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Abstract— In this paper we consider parameter estimation of
K Gaussians, given convex combinations of their realizations.
In the remote sensing literature this setting is known as the
normal compositional model (NCM) and has shown promising
gains in modelling hyperspectral images. Current NCM param-
eter estimation techniques are based on Bayesian methodology
and are computationally slow and sensitive to their prior
assumptions. Here we introduce a deterministic variant of the
NCM, named DNCM, which assumes that the unknown mixing
coefficients are non-random. This leads to a standard Gaussian
model, with a simple estimation procedure which we denote by
K-Gaussians. Its iterations are provided in closed form, and
do not require any sampling schemes or simplifying structural
assumptions. We illustrate the performance advantages of K-
Guassians using synthetic and real images, in terms of accuracy
and computational costs in comparison to state of the art. We
also demonstrate the use of our algorithm in hyperspectral
target detection on a real image with known targets.

Index Terms— Normal compositional model, Hyperspectral
unmixing

I. INTRODUCTION

Hyperspectral images (HSI) provide both spatial and spec-
tral information of a scanned scene and are useful in material
identification, target detection and other remote sensing tasks
[1], [2]. Different objects typically leave unique signatures
in the electromagnetic spectrum. Unmixing methods decom-
pose the high dimensional image into these fundamental
components which typically have a physical interpretation
and may be useful in statistical inference. The Normal
Compositional Model (NCM) and its modern extensions
are among the leading approaches to this problem [3]. In
this paper, we propose a non-Bayesian variation on these
models that leads to a low complexity yet accurate unmixing
algorithm.

An HSI is a 3-dimensional data cube, consisting of two
spatial dimensions that determine pixel location and a third
dimension that corresponds to spectral bands. The goal of
unmixing is to retrieve the material composition in the image
[2], [4]. Given spectral information contained in each pixel,
this can be made possible owing to the fact that every mate-
rial is characterized by its reflection and absorption patterns
in the wide spectrum. Narrow spectral band measurements
typically dictate low spatial resolution, in which multiple
materials may be present in a single pixel. Therefore, most
of the leading methods decompose the image into a few
pure components, known as endmembers, which are linearly
mixed across the pixels. The mixing coefficients are known
as abundance.

Two classical unmixing methods are vertex compo-
nent analysis (VCA) and non-negative matrix factorization
(NMF) [5], [6]. VCA assumes presence of pure pixels in the

image, and uses geometric methods to extract the endmem-
bers. NMF methods assume a bilinear structure and seek
an optimal decomposition into endmember and abundance
matrices. Other variants of the NMF have been proposed,
imposing additional sparsity or smoothness constraints [7].

A major concern with the classical decomposition meth-
ods is that they do not account for endmember variability. In
practice, spectra of pure materials might vary across pixels,
caused by intrinsic variabilty, atmospheric conditions, illumi-
nation and more [8]. Variability can be captured by additive
perturbation terms as in [9]. Alternatively, it is natural to
consider the endmembers as random vectors with unknown
statistical distributions. The goal is then to estimate the
parameters of these distributions given linear combinations
of random vectors. There are two main approaches in this
literature. The stochastic mixing model (SMM) assumes that
the abundances are restricted to a discrete set [10], [11],
while compositional models assume continuous abundances.
The latter approach is known to be more accurate and
flexible, and has been the focus of many recent papers.
The basic model is known as normal compositional model
(NCM), which assumes multivariate normal distribution of
the endmembers. Variants of the NCM assume other end-
member priors as the Beta distribution [12]. In parallel to
the submission of our work, a similar approach based on
a generalized Gaussian mixture model and maximum a-
posteriori estimation (MAP) method was proposed in [13]. A
related work is the piecewise convex unmixing [14], where
a few groups of endmembers are assumed, characterizing
different NCM distributions, so each pixel is a sample from
one of these distributions.

There are of course approaches other than the NCM
to model endmember variability. For example, the model
proposed in [15], introduces an additive function to a linear
mixture model that depends on the abundance. This approach
is more general in a sense that it can also account for non-
linearity or mismodelling effects.

The majority of methods described above are based on a
Bayesian methodology and assume random abundances. The
original NCM paper [3] uses a uniform prior distribution
over the simplex and a stochastic expectation maximization
(SEM) method is utilized in order to achieve parameter
estimation. The article [16] proposes a particle swarm opti-
mization method for estimation of the abundance, which is
assumed to have a normal distribution. In [17], the authors
propose a hybrid Gibbs sampler to obtain samples of the
abundance, assuming Gaussian endmembers with spheri-
cal/diagonal covariances. An extension proposed in [18]
also includes estimation of the number of endmembers. An
unsupervised generalization denoted by UsGNCM exploits
spatial properties and also includes estimation of endmember
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means [19]. However, it still assumes spherical covariances.
In this paper, we introduce a straightforward yet effective

version of NCM which we call the deterministic NCM
(DNCM). Following the original NCM, we assume arbitrary
Gaussian sources, with no simplifying structural constraints.
However, we differ by not assuming any stochastic prior
on the abundance vectors, considering them to be additional
deterministic parameters. Thus, the set of parameters to be
estimated are the mean and covariance of each endmember,
as well as the abundance vector of each pixel. We also
assume additive Gaussian noise of constant variance. We
perform unmixing through maximum likelihood estimation
(MLE), and for that purpose we turn to the expectation-
maximization (EM) method [20]. Our latent variables are the
unknown Gaussian realizations rather than their mixing coef-
ficients. The resulting approach, which we call K-Gaussians,
consists of closed form computations and standard optimiza-
tion techniques. It allows a more realistic scenario of full
endmember covariances. It is also more flexible in the sense
that one can impose various constraints on the abundance
based on prior knowledge, such as non-negativity, simplex
(non-negative sum to one), and upper/lower bounds. Most
importantly, the algorithm is significantly simpler and more
scalable than its Bayesian competitors.

