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Time Varying Autoregressive Moving Average
Models for Covariance Estimation

Ami Wiesel, Ofir Bibi, and Amir Globerson

Abstract—We consider large scale covariance estimation using
a small number of samples in applications where there is a nat-
ural ordering between the random variables. The two classical ap-
proaches to this problem rely on banded covariance and banded in-
verse covariance structures, corresponding to time varyingmoving
average (MA) and autoregressive (AR) models, respectively. Mo-
tivated by this analogy to spectral estimation and the well known
modeling power of autoregressive moving average (ARMA) pro-
cesses, we propose a novel time varying ARMA covariance struc-
ture. Similarly to known results in the context of AR and MA, we
address the completion of an ARMA covariance matrix from its
main band, and its estimation based on random samples. Finally,
we examine the advantages of our proposed methods using numer-
ical experiments.

Index Terms—Autoregressive moving average, covariance esti-
mation, matrix completion, instrumental variables.

I. INTRODUCTION

L ARGE scale covariance estimation using a small number
of samples is a fundamental problem in modern multi-

variate statistical analysis. In many applications, e.g., linear
array processing, climatology, spectroscopy, and longitudinal
data analysis, there is a natural ordering between the random
variables and it is reasonable to assume that the statistical
relation between two variables decays with their distance.
Based on this assumption, low order parametric models may be
imposed on the unknown covariance and allow for consistent
estimation using a small number of samples even when the
dimension is much greater.
A natural approach to covariance estimation is to formulate

the decay in statistical relation using the notion of indepen-
dence or correlation. Assuming that is uncorrelated with
if leads an intuitive -banded covariance structure
[1]–[3]. This structure is a special case of the more general class
of sparse covariance models [4]. An alternative approach uses
the notion of conditional independence. In the Gaussian case,
assuming that and with are conditionally inde-
pendent given the rest of the elements in leads to a -banded
inverse covariance [1], [5]–[8]. Indeed, this structure is a spe-
cial case of sparse inverse covariance models, also known as
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Gaussian graphical models [9]. A remarkable result of [1] is that
the condition is sufficient for consistent estima-
tion in these models.
The starting point for this work is the analogy between

covariance estimation and spectrum estimation in stationary
random processes. The two classical models for spectrum
estimation are moving average (MA) and autoregressive (AR)
processes. Interestingly, the finite process can be easily
shown to be equivalent to a -banded Toeplitz covariance
model, whereas the finite process corresponds to a
-banded Toeplitz inverse covariance model. In the non-sta-
tionary cases, the Toeplitz restriction is removed and the
structures reduce to the banded and inverse banded structures
discussed above. In stationary processes, it is well known that
MA and AR are usually crude approximations of reality and that
better modeling power may be obtained through autoregressive
moving average (ARMA) processes [10]–[12]. Continuing
this analogy, we propose a new non-stationary
covariance model.
In this paper, we introduce a novel time varying

covariance model. It reduces to sparse structures when
, and reduces to sparse structures when .

The general model leads to a dense covariance with a dense
inverse, but is parameterized by a small number of unknowns.

are a special case of recursive linear models with
correlated errors. A different special case, known as Bow-free
acyclic path (BAP), has recently been studied in [13], [14].
The first contribution of this paper concerns

matrix completion. It is well known that and co-
variance matrices can be uniquely completed given their main
and bands, respectively. Thus, it is natural to expect that

models can be reconstructed given their
leading diagonals. Following this intuition, we derive an ARMA
completion procedure denoted by . The algorithm uses an
instrumental variables (IVs) approach which is motivated by
classical time series analysis techniques [10]–[12]. It does not
require any ad hoc starting point, is not iterative, and is not
prone to convergence to suboptimal local solutions. We provide
a simple condition under which is exact, as well as a counter
example when the condition does not hold. Numerical results
with random parameters suggest that, in practice, the condition
almost always holds.
The second contribution of this paper addresses

covariance estimation with an emphasis on the high dimensional
regime in which . Following existing methods
in and , we propose to use again but replace
the unknown band with its sample version. This empir-
ical band is much smaller than the full sample covariance matrix
and is therefore more accurate. To formalize these statements,
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we analyze under both deterministically and stochastically
perturbed inputs. Similarly to [1], we show that, under tech-
nical conditions, it is consistent in the operator norm as long as

