (48) may diverge when the objective is unbounded. It
is not clear what is the meaning of the solution to (14)-(15) in
the unbounded case, and our view is that this behavior should
be avoided by a better choice of regularization parameter. This
important issue will be addressed in future work.

L } A drawback to our estimator, is that it has

B. Shrinkage to a Known Positive Definite Matrix

In some applications, it is reasonable to assume additional
prior knowledge in the form of a known matrix T > 0 which
is close to ¥ in some sense. For example, in knowledge-aided
adaptive radar processing such priors can be obtained from sec-
ondary data from adjacent cells, digital elevation and terrain
data, synthetic aperture radar imagery and other resources [9].
A straightforward extension to (42) promotes the solution to any
positive definite shrinkage target T (up to a scaling factor).

Proposition 4: Consider the penalty function

hM%ﬂ(z):pmg(Tw{z—hr})+¢qﬂzy (49)
It is scale invariant and convex on the geodesics in (35). The
solution to

min h'2reet (L)

>0 (50)

is the set of matrices ¢T for any ¢ > 0.

The proof is similar to that of Prop. 3 and therefore omitted.
Similarly to (48), the regularized solution can be computed
using the following fixed point iteration:

1 pe s;sT « P

Z L+
Tranm ZsTels 1o (o)

Sl = T, (51)

starting at any initial point ¥y > 0.

C. Shrinkage to a Diagonal Positive Matrix

In some settings, the scaled identity is over simplistic and
its reliance on equal variances is too restrictive. A more flex-
ible model presumes a diagonal positive matrix which requires
uncorrelated elements but allows for different scalings of the
variables and more degrees of freedom. The shrinkage target
is exactly the positive definite diagonal solution discussed in
Section III, but now we use it as a regularization penalty. More
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details on the advantages of this approach in the Gaussian case
are discussed in [7].
Proposition 5: Consider the penalty function

¥) = 10gﬁ [2_1}% + log || .
=1

It is scale invariant and convex on the geodesics in (35). The
solution to

hdiagonal (

(52)

min hdiagonal (2)

>0 (53)

is the set of positive diagonal matrices.
Proof: This function is a special case of the negative-log-
likelihood function since
pdiagonal (33y — l({ei}t_, ;%) (54)
where e; for : = 1,...,p are the length p unit vectors. There-
fore, it is scale invariant and convex on the geodesics. It is
bounded from below by zero due to Hadamard’s inequality,
and this bound is tight only for diagonal matrices. |
Both the negative-log-likelihood and the penalty can be inde-
pendently upper bounded using Q(X, Xy) in (8). A majoriza-
tion-minimization algorithm can therefore be applied:

Ty = 1+anz TZk s, 1+az Tzk , (55)

e
starting at any initial point ¥y > 0.

D. Regularization of the Condition Number

Recent work on covariance estimation in the Gaussian case
has shown promising success to regularization of the condition
number of the estimate [10]. This method has a similar effect
to shrinkage towards the identity in the sense that it keeps the
structure of the eigenvectors of the sample covariance while
concentrating the eigenvalues towards their mean. The differ-
ence is that shrinkage towards the identity does this in a linear
manner whereas regularizing the condition number uses hard
thresholding of the extreme eigenvalues which may be advan-
tageous. We now extend these results to the non-Gaussian case.
The following proposition characterizes the convexity proper-
ties of the condition number.

Proposition 6: Consider the penalty function

)\max (2)

hcond (2) — )\min (2) )

(56)
This function is not convex. It is quasi-convex, i.e., its sublevel
sets {X : heond (£) < o} are convex sets for all «. Finally, it is
convex on the geodesics in (35) and scale invariant.

Proof: A simple counter example with the matrices

10 2 0
A:[o 1] B:{o 3} (57

shows that

5 hcond (A) hcond (B) cond A B 4
1= 2 T <h ( )‘5(58)

2+2
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and therefore the function is not convex. The function is quasi-
convex since Ayax (X) is convex in ¥ > 0, A, (X) is concave
in ¥ > 0, and a convex over concave function is quasi-convex
[44, Example 3.38].