We examine K-Gaussians in synthetic HSI, comparing
its estimation errors against other unmixing algorithms. Our
main competitor is UsGNCM which typically provides accu-
rate results when covariances are spherical, but is computa-
tionally intensive. We observe comparable or improved accu-
racy with a significant reduction of computational resources.
For example, in the setting of [19] using their UsGNCM
code, K-Gaussians requires only a few minutes compared
to at least one hour of computation, with negligible loss of
accuracy. Finally, we demonstrate the use of K-Gaussians
in the application of hyperspectral target detection, using
a real world HSI experiment with real known targets [21].
Remarkably, in addition to its efficiency, K-Gaussians also
provides better receiver operating characteristics (ROC) than
its competitors. This experiment involves a huge dataset, and
we conjecture that UsGNCM would eventually outperform
K-Gaussians given enough running time and memory re-
sources (See Section IV for more details). Our conclusion is
therefore that K-Gaussians is a promising scalable low-cost
alternative to Bayesian NCM methods.

The rest of the paper is organized as follows. In section
II, we introduce the basic DNCM model, compare it to ex-
isting models, and address its advantages and limitations. In
section III, we introduce K-Gaussians algorithm. Finally, in
section IV, we evaluate our model and EM algorithm using
numerical experiments on synthetic and real hyperspectral
data.

Notations: The field of real numbers is R, and non-
negative numbers is R+. The set of p×p positive definite ma-
trices is denoted by Sp×p++ . Matrices are denoted by boldface
upper-case letters (e.g, A,M), while vectors are denoted by
boldface lower-case letters (u,v). The k-th column vector
of some matrix (e.g, M) is denoted by the matching lower-
case, indexed by k (e.g, mk). The (i, j)-entry of a matrix,
say M, is denoted by [M]ij . The n-th entry of a vector u
is denoted by un. If the vector itself is indexed, e.g. mk,

then we denote its n-th entry by [mk]n. As we shall see, the
DNCM model consists of a set of covariances. We denote
this set by Q, and the k-th covariance in the set is denoted
by Q(k). Note that this should not be confused with a regular
matrix, which we denote by bold upper case letter, other than
Q. We denote the `2 vector norm by ‖ · ‖2.

II. THE DNCM MODEL

A. Problem formulation

The DNCM model consists of a fixed number K of inde-
pendent sources. Each has a multivariate normal distribution
with a different mean and covariance. Let mk ∈ Rp and
Q(k) ∈ Sp×p++ be the mean and covariance of the k-th
component, respectively. A DNCM random vector is a linear
combination of these Gaussian components, corrupted by
an additional independent Gaussian noise. We refer to the
coefficients vector as the abundance, and to the indepen-
dent Gaussian components as endmembers. The abundance
entries must therefore be non-negative. We can of course
impose additional constraints, based on prior knowledge of
the abundance. In our simulations, we shall focus on two
types of constraints: non-negativity, as in VCA [22], and
simplex. We denote the constraint set by C, so that we have:

C =
{
a ∈ RK+

}
or C =

{
a ∈ RK+ ,1Ta = 1

}
.

Formally, a DNCM random vector y is defined as:

y =

K∑
k=1

akxk + ε

xk ∼ N
(
mk,Q

(k)
)

ε ∼ N
(
0, σ2I

)
,

where [a1, .., aK ]
T

= a ∈ C. In words, xk is a realization of
the k-th source, mk and Qk are its parameters, and ε is an
independent vector of Gaussian noise. We sometimes use a
shorter matrix notation, for convenience, as follows:

M = [m1, ...,mK ]

X = [x1, ...,xk]

Q = {Q(1), ...,Q(K)} (1)
A = [a1, ...,aN ] .

The matrices M and X are stacked vectors of means and
endmember realizations, respectively, while Q is the set of
endmember covariances. Using these matrix notations, y can
be compactly expressed as:

y = Xa + ε.

It is easy to verify that y is normally distributed, with the
following parameters:

y ∼ N
(
Ma,Q (a) + σ2I

)
,

where

Q (a) =

K∑
k=1

a2kQ
(k). (2)

In practice, we observe N vectors:

Y = [y1, ...,yN ] , (3)
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where each observation is a linear mixing of the K normally
distributed endmembers. However, the abundance vectors
a ∈ C of different observation are not necessarily identical.
We denote the abundance of the n-th observation yn by an.
Then we have:

yn ∼ N (Man,Q
(
an) + σ2I

)
(4)

Omitting constant terms, the negative log-likelihood (NL)
of a single observation y, corresponding to an abundance
vector a, is given by

L(y; a,M,Q, σ2) =

(y −Ma)
T [

Q (a) + σ2I
]−1

(y −Ma)

+ log
(∣∣Q (a) + σ2I

∣∣) . (5)

B. Relation to other models

DNCM is closely related to other classical statistical and
factorization models, as detailed below:

NCM [3]: The motivation for DNCM are the stochastic
NCMs. Both models assume linear combinations of hidden
Gaussians. The only difference is that the vectors an are
modelled as random variables in NCM, whereas in DNCM
they are deterministic unknowns. Compared to GNCM of
[19], DCNM is more general and does not constrain the
covariances of the endmembers to have spherical/diagonal
structure.