. In addition, we demonstrate the performance
advantages of the estimator using numerical experiments.
The outline of the paper is as follows. In Section II, we in-

troduce the time-varying covariance model. In
Section III, we consider matrix completion and in Section IV
we apply these results in the context of estimation. In Section V,
we demonstrate the advantages of our proposed methods using
numerical experiments. Finally, concluding remarks are given
in Section VI.
The following notation is used. Boldface upper case letters

denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. The super-
scripts and denote the transpose, the
conjugate transpose, the inverse and the pseudoinverse, respec-
tively. For sets and , the cardinality is denoted by and the
set difference operator is denoted by . The sub-matrix of
indexed by and is denoted by , and this operation pre-
cedes any other matrix operation, e.g., . The
operators and denote the max-
imum absolute column sum norm, the operator norm, the max-
imum absolute row sum norm and the element-wise infinity
norm, respectively. means that is positive definite.
By we mean that the columns of lie within the
range space of . The banding operator outputs a ma-
trix with the principal diagonals of and zero-padding
elsewhere. We use the following indices sets definitions. For

and given and , we define

and . These sets
satisfy:

(1)

and can be visualized as
Throughout the paper, we use a few technical lemmas pro-

vided in Appendix A.

II. MODELS

In this section, we review the two classical MA and AR co-
variance structures, and then generalize them to the more flex-
ible class of ARMA models.
A natural model for the covariance of a random vector

which satisfies a known ordering is a banded matrix, i.e., a ma-
trix such that [1]:

(2)

The rationale behind this structure is that, in the Gaussian case,
a zero in the covariance matrix denotes statistical independence
between variables:

(3)

and it is reasonable to assume that distant elements are statisti-
cally independent. It is well known that banded positive definite
matrices have banded Cholesky factorization

(4)

where is a -banded lower triangular matrix. This provides
an elegant generative model for the random vector using an
uncorrelated latent random vector . Namely,

(5)

where is a driving vector which satisfies

(6)

Note that each variable in averages over adjacent elements in
, and hence the name “moving average” (MA) process. More

precisely, this is a time-varying or non-stationary MA model.
The classical stationary MA process assumes that is also a
Toeplitz matrix. In what follows, we use to denote co-
variance matrices which satisfy (4).
An alternative model for the covariance matrix of an ordered

random vector is that its inverse is -banded and satisfies
[1], [15]

(7)

The rationale is that, in the Gaussian case, a zero in the inverse
covariance matrix corresponds to conditional independence be-
tween variables:

(8)

where denotes a vector with all the elements in except
and . Intuitively, this means that the dependency between dis-
tant variables disappears once we know the elements between
them. Using the Cholesky factorization, any matrix whose in-
verse is -banded can be written as

(9)

where is the Cholesky factor, is a -banded
lower triangular matrix with zero valued diagonal elements and
is a positive definite diagonal matrix. This leads to the dy-

namical “autoregressive” model

(10)

where is a vector of latent variables satisfying

(11)

(12)
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The name “autoregressive” expresses the causal dependency of
on . The classical stationary AR model is a special case

in which has a Toeplitz structure. As before, we use
to denote covariance matrices which satisfy (9).
Motivated by theMA and AR interpretation of the banded co-

variance and inverse covariance models, we now propose a new
covariance structure based on the classical ARMA process. The
scalar, infinite and stationary ARMA process for

is defined as

(13)

where is a zero mean, white driving process. The natural
vector, finite and non-stationary version of (13) is the length
random vector defined as

(14)

where is a vector of latent variables which satisfies (6), is a
-banded, lower triangular matrix with zero diagonal elements
and is a -banded lower triangular matrix. Indeed, if we in-
crease the dimension without bound and constrain and
to Toeplitz matrices, then model (13) can be interpreted as the
limit to (14). The two extreme cases of the ARMA model are
clearly the pure MA process in (5) where and the pure
AR process in (10) where and is a
diagonal matrix.
The ARMA model defines a low order parametric model for

the covariance of . Rearranging (14), we obtain

(15)

with a covariance matrix

(16)

Hereinafter, we denote the class of matrices satisfying (16) as
covariances. To simplify the notation, we will

often use

(17)

with

(18)

Intuition on this structure can be obtained by examining its ex-
treme cases. It is easy to see that this model has the pure MA
model in (4) and the pure AR model in (9) as special cases.
Unlike these special cases, both and are non-banded
and dense matrices in the general ARMA model. It is impor-
tant to note that the decomposition of in (16) is not unique
and there may be different legitimate pairs of matrices
which yield the same covariance. Thus, throughout this paper
we only address the issue of recovering or estimating rather
than .
For completeness, we note that the proposed ARMAmodel is

a special case of recursive linear models with correlated errors.