In order to prove that it is convex on the geodesic, we use the
variational characterization of extreme eigenvalues:

Amax (B) = rﬁlahx u”Su (59)
u:||ul|=1

1 -1 -1

———— = Apax (E ) = max vIX7'v. (60)
Amin (X) viflvi=1
Due to the monotonicity of the logarithm, we obtain
max log(u”Zu max log(viZ~'v

h(‘,ond (2) — ewiluli=1 g( )+V:HVH:1 g( ) (61)

Plugging in the geodesic in (35) yields convex log-sum-exp
functions in the maximizations objective, the point-wise max-
imum of a set of convex functions is convex, and the exponent
of a convex function is also convex. Additional recent contribu-
tions on the convexity properties of the condition number can
be found in [45], [46].

Finally, the condition number is clearly invariant to scaling
the minimal and maximal eigenvalues by a positive constant. ll

Motivated by these properties, we propose to use the regular-
ization

minl ({s;};_;:¥) s.t.

cond <
>0 h () sa

(62)
where o > 1 is a fixed upper bound on the condition number.
Note that, unlike the previous regularizations, we follow [10]
and apply h°°"d (X) as a constraint rather than a penalty. Using
the majorization-minimization approach, we bound the nega-
tive-log-likelihood by @ (X, X) and obtain the following iter-
ation:

s.t. heend (2) < o ©3)

S = arg { ming, o Q (X, X)
Due to the quasi-convexity, each of the subproblems in (63) is a
convex optimization problem which can be solved using stan-
dard numerical methods. Furthermore, it was recently shown
that each of these has a simple solution based on efficient sorting
and thresholding [10].

E. Parameter Tuning

We now briefly discuss the issue of parameter tuning. In order
to enjoy the advantages of regularization it is vital to choose the
parameter « in an efficient and accurate manner. Recently, [28]
proposed a closed-form data-dependent choice for the regular-
ization parameter in the case of shrinkage towards the identity.
Other than that, there are numerous classical tuning methods and
different error criteria. Choosing the best method for a practical
application depends on the specific high level goal and is out-
side the scope of this paper. For completeness, we now present a
simple approach which will be used in the following numerical
analysis section.

We propose to choose the regularization parameter based on a
K -fold cross validation procedure. Specifically, we modify the

standard procedure to ensure scale invariance. We divide the in-
dexes set S = {1,...,n} into K = 10 nonoverlapping groups
S} such that S = UleS k- We define a grid of parameters «,
forr = 1,..., R and let ¥,.[k] be the solution to (41) with «,
and the samples {x; }, g\ 5, - Our criterion for choosing r is then
mean squared Frobenius error compensated for the scaling am-
biguity:

K 2
r =arg min min ||vE,[k] — Xixf
gre[l,...,R] kzzl v>0 [ ] 1;:’\
K T 2
) x] . [k]x; T}
=arg min ¥, [k] — x;x;
S kzzl ; [Tr =y

(64)

This criterion is easily motivated since ¥,.[k] and x; are inde-
pendent, and if £,[k] = £“"° then the expected value of the
argument in the norm is scale invariant and equal to zero.

V. NUMERICAL RESULTS

We now provide numerical examples of our unified frame-
work to both robust and regularized covariance estimation. The
purpose of these examples is to demonstrate the different esti-
mators, rather than a detailed practical application which is be-
yond the scope of this paper and will be pursued elsewhere.

In each simulation, we define a deterministic p X p true co-
variance " > 0 which we keep fixed throughout 200 statisti-
cally independent experiments. In each experiment, we generate
n i.1.d. realizations of a zero mean multivariate normal of covari-
ance X" with or without i.i.d. scaling factors generated ac-
cording to a Chi-squared distribution with 3 degrees of freedom.
These realizations are used to estimate the unknown covariance
using the various estimators. In our implementation, the starting
points for the fixed point iterations are properly scaled identity
matrices and we use 10 iterations. When needed, we tune the
regularization parameter using the cross validation method de-
scribed in Section IV-E with the parameters o; = ﬁ where
pi fori = 1,...,10 is a uniform grid over [0, 1]. Due to the
scaling ambiguity, we normalize the true covariance and its esti-
mates to have unit trace before computing the errors. We quan-
tify the performance using the normalized mean-square errors
(NMSESs) defined as

}
(65)

where ¥ are the various estimators. The expectation in the
NMSE is approximated by averaging over the independent
experiments.