GMM [23]: This model can be regarded as a pure NCM.
The GMM assumes 1-sparse abundance vectors, i.e., vectors
with a single unit entry and zeros elsewhere. Similarly to
NCM, it typically also models the abundance as stochastic
and uses the marginalized mixture distribution

p(y) =

K∑
k=1

πkφ(y; mk,Q
(k)), (6)

where (π1, .., πK) ∈ C is the distribution of the pure pixels.
K-means [24]: DNCM is also related to the K-means

algorithm which can be derived as a degenerate GMM with
spherical covariances. Like GMM, K-means assumes 1-
sparse abundances. On the other hand, the K-means is a
deterministic algorithm which assigns each observation to a
single cluster, and does not perform any soft marginalization.
In this sense, it is closer to DNCM which also assumes
deterministic abundances.

NMF [6]: DNCM can be interpreted as a generalized
NMF model. If we set Q(k) → 0, then DNCM reduces to
the classical NMF formulation in which Y = MA + ε.
By allowing more flexible covariances, DNCM expresses
the uncertainty and variability in the different endmembers.
More precisely, NMF models also requires that the matrix
M will have non-negative elements. This constraint can also
be easily incorporated into DNCM.

C. Inherent limitations and identifiability

As explained above, DNCM is a highly expressive model
which generalizes many existing models. As a consequence,
it has many unknown parameters that must be estimated,
and it is important to understand its inherent limitations and

identifiability properties. Clearly, it inherits all the identifi-
ability problems of GMM and NMF. These models suffer
from trivial ambiguities such as cluster/vertex permutation.

A more critical limitation concerns the abundance parame-
ters. Unlike the endmembers, the abundance varies with each
observation. Consequently, as we increase the number of
observations, we get more unknowns. Thus, we only expect
accurate estimation of M and Q, and may not succeed in
reconstructing all the abundances in A. In specific scenarios,
such as partial knowledge of the model parameters, given
certain conditions on the latter, identifiability can be guaran-
teed. However, as is typically the case for mixture models,
this is mostly a theoretical concern. As we shall see in our
experiments, our model still performs well.

III. ESTIMATION

In this section, we introduce the K-Gaussians method for
estimating M,Q,A and σ2, given an observation matrix and
number of endmembers. Similarly to NCM [3], we adopt
an EM approach. Basically, the EM algorithm computes the
MLE of a model that contains latent variables, by optimizing
the conditional likelihood function. Every iteration of the
EM algorithm increases the likelihood function, and under
certain regularity conditions (that we do not prove here for
the DNCM), is guaranteed to converge to a local maximum
[20], [25]. Note that our objective is to minimize the NL,
which is equivalent to computing the MLE. In our case the
endmembers are latent variables, a property which allows
for computational efficiency. Specifically, the DNCM log
likelihood decouples the endmembers’ mean and covariance
from the abundance vectors. Minimization is then done
separately for each group of parameters.

We first present the main computational steps of K-
Gaussians. We then discuss covariance regularization, as well
as choice of initialization points. Finally, we introduce a
diagonal version of the K-Gaussians.

A. The K-Gaussians algorithm

Let us denote the current set of parameter estimates by:

Θ̂ = {Â, M̂, Q̂, σ̂2}, (7)

where we use matrix notation:

M̂ = [m̂1, ..., m̂K ]

Â = [â1, ..., âN ]

Q̂ = {Q̂(1), ..., Q̂(K)}.

The t-th iteration estimate is denoted by Θ̂(t), but in our
analysis we omit the index for clarity.

The E-step. In what follows, we temporarily omit the
n index, and refer to a single observation y and a single
abundance vector a. Considering each column xk of X as a
latent variable, the E-step involves computing the expected
complete log likelihood. The complete likelihood, which
includes the latent variables, is given by:

p(y,X; a,M,Q) = p(y|X; a,M,Q)p(X; a,M,Q).
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Since y − Xa ∼ N (0, σ2I), it follows that
y|X; a,M,Q, σ2 ∼ N (Xa, σ2I). The complete log
likelihood, after omitting constants, is then:

Lc(y,X; a,M,Q, σ2) = plogσ2 +
1

σ2
‖y −Xa‖22︸ ︷︷ ︸
Lq(y,X;a)

+

K∑
k=1

(
log|Q(k)|+ (xk −mk)

T
(
Q(k)

)−1
(xk −mk)

)
︸ ︷︷ ︸

Lg(xk;mk,Q(k))

,

(8)

where we denoted the quadratic term of Lc by Lq , and the
Gaussian likelihood within the sum by Lg .

We defer the detailed derivation of the conditional expec-
tation to the appendix, and present here the main results.
Consider first the quadratic term:

E
(
Lq (y,X; a) |y, Θ̂

)
, (9)

using the notation in (7). In detail, we have:

E
(
Lq (y,X; a) |y, Θ̂

)
= yTy+

aTE
(
XTX|y, Θ̂

)
a− 2yTE

(
X|y, Θ̂

)
a. (10)

Thus, we need to compute the conditional expectations
E
(
X|y, Θ̂

)
and E

(
XTX|y, Θ̂

)
. The first is given by:

E
(
xk|y, Θ̂

)
= m̂k+

âkQ̂
(k)
[
Q̂ (â) + σ̂2I

]−1 (
y − M̂â

)
, (11)

where xk is the k-th column of X. The second expectation
admits the form:[

E
(
XTX|y, Θ̂

)]
ij

=[
E
(
X|y, Θ̂

)T
E
(
X|y, Θ̂

)]
ij

+ Tr
{

Ẑij
}
, (12)

where:

Ẑij = 1i=j · Q̂(i) − [â]i [â]j Q̂(i)
[
Q̂ (â) + σ̂2I

]−1
Q̂(j), (13)

where 1i=j is the indicator function which equals to 1 if
i = j, and 0 otherwise.