Bow-free acyclic path (BAP) diagrams are another special case
which has recently been studied in [13], [14]. The ARMAmodel
is not necessarily a BAP, and is aimed at different applications
where there is a natural ordering between the variables. Fur-
thermore, the current results on BAPs assume that the number
of samples is greater than the dimension and are therefore not
suitable for large scale covariance estimation.

III. COVARIANCE COMPLETION

Matrix completion problems consider the recovery of a full
matrix given the values of only a subset of its entries assuming
some structure or objective function [16], [17]. We now review
known results on these problems in MA and AR models and
extend them to the ARMA setting.
Completion of an covariance matrix from its main
-band is trivial via zero padding [1]

(19)

Completion of an covariance matrix from its main
-band is also well known. This procedure is known as positive
definite completion and is equivalent to maximum likelihood
estimation [9], [16]. In brief, we recover for
using simple linear regressions based on . The th row
of (10) can be expressed as

(20)

We multiply this equation on the right by and take the ex-
pectation. The residual is uncorrelated with and therefore
disappears so that

(21)

Solving for yields the non-stationary Yule Walker for-
mulas

(22)

from which the covariance can be easily completed.
We now extend these results to general ARMA structures.

Similarly to the completion method, we use linear re-
gressions to recover from and then reconstruct . The
main difference is that we cannot use simple regressions and re-
quire a more careful treatment based on IVs. As before, the th
row of (14) can be expressed as

(23)

but now and are correlated. IV methods are directly
aimed at regressions when the explanatory variables (covari-
ates) are correlated with the residual terms. Thus, instead of
multiplying by , we multiply (23) by the IVs which,
due to (1), are uncorrelated with

(24)

Taking the expectation yields

(25)
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for . Due to (1), the number of equations will
be greater than or equal to number of unknowns . Thus, we
can try to solve these linear systems as

(26)

and pad the rest of the matrix with zeros. Assuming that is
identical to , we can easily recover as

(27)

where

(28)

and complete to

(29)

This ARMA completion procedure, denoted by , is summa-
rized below.

Procedure AC

Input:

Output:

For do

Clearly, is correct when . Due to the lack of identi-
fication in ARMA models, this may not be the situation in prac-
tice and it is very likely that . The next theorem charac-
terizes the conditions for exact completion in this practical case.
Theorem 1: Let follow an model. Define a

bandwidth and assume that

(30)

Then, reconstructs the unknown covariance exactly so that
. In particular, if then (30) always hold, and

the reconstruction is exact (yet trivial).
Proof: The core of the proof lies in the identity

(31)

The last equality is similar to (24)–(25) and is based on the fact
that, like is also uncorrelated with . The identity
suggests a simple recursive completionmethod. Assume that we
have already reconstructed , then using
and (31), we can recover . In what follows, we show that

the last two lines of are simply a non-recursive implemen-
tation of this idea.
Using (28), identity (31) can be compactly expressed as

(32)

For any matrix , we have the following recursive properties

(33)

for , where we have used the triangular structure of
. Thus, the last two lines of can be expressed as

(34)

(35)

Based on this observation, the proof that proceeds by
induction on the correctness of starting with and
up to . The basis of the induction

(36)

clearly holds and we now show that the hypothesis

(37)

leads to

(38)

For this purpose, we define the following partitioning

(39)

(40)

We begin by analyzing and . The matrix is -banded
and . Thus, the inner banding in (34) can be omitted

(41)

(42)

(43)

(44)

Due to the triangular structure, we have

(45)

(46)
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Finally, we complete the induction by deriving and

(47)

and

(48)