In the first simulation, we compare the classical sample vari-
ances in (16) with the diagonal generalization of Tyler’s esti-
mator in (24)—(25). We let the true covariance to be a p = 20
diagonal matrix with [Et’r"e]jyj = jforj = 1,...,p. The
NMSEs in the Gaussian case (no scaling factors) and the El-
liptical case (random scaling factors) are presented in Fig. 1. In
the Gaussian case presented in the top graph, both estimators

pfe-

NMSE =

rue 2
1=
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Fig. 1. Diagonal Tyler’s estimator. Top: Gaussian distribution. Bottom: Ellip-
tical distribution.

perform similarly with negligible degradation in performance
for our mismatched non-Gaussian estimator. On the other hand,
this diagonal estimator significantly outperforms the Gaussian
estimator in the Elliptical case presented in the bottom graph.

In the second simulation, we compare the two shrinkage to
identity methods, namely (14)-(15) of [27] and [28] and the new
iteration in (48). This is a difficult comparison as the results
depend on the choice of regularization parameter and the true
unknown covariance. In order to eliminate the effect of param-
eter tuning and focus on the iterations themselves, we did not
use cross validation but chose the regularization parameter that
yielded the smallest error for each estimator in each experiment.
Clearly, this is not possible in practice as the true parameter is
unknown, but we believe this procedure makes a fair compar-
ison for our purposes. We let the true covariance be a Toeplitz
matrix with

[20e], = pli-dl (66)

i,

and p = 10. The NMSE:s are reported in Fig. 2 for 3 = 0.4 and
B = 0.95. It is evident that the two methods perform roughly
the same. Our experience with other simulations (not shown)
suggest similar behavior. In practice, it is much easier to choose
the regularization parameter in (14)-(15) via the closed form
proposal in [28], and we find it preferable.

In the third simulation, we demonstrate the advantage of
shrinkage towards a specific target matrix, e.g., in knowl-
edge-aided systems. We choose the target covariance T as a
Toeplitz matrix with 8 = 0.7, and let the true covariance be a
Toeplitz matrix with 8 = 0.8. We then estimate it using Tyler’s
estimator, our shrinkage to identity estimator in (48), and the
shrinkage to a target estimator in (51) which assumes prior
knowledge of T'. The NMSEs are reported in Fig. 3. It is easy to
see the performance improvement gained through the efficient
utilization of this additional prior information.

In the fourth simulation, we illustrate the advantage of
shrinkage towards a diagonal matrix via (55) rather than to-
wards an identity via (48). We choose the true covariance as a
Toeplitz matrix in (67) with # = 0.4 but scale its first row and
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Fig. 3. Shrinkage to a target matrix.

column by a factor of two. This scaling serves to model a system
in which some of the variables are of different magnitude. The
NMSEs of Tyler’s estimator, the shrinkage to identity estimator
and the shrinkage to diagonal estimator are reported in Fig. 4.
As expected, the diagonal shrinkage approach outperforms its
competitors when the number of samples is small.

Finally, in the fifth simulation, we focus on regularizing the
condition number of the estimates. We let the true covariance be
a p = 10 Gaussian shaped covariance matrix with

_li-41?
2

(67)

.. =€
.3

[Etrue]

We compare four estimators: the naive sample covariance,
Tyler’s estimator, a regularized condition number version of the
Gaussian ML estimator derived in [10], and our novel estimator
which regularized the condition number of Tyler’s estimate via
(63). We choose the regularization parameter using the cross
validation method described in Section IV-F, and a grid of 10
parameters « € [1,10] (the unknown condition number of
the true covariance is approximately 4.98). The NMSEs are
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reported in Fig. 5 and illustrate the performance gain due to the
combination of Tyler’s method and the regularization.

VI. DISCUSSION

In this work, we proposed a unified framework for both regu-
larized and robust covariance estimation. The core ingredient of
this framework is hidden convexity on manifolds. Using prop-
erly convex penalty functions, our framework allows regulariza-
tion towards various shrinkage targets as required by different
applications.

This research is based on the hypothesis that good estimators
are based on a likelihood based optimization. Unlike previous
works, we regularize the optimization problem rather than the
solution. This allows us to enjoy the recent advances in convex
optimization theory and methods. Our current choice of numer-
ical algorithms is based on their simplicity. Future work should
address more efficient optimization on manifolds algorithms
with provable performance guarantees. Future work should also

focus on a rigorous analysis of the boundedness of the prob-
lems and the uniqueness of their solutions. Such an analysis
would provide a deeper understanding and will assist in tuning
the shrinkage parameters so that the problems will be uniquely
solvable.
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