Regarding Lg in (8), this can be written as:

log |Q(k)|+ Tr
{(

Q(k)
)−1

xkx
T
k

}
− 2mT

k

(
Q(k)

)−1
xk + mT

k

(
Q(k)

)−1
mk. (14)

The conditional expectation depends on E
(
xk|y, Θ̂

)
(see

(11)) and E
(
xkx

T
k |y, Θ̂

)
, which depends on previous terms

(11)-(13):

E
(
xkx

T
k |y, Θ̂

)
=

Cov
(
xk|y, Θ̂

)
+ E

(
xk|y, Θ̂

)
E
(
xk|y, Θ̂

)T
, (15)

where

Cov
(
xk|y, Θ̂

)
= Q̂(k)

− â2kQ̂(k)
[
Q̂ (â) + σ̂2I

]−1
Q̂(k). (16)

See appendix for detailed calculations.
The M-step. Having derived E-step expressions, we can

now optimize the conditional log likelihood over Θ̂. This
is done in a few steps. First, minimization over the n-th
abundance vector, which is achieved by solving:

ãn = min
an∈C

[
aTnE

(
XT
nXn|yn, Θ̂

)
an

− 2yTnE
(
Xn|yn, Θ̂

)
an
]
, (17)

where yn is the n-th observation, Xn is the corresponding
latent variable matrix, and C is the relevant constraint. Recall
that each column of E

(
Xn|yn, Θ̂

)
is computed using (11).

We use tilde (̃·) to denote a minimizer, as opposed to hat (̂·),
which denotes the current parameters estimate over which
the latent variables are conditioned.

A few remarks are in need. First, under non-negativity or
simplex constraints, the problem (17) is a quadratic program,
which can be solved using log barrier method (see chapter
11, [26]), and whose solver is available in most scientific
toolboxes. Second, the solution is independent of the un-
known variance σ2 which will be optimized later. Third, this
problem is solved N times, once for each data point yn using
the corresponding abundance vector an. These optimization
procedures are decoupled and can be efficiently computed in
parallel. Finally, both the quadratic objective and the simplex
constraint are empirically shown to induce sparsity of the
abundance an. This usually brings advantage, especially in
HSI, where pixels are typically composed of a subset of
sources, and not the entire set.

Next, since

σ̃2 = min
σ2

N∑
n=1

E
(
plogσ2 +

1

σ2
‖yn −Xnân‖22

∣∣∣yn, Θ̂),
it is easy to verify that:

σ̃2 =
1

Np

N∑
n=1

(
yTnyn − 2yTnE

(
Xn|yn, Θ̂

)
ân

+ âTnE
(
XT
nXn|yn, Θ̂

)
ân

)
. (18)

Finally, minimization over M,Q depends only on Lg in
(8). This is achieved through sample mean and covariance of
the expected term of (14). Adding the n-index of observation
number, we get:{

m̃k, Q̃
(k)
}

= min
M≥0,Q

N∑
n=1

E
(
Lg
(

[Xn]k ; mk,Q
(k)
)
|yn, Θ̂

)
,

(19)
where M ≥ 0 denotes the non-negativity constraint over
each of M’s entries. Ignoring that constraint, the minimizer
is the standard sample mean and covariance:

m̃k =
1

N

N∑
n=1

E
(

[Xn]k |yn, Θ̂
)
, (20)
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Algorithm 1 Alt-Min

Input: data matrix Y ∈ Rp×N , Q̃(k), E
(

[Xn]k |yn, Θ̂(t)
)

,

and E
(

[Xn]k [Xn]
T
k |yn, Θ̂(t)

)
for n = 1, .., N .

Until convergence
• Compute m̃k by solving (22).
• Compute Q̃(k) through (21).

End until
Return m̃k, Q̃

(k).

Q̃(k) =
1

N

N∑
n=1

E
(

[Xn]k [Xn]
T
k |yn, Θ̂

)
− m̃km̃

T
k , (21)

where [Xn]k is the k-th column of the matrix Xn. See
appendix for a detailed derivation of (21).

Since (20) does not guarantee non-negativity, we propose
an additional alternating-minimization procedure in case
where that constraint is violated. In that procedure one
iteratively minimizes the objective (19) separately over M
and Q(k) as follows:

m̃k ← minm≥0

{
mT

(
Q̃(k)

)−1
m

− 2mT
(
Q̃(k)

)−1 N∑
n=1

E
(

[Xn]k |yn, Θ̂
(t)
)}

. (22)

As before, this is a standard quadratic program with non-
negative constraints. We then compute Q̃(k) through (21).
See pseudocode in Algorithm 1.