Theorem 1 extends classical results on and
to the case of , and shows that, under assumption
(30), the covariance matrix can be completed given its
leading diagonals. The assumption is similar to classical invert-
ibility assumptions in stationary ARMA process identification
via IVs [10]–[12]. Numerical results in Section Vwith randomly
generated parameters suggest that it usually holds in practice.
However, it is possible to construct specific counter examples
as follows.
Theorem 2: There exist covariances which

cannot be completed from their main band.
Proof: Consider the following counter example. First, de-

fine the matrix

(49)

whose parameters are

(50)

Next, define the matrix

(51)

whose parameters are

(52)

Both are legitimate matrices. Their main -bands
are identical but each has a different value in the ’th entry
which needs to be completed. Thus, it is impossible to uniquely
decide between them given the main band.

IV. COVARIANCE ESTIMATION

In this section, we consider the estimation of the covariance
matrix of an observed sample of random vectors. Specifically,
let be a length , zero mean normal vector with covariance .
Our goal is to estimate based on independent and identically
distributed realizations of denoted by for .
The simplest estimator is the well known sample covariance

(53)

In the Gaussian case, it coincides with the unstructured Max-
imum Likelihood (ML) estimate as long as and is there-
fore consistent and efficient when . Unfortunately, the
number of samples in many practical applications is not suf-
ficient, and better performance may be obtained through low
order parametric models.
The standard methods for estimation in pure MA and AR

structures use only the main band of the sample covariance [1].
In what follows, we extend this approach to ARMA models.
Our estimator is obtained by taking the matrix and applying
the procedure (see Section III) to it, with . In other
words, it takes the main band of the matrix and uses
to obtain a new matrix . The matrix will serve as our esti-
mator of the true covariance . We now analyze the number of
samples needed for this scheme to achieve a desired accuracy.
As in similar analyses, we require certain conditions on the
that generate the data. This is a common approach in ana-

lyzing the covariance estimation and its dependence on dimen-
sion (e.g., see [1]). Specifically, we shall assume that these be-
long to a subclass of ARMA models of arbitrary dimension .
Define the following set of matrices:

(54)

It is instructive to explain the meaning of the above conditions
on . The first condition is similar to standard
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assumptions in high dimensional analysis of covariance estima-
tion methods. It basically states that the elements and the param-
eters of the unknown covariance and its inverse are bounded by
constants which do not depend on the dimension. Here we also
require similar conditions on the matrices which are ob-
tained as intermediate steps of applied to (we assume that

is applied with ). The second condition addresses
the continuity of the pseudo-inversions in (26), and guarantees
stability under perturbation.1 The third condition is simply (30),
which is necessary for to work.
The following theorem states that when is close to , then

our estimator will also be close to . We shall later use it in
Theorem 4 to obtain convergence rates for our estimator.
Theorem 3: Let be a matrix in . Assume that

the matrix satisfies

(55)

where

(56)

Then the matrix , which results from applying to ,
satisfies

(57)

where

(58)

The constants are functions of and and do
not depend on the dimension . They are defined in (65), (71),
and (74) below.

Proof: Recall that calculates the matrices
which are then used to obtain the completed matrix . We will
be interested in two such sets of matrices. Those obtained when
applying to the true covariance , and those obtained when
applying to the sample covariance . The former will be
denoted by and the latter by . Since
under assumption (30), applying to results in itself,
we have that:

(59)

Recall also that are given by:

(60)

In what follows, we will analyze how differ from
and use this to analyze how differs from .

We begin by analyzing . From (56) we have that

(61)

1We believe this condition may be dropped via more careful analysis.

Thus,

and due to Lemma 2

(62)

Using the sub-multiplicative and triangle inequalities we get

(63)

The matrices and are -banded and lower triangular. Thus,

(64)

where

(65)

Next, we analyze the difference between and . We define

so that

We first note two facts regarding the banded matrices
and . First, due to Lemma 1 the matrix satisfies

(66)

Second, the two banded matrices satisfy

(67)
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where we have used basic inequalities between norms of
symmetric matrices, and (55). This inequality is actually the
core of the pure analysis. It states that the operator
norm of the banded matrix error is bounded by the element
wise error and is independent of the dimension which may be
much larger. We next combine inequalities (66) and (67) with
Lemma 3 to obtain

(68)

where

(69)

Using Lemma 1 again yields

(70)

where we define

(71)

Finally, we turn to the overall error in . If

(72)

then due to Lemma 2

(73)

where

(74)

Recall that , so that application of Lemma 3
yields

(75)

as long as (61) and (72) are satisfied. Rearranging these condi-
tions results in (57) as required.
Theorem 3 can now be used to the derive the non-asymptotic

behavior of our estimator. The theorem below states that when
estimating a of dimension with samples, the estimation

error is of order , implying only a weak dependence on
. This is similar to results obtained for MA and AR estimators
in [1].