B. Covariance Regularization

The proposed DNCM model has many unknown param-
eters including positive definite covariance matrices, which
must be inverted within its iterations. To avoid numerical and
statistical deficiencies and ensure well conditioned iterations,
we recommend to regularize the estimated covariances. We
suggest a simple shrinkage of the sample covariance with
diagonal loading. This is a standard procedure due to Ledoit
and Wolf [27]. More specifically, after every calculation of
the sample covariance Q̃(k) in the M-step (21), we modify
the estimate according to [28]:

Q̃(k) ← (1− αk)Q̃(k) + αk
Tr(Q̃(k))

p
I (23)

given

ζ
(
Q̃(k)

)
=
pTr
{(

Q̃(k)
)2 }

(
Tr
{
Q̃(k)

})2 − 1, (24)

the value αk is estimated then by:

αk ≈
1

N

ζ(Q̃(k))− p
N + 1 + p

ζ(Q̃(k))
. (25)

A pseudocode that fully summarizes the K-Gaussians is
given in algorithm 2.

Note that the regularization procedure might hinder the
convergence of K-Gaussians, causing an increase in the neg-
ative log likelihood at some iterations. We observe through

Algorithm 2 K-Gaussians

Input: data matrix Y ∈ Rp×N .
Initialize: t← 0
Θ̂(t) = {M̂(t), Q̂(t), Â(t), (σ̂2)(t)},
(Θ̂(t) is the t-th iteration estimate.)
K components (number of columns in M̂(0))
Until convergence
• For each yn, n = 1, .., N :

– Compute E
(
Xn|yn, Θ̂(t)

)
,E
(
XT
nXn|yn, Θ̂(t)

)
and E

(
[Xn]k [Xn]

T
k |yn, Θ̂(t)

)
(11)-(13),(15)-

(16).
– ãn ← mina∈C E

(
Lq (a,yn,Xn) |yn, Θ̂(t)

)
• end for
• σ̃2 ← 1

Np

N∑
n=1

E
(
Lq (yn,Xn; an) |yn, Θ̂(t)

)
. (18)

• M̃← 1
N

N∑
n=1

E
(
Xn|yn, Θ̂(t)

)
.

• (
Q̃(k)

)
← 1

N

N∑
n=1

E
(

[Xn]k [Xn]
T
k |yn, Θ̂

(t)
)

− m̂
(t+1)
k

(
m̂

(t+1)
k

)T
, k = 1, ..,K.

• Q̃(k) ← (1− αk)Q̃(k) + αk
Tr(Q̃(k))

p I, k = 1, ...K
αk given in (24)-(25).

• For k = 1, ..,K, if m̃k has negative entries, do Alt-Min
(algorithm 1).

• t← t+ 1.
• Θ̂(t) = {M̃, Q̃, Ã, σ̃2}.

End until
Return Θ̂(t) = {M̂(t), Q̂(t), Â(t), (σ̂2)(t)}.

numerical experiments that for sufficiently large samples, the
values of αk are small enough not to affect the negative log
likelihood tendency to decrease.

C. Initialization points

Due to the complexity of K-Gaussians and the non-
convexity of the DNCM model, we require good initial
matrices of means and covariance, initial abundance for each
pixel and independent noise variance σ2. Following [19],
we propose using the VCA estimate as an initial point.
The VCA algorithm returns a matrix of endmember means,
and the abundance is obtained either by multiplying the
pseudoinverse of the latter with the data matrix (see [22]),
or applying the FCLS algorithm [29], imposing simplex
constraints. We propose using identity matrices as initial
covariances. Another option is the GMM estimate, which
also returns the covariance of every component. However,
in this paper we shall focus on VCA initialization.

D. Diagonal DNCM

A special case of the DNCM is that of diagonal co-
variances, in which the K-Gaussians can be made more
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efficient, and that is for two reasons. First, matrix inversion is
accomplished through inverting each of the diagonal entries.
Second, the term E

(
XTX|y, Θ̂

)
admits a closed form,

which is of course much faster than computing traces of
K2 matrices, as in (12). In this subsection, we will shortly
derive this expression.

We can write the term
Tr
{

[â]i [â]j Q̂(i)
[
Q̂ (â) + σ̂2I

]−1
Q̂(j)

}
from (13) as:

[â]i [â]j

[
q̂
(i)
1 · · · q̂(i)p

] [
Q̂ (â) + σ̂2I

]−1 
q̂
(j)
1
...
q̂
(j)
p

 ,
where q̂

(i)
` is the `-th diagonal entry of Q̂(i). Since each

covariance Q̂(i) of past iteration is diagonal, the matrix of
traces Tr{Ẑij} can be written as:

D1 −D2D3

[
Q̂ (â) + σ̂2I

]−1
DT

3 D2

where:

D1 =

Tr{Q̂(1)}
. . .

Tr{Q̂(K)}


D2 =

[â]1
. . .

[â]K



D3 =


q̂
(1)
1 · · · q̂

(1)
p

...
. . .

...
q̂
(K)
1 · · · q̂

(K)
p

 ,
i.e., the i-th row of D3 is the diagonal of Q̂(i). Altogether,
(12) becomes:[

E
(
XTX|y, Θ̂

)]
=

[
E
(
X|y, Θ̂

)T
E
(
X|y, Θ̂

)]
+ D1 −D2D3

[
Q̂ (â) + σ̂2I

]−1
DT

3 D2. (26)

IV. NUMERICAL EXPERIMENTS

In this section, we use numerical experiments to validate
the DNCM, and test the performance of the proposed K-
Gaussians algorithm, as well as its complexity, in compar-
ison to other methods. We provide results of four experi-
ments, ranging from synthetic simulations to a completely
real world setting.