Theorem 4: Let be a matrix in . Assume that
in (53) is a sample covariance constructed using indepen-

dent and identically distributed realizations of a multivariate
Gaussian distribution with zero mean and covariance . Then,
there exist constants and which depend only on
, such that for

(76)

the inequality

(77)

holds with probability greater than , where the con-
stants are defined in Theorem 3, and is arbitrary.

Proof: Lemma A.3 and the union bound in page 221 of [1]
show that

(78)

for

(79)

Combining this with the deterministic inequalities in Theorem
3 yields the required result.
Finally, we now briefly discuss the issue of order selection. In

order to enjoy the advantages of low order parametric models
it is vital to choose the orders and in an efficient and ac-
curate manner. In some applications, these bandwidths are a
priori known from previous experiments or the physical char-
acteristics of the system. In other scenarios, these parameters
must be inferred from the available data. There are different
approaches to this task. Hypothesis testing and expected like-
lihood based criteria have been recently proposed in the context
of time varying AR covariance models [5], [15], [18]. Alterna-
tively, cross validation approaches can be used as in [1], [2]. We
follow these last works and propose a simple -fold cross vali-
dation procedure. We divide the indices set into

non-overlapping groups such that ,
and consider a set of candidate pairs for .
We define as the output of applied to

(80)

with parameters . Our criterion for choosing is then
mean squared Frobenius error:

(81)

After finding this optimal , we re-estimate the covariance using
the bands using the full set of samples.
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Fig. 1. Error in reconstruction of covariances of dimension
from their main band, as a function of .

V. EXPERIMENTS

In what follows we experiment with the procedure on two
tasks. The first is the completion of ARMA covariance matrices
from their main band (see Section III). The second is estima-
tion of ARMA models from finite samples (see Section IV).

A. Evaluating the Completion Algorithm

In Section III we show that the procedure can be used
to complete an ARMA covariance from its main band. The
completion is guaranteed to work under the condition in (30),
which appears to hold quite generally. To show this, we draw
well conditioned ARMA models with and

from a random ensemble. At each experiment, we
randomly generate two 10-banded positive definite matrices
as the Hadamard product between Wishart matrices with
degrees of freedom and banded Toeplitz masks with
elements equal to within the band. We use one of
these matrices to compute the AR component via (9), and
the other to compute the MA component via (4). Plugging
these and into (16) yields a well conditioned ARMA
covariance. We then use to complete from its main
band, for different values of . Fig. 1 shows the Frobenius norm
error of this procedure for different values averaged over 100
independent experiments. It can be seen that we achieve perfect
reconstruction for .

B. Evaluating the Estimation Algorithm

In what follows we evaluate our ARMA estimation method
(Section IV) on various simulated covariance matrices. We
compare four different estimators: the sample covariance, an
autoregressive model , a moving average model

, and our autoregressive moving average model
. Note that to ensure fairness, all three parametric

models have the same number of degrees of freedom. The
ARMA model is estimated using the matrix completion ap-
proach corresponding to with . The AR models

Fig. 2. Best estimators as a function of the ARMA model: ARMA is white,
AR, MA and sample covariance are grays.

are estimated using standard Yule Walker estimation and the
MA models are estimated using the procedure in [2].2

In our first experiment, we examine the performance as a
function of the parameters. Specifically, we let

and define and as Toeplitz matrices with
and evaluated on the grid . For
each point, we simulate all four estimators and compute the
squared Frobenius norm error in the covariance. In Fig. 2 we
plot the labels of the best estimators for each pole and zero
values and for different numbers of samples. As expected, the
advantage of the ARMA estimator is emphasized when the AR
and MA components are of the same order with different signs.
Also, the region in which ARMA dominates becomes larger
with the number of samples.
In our second experiment, we consider the stationary narrow

band example in [19]:

(82)

We construct the time varying ARMA covariance model
as follows. First we define a size Toeplitz ma-
trix with the corresponding parameters

and . Next, following [5] in the context of time
varying AR covariance estimation, we add non-stationarity
using phase path variations along propagation channels. We
define the Doppler matrix as:

(83)

with , and the overall time varying covariance matrix as

(84)

2The MA estimation method in [2] typically outperforms simple banding of
.
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Fig. 3. Error in Gaussian as a function of the number of samples.