In the first synthetic experiment we use K = 3 com-
ponents, and consider the normalized mean square error
(NMSE) based on the Frobenius norm as our means of
evaluation. Specifically, for a given true endmembers matrix
M and its estimate M̂, we define:

NMSE(M̂) =
‖M̂−M‖2F
‖M‖2F

.

Similar NMSEs are defined for the endmember covariances
and the abundances. We note that the order of M̂’s columns
might not match that of M. For that reason we compute
the permutation of M̂’s columns that yields the minimal

MSE(M̂). This permutation is then also applied to the
covariances and abundances.

We compare five algorithms and modify them to output es-
timates of the unknown means, covariances and abundances.
To that end we examine the following methods:
• K-Gaussians: as defined previously. Following [19], the

algorithm is initialized by VCA estimates. The initial
covariances are set as 0.01 × I, and σ2

0 = 10−4. The
algorithm has four variants, with covariances that can
be either full or diagonal, and abundances that can be
non-negative or simplex. We run the algorithm using
4-workers parallel pool.

• GMM: returns estimates of the cluster means and
covariances. We set the abundance estimates as the
posterior probability of each pixel, which are mostly
1-sparse vectors. The model assumes no independent
noise (σ2

0 = 0).
• VCA [22]: returns only estimates of the endmember

means. We compute the abundances using the FCLS
algorithm [29], so that they satisfy non-negativity and
sum to one constraints.

• NMF [5]: similar to VCA. Because the solution is
invariant to scaling, i.e. M̂Â = 1

αM̂αÂ, for α > 0,
we select α that results in the best NMSE for M̂.

• UsGNCM [19]: endmembers estimate initialized by
VCA. Following the original code provided by the
authors, unless mentioned otherwise we assume that
the number of spatial regions is equal to the number of
components, and set the initial variance as 0.001. The
number of iterations is 12, 000, out of which 11, 000
are burn-in iterations.

A. Synthetic data

The first experiments are synthetic and their goal is to
analyze the performance of the K-Gaussians algorithm in
an exact DNCM setting. To ensure fairness, we follow the
guidelines proposed in [19].

The first synthetic experiment simulates the exact model
used in [19] for testing their UsGNCM algorithm. The image
consists of 50 × 50 pixels with 200 bands. A 3-label map
was constructed using the Potts model. The abundance map
was generated by using a different truncated Dirichlet dis-
tribution for each label (with parameters (15, 15, 1), (1, 8, 8)
and (3, 1, 3)). The exact parameters are not available for
reproduction, so we approximate the label map, endmembers
means and diagonal covariances, as shown in Fig. 1. We
generate a random vector of length 200 for each pixel,
by calculating the convex combination of three multivariate
normal random vectors, corresponding to the three endmem-
bers (coefficients given by the abundance map), and adding
independent noise of variance 10−5.

The errors of this experiment are presented in table I. This
synthetic model was specifically designed by the authors
of [19] to demonstrate the advantages of UsGNCM. Since
these settings meet the GNCM assumptions, such as diagonal
covariances and Potts model for label map, the UsGNCM
leads to the smallest errors. Using 30 iterations, our proposed
K-Gaussians methods results in an improvement of the
VCA initialization and comparable errors, with significantly
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Fig. 1: Settings of the first synthetic dataset, following [19].
Left: Endmember means. Center: diagonal entries of the
three corresponding covariance matrices. Right: label map.

smaller computational complexity (5-6 minutes compared to
an hour).

Algorithm MSE(M̂) MSE(Q̂) MSE(Â) time (sec)
GMM 0.0755 18.1685 1.6846 -
K-Gaussians 0.0018 0.0643 1.0001 250.5
VCA 0.0036 — 1.0831 -
NMF 0.1728 — 0.9298 -
UsGNCM 0.00001 0.0033 0.8997 11,018

TABLE I: MSE results for the first synthetic experiment,
with running time of K-Gaussians and UsGNCM (right
column).

In the second experiment, we continue to follow the
same guidelines but change some of the parameters to test
the robustness of UsGNCM to its modelling assumptions.
Specifically, we use the same endmember means but switch
to full covariances. Since estimation requires now a larger
dataset, we use a 133 × 133 image. We use an abundance
map that has been extracted from a real multispectral im-
age 1, using simplex constraint least squares on estimated
endmember means (see Fig. 2). Endmember variability is
illustrated in Fig. 3, plotting 5, 000 samples drawn from
the multivariate normal distribution, given true mean and
covariance of each endmember. Performing PCA on the data,
we note that the first three principal components account for
99.78% of data variability, suggesting that it lies in a lower
dimensional space, a common property of HSI’s [30].

The errors are reported in table II. It is easy to observe
the advantages of K-Gaussians over UsGNCM (that as-
sumes diagonal covariances). K-Gaussians is slightly more
accurate and significantly faster. Abundance and covariance
estimates of the K-Gaussians are shown in Fig. 4. We note
the difference between the estimated covariances and the
true ones (bottom of Fig. 2), especially the middle and
left components, where the estimated left covariance has
larger diagonal values. Interestingly, the best algorithm in
terms of abundance estimation is UsGNCM. The estimated
abundance maps for the other algorithms: VCA, UsGNCM

1A Sentinel 2 multispectral image of the Copernicus earth observation
program. Downloaded from : https://scihub.copernicus.eu/
dhus/#/home. File name is:
S2A MSIL2A 20171023T105111 N0206 R051 T30TXK 20171023T131219.

Fig. 2: Settings of the second synthetic experiment. Top row:
sample covariance matrices of three endmembers. Bottom
row: abundance map of the corresponding components.

Fig. 3: Plots of 5, 000 samples for each endmember, given
true mean and covariance from the second synthetic experi-
ment.

and GMM are shown in Fig. 5.

Algorithm MSE(M̂) MSE(Q̂) MSE(Â) time (sec)
GMM 0.0543 71.9780 0.8507 -
K-Gaussians 0.0019 0.1795 0.3661 3.92× 103

VCA 0.0182 — 0.5483 -
NMF 0.2958 — 0.9748 -
UsGNCM 0.0223 1.0052 0.2621 84.6× 103

TABLE II: MSE results for the second synthetic experiment,
with running time of K-Gaussians and UsGNCM (right
column).

In an additional experiment we use 10 components, ex-
tracting 34-dimensional endmember means from AVIRIS
image over Cuprite [31] (see Fig. 6), and using random diag-
onal covariances. The abundance map consists of 200× 200
pixels, each of Dirichlet distribution with unit parameters. As
previously, the independent noise variance is 10−5. When
running UsGNCM, we assume one spatial class. We run
200 iterations of K-Gaussians. In table III we provide the
error results. As expected, we find a clear advantage to using
UsGNCM, since the settings follow the GNCM assumptions.
However, K-Gaussians improve upon VCA initialization,
and is comparable to UsGNCM, obtaining these results

https://scihub.copernicus.eu/dhus/## /home
https://scihub.copernicus.eu/dhus/## /home
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Fig. 4: Covariance and abundance estimates of each com-
ponent using the K-Gaussians on the second synthetic
experiments.

within shorter running time. We note that a larger number
of components imposes more challenge to K-Gaussians
regarding choice of initialization point. We leave that issue
for future research.

Algorithm MSE(M̂) MSE(Q̂) MSE(Â) time (sec)
GMM 0.0949 3.0203 5.7957 -
K-Gaussians 0.0263 0.3859 0.8133 8,773
VCA 0.0322 — 2.6718 -
NMF 0.3200 — 0.9530 -
UsGNCM 0.0022 0.0137 0.7954 60,818

TABLE III: MSE results for the third synthetic experiment,
with running time of K-Gaussians and UsGNCM (right
column).

B. Code complexity

The main motivation to DNCM was to reduce the com-
plexity of Bayesian NCM-based algorithms. To analyze
the computational complexity, we run a synthetic exper-
iment, examining the running time of the K-Gaussians
and UsGNCM, on a 3-component data, with increasing
number of dimensions (bands) and sample size (N ). We run
the UsGNCM using 12, 000 iterations. We use a desktop
computer with a Intel Core i5-3470 CPU and 7.88 GB
of total physical memory. We run K-Gaussians without
parallelization. Results are shown in tables IV-V, for K-
Gaussians and UsGNCM, respectively. Note that we do not
include the GMM, VCA and NMF, as these algorithms
are fast and run up to a few seconds. The MSE of the
K-Gaussians estimates in this experiment are comparable,
and even smaller than the UsGNCM. Running time of both
algorithms seem to linearly depend on N and the number of
bands, with a larger coefficient for the UsGNCM.

C. Hyperspectral Target detection

Finally, in the third experiment we demonstrate the use
of DNCM and K-Gaussians using a real hyperspectral

VCA

UsGNCM

GMM

Fig. 5: Abundance estimates of each component of VCA,
UsGNCM and GMM on the second synthetic experiments.

K-Gaussians (time in seconds)
N = 529 N = 1024 N = 1521

bands=10 88.30 171.05 250.51
bands=20 98.52 182.72 260.80
bands=30 97.49 187.82 275.73

TABLE IV: Running time of K-Gaussians, for three com-
ponents.

UsGNCM (time in seconds)
N = 529 N = 1024 N = 1521

bands=10 373.81 590.57 802.55
bands=20 434.00 668.58 898.22
bands=30 478.98 746.69 1004.79

TABLE V: Running time of GNCM, for three components.

image. The dataset is from SHARE2012, an imaging data
collection campaign taken near Rochester, NY [21]2. The
image contains known targets of red and blue felt materials,
which were placed in the actual field, and their locations
are also known. The HSI image (its RGB bands), as well
as target location and spectra, are shown in Fig. 7. Before
we turn to the detection task, we begin by demonstrating the
modelling capabilities of our approach.

Technical details on SHARE2012 and algorithm param-

2Data can be downloaded from https://www.rit.edu/cos/
share2012/

https://www.rit.edu/cos/share2012/
https://www.rit.edu/cos/share2012/
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Fig. 6: Means of ten endmembers for the third synthetic
dataset.

eters: Following similar size to that of [32], we use a
301 × 301 sub-image which is sufficiently large to include
all targets. Each pixel is a 320 × 1 vector of spectral data,
of wavelengths ranging from 0.4 to 2.45 micrometers. Our
data is therefore a tensor of size 301 × 301 × 320. As in
[32], all algorithms assume K = 6 endmembers. Note that
SHARE2012 is a very large dataset and therefore we had
to constrain some of the algorithms. GMM and VCA are
highly scalable and they run until convergence. Same is the
NMF but it performs badly, so these results are not reported.
K-Gaussians is limited to 15 iterations which take roughly
30 hours. Due to time and memory constraints, we limit the
number of UsGNCM iterations to 2, 700, using the last 225
as burn-in iterations. This led to 45 hours of computation.
The estimated abundance maps of each algorithm among
VCA, K-Gaussians, UsGNCM and GMM are shown in Fig.
9, along with the corresponding endmembers means and
variances. Note that the K-Gaussians endmembers look sim-
ilar to those of VCA, up to scaling factor, while UsGCNM
differs significantly. On the other hand, the UsGNCM and
K-Gaussians abundance maps differ, with VCA allowing
negative values.

The main goal of all the algorithms is to characterize the
statistics of the background as accurately as possible. All
algorithms model the spectral content within the n’th pixel
as a multivariate Gaussian with unknown mean mn and
covariance Qn. The goal is therefore to estimate these pa-
rameters. GMM estimates them directly. VCA estimates only
the means and we modify it to output covariance matrices as
well. The NCM-based algorithms estimate the parameters of
the global endmembers and the local abundances. These are
then combined to output the local parameters at each pixel:

mn ← M̂ân,

Qn ←
K∑
k=1

[ân]
2
k Q̂(k) + σ̂2I.

(27)

We begin comparing the modelling capabilities of the dif-
ferent algorithms in terms of their likelihood. Unfortunately,
we have no ground truth of the true statistics, and therefore
we perform this comparison only in a few manually cropped

patches which we identify as pure regions, namely trees,
shadow and pavement (see Fig. 7). Thus, one can assume
Gaussian distribution on every patch, with the likelihood
value given estimated parameters reflecting the model fit.

Within these patches, we compute the negative log likeli-
hood of the multivariate normal associated with the different
estimated parameters. More specifically, we use the K-
Gaussians estimates to compute the mean and covariance
of each pixel via (27). We then compute their average to
obtain mean and covariance for the whole patch. We then
compute the likelihood of all pixels in a patch using the
latter parameters. We repeat this procedure on GMM and
VCA estimates. Since VCA does not return endmember
covariance, we use a spherical matrix whose entries are the
mean error of each pixel. The results are presented in Table
VI below. Showing the negative log likelihood, a lower value
indicates a better fit. The selected patches are pure and as
expected, GMM (which also assumes pure regions) provides
the highest likelihoods. The negative likelihood obtained
from VCA estimate is usually large, while K-Gaussians
succeeds to get close to GMM. Nevertheless, from Fig. 9
we note the similarities between the estimates of VCA and
K-Gaussians. The likelihood of UsGNCM is lower than that
of the VCA, but is quite high relative to K-Gaussians. One
reason might be its limited number of iterations.

negative log likelihood (×104)
grass trees pavement shadow

GMM -0.2034 -0.2023 -0.2012 -0.2072
K-Gaussians -0.1076 -0.0815 -0.0657 -0.1234
VCA 0.3335 5.5716 0.3057 0.7141
UsGNCM -0.0608 0.6212 0.0738 0.6294

TABLE VI: Likelihood value of different patches from Fig.
7, given estimates of the various algorithms.

Motivated by this initial exploration analysis, we turn
to the target detection task for which this campaign was
designed for [32], [33]. Each of the algorithms estimates the
multivariate normal parameters differently and these lead to
different detectors which we compare via their ROC curves.
It is important to emphasize that although the presence of
a very few targets in a large image is a typical setting in
real situations, these experiment results should be taken with
some caution, as we deal with one image and estimating the
ROC is somewhat problematic. Yet this experiment serves
as a qualitative assessment of the validity of the background
estimation model as part of a bigger application (target
detection). This demonstrates the expressive power of the
suggested model, and its advantage in applying it to real-
world problems. Having stressed that, we now turn to the
technical details.

All our detectors are based on the classical matched filter
(MF) detector [34], [35]. It assumes

y = as + w, w ∼ N (mn,Qn), (28)

and is designed to test the hypothesis:

H0 : a = 0

H1 : a > 0,
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Fig. 7: Left: RGB field image of SHARE 2012 data, with patches corresponding to results from table VI. Middle: Location
of the targets in the image; the targets are of two types (”blue” and ”red”), each type is marked by a different color. Right:
spectral signature of the two target types.

This leads to the following detector:

MF =
sTQ−1n (yn −mn)

sTQ−1n s
≶ τ. (29)

Since we assume a spherical covariance matrix for VCA,
Q−1n is canceled out in the above formula, and therefore
it depends only on yn and Mn. We add as a baseline the
random detector, which reject the null hypothesis at random
with probability of 1

2 . We also consider the global estimator,
which assumes that the full image is normally distributed.
Therefore, sample mean and covariances are computed, and
these are plugged in the MF (29).

In Fig. 8 we present two sets of ROC curves, each for a
different target as illustrated in Fig. 7, by plotting the log
false positive rate against detection rate for every threshold
value of τ . It is easy to observe the advantages of K-
Gaussians over the rest of the detectors. Comparing it to
a similar experiment which examines a manifold-learning
based algorithm and as well uses blue/red felt targets [33],
most algorithms in Fig. 8 outperform the latter. For instance,
with a log false positive rate of 10−1, detection rate of 0.3-
0.4 is achieved by their algorithm on both targets. The main
reason for the gap is that smaller sub-images were used in
their experiment.

As can be seen in the figures, UsGNCM is quite compara-
ble to the VCA, and even improves upon the latter. Moreover,
UsGNCM is significantly better than both GMM and the
global detector. Recall however that the number of UsGNCM
iterations is limited to 2, 700 due to time and computational
constraints. Note that all detectors perform better in detecting
the first target than the second (left and right plots of Fig. 8,
respectively). This is due to the nature of the target. However,
rating the various algorithms by their performance, the order