Fig. 4. Error in Uniform as a function of the number of samples.

Note that this construction involves the use of complex
variables. For this purpose, we replace the transpose and pseu-
doinverse operators in with their complex counterparts,
i.e., conjugate transpose and complex valued pseudoinverse,
respectively.
We report the results of four experiments performed on this

model. In Fig. 3 we provide the normalized Frobenius norm er-
rors of the and with estimators as
a function of the number of samples. The samples are drawn
from a multivariate normal distribution. In order to test the ro-
bustness to non Gaussian samples, we also repeat the experi-
ment using uniform distribution for the driving noise as de-
scribed in [19]. The results are provided in Fig. 4. Next, in Fig. 5
we examine the effect of model selection and run the simulation
again without providing the estimators their band parameter, but
choosing it using the proposed cross validation technique. In all
three cases, it is easy to see the advantage of the ARMA esti-
mator over its competitors.

Fig. 5. Error in Gaussian with model selection as a function of
the number of samples.

Fig. 6. Error in Gaussian as a function of the bandwidth .

Finally, we consider the performance as a function of the
bandwidth parameter of the algorithm. The previous re-
sults are all based on the choice . To illustrate
the effect of , we evaluate performance for different values of
. This is done for the model above with normal
noise, and with a sample size of . Results are shown
in Fig. 6. The curve suggests that there is an optimal band-
width around which can provide even better performance.
Clearly, this comes with the additional cost of optimizing this
additional hyper parameter.
In our third experiment, we consider the

in Exercise C2.22 in the spectral analysis book [20]. As
before, we construct a Toeplitz covariance with
the parameters

and zero otherwise. We
then add non stationarity as formulated in (84). We report the
error as a function of the number of samples with and without
cross validation in Figs. 7 and 8, respectively. Both figures
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Fig. 7. Error in Gaussian as a function of the number of samples.

Fig. 8. Error in Gaussian with cross validation as a function of
the number of samples (MA error is larger than 0.2).

demonstrate the advantages of ARMA approach both when the
band parameters are a priori known, and when these must be
estimated from the available data.

VI. DISCUSSION

In this paper, we introduced a low order parametric model
for covariances based on a time varying ARMA structure. We
considered the completion of such covariances from their main
band, and their estimation from random samples. Our contri-
butions generalize existing results on the special cases of pure
MA and pure AR structures. In particular, we provide conditions
under which our proposedARMAestimates are consistent in the
operator norm as long as .
The model assumes that the locations of the

non-zero valued parameters are known in advance based on the
ordering of the variables. Recently, there has been a growing in-
terest in learning sparse models where the sparsity pattern has
to be estimated from the data as well. This has been done in
the context of sparse covariance matrices as well as sparse in-

verse covariance matrices [21]–[25]. Future work should ad-
dress these approaches in the context of ARMA models. By in-
terpreting the MA part as latent variables, such extensions will
be related to the recent works on learning covariance matrices
with hidden variables [26].

APPENDIX A
TECHNICAL LEMMAS

Lemma 1: Let be an arbitrary matrix, then
.

Proof: Let where is the all ones matrix,
then where is the Hadamard elementwise
product. The spectral norm is Hadamard submultiplicative so
that [27]. Finally, for
any symmetric matrix and .
Lemma 2 (Full Rank Pseudoinverse Perturbation): If is a

tall full rank with . and
, then is full rank with

(85)

Proof: Corollary 22 and Lemma 23 in [28] with
and .
Lemma 3: Let for satisfy , and

with . Then,

(86)

Proof: Apply the submultiplicative and triangle inequali-
ties to

(87)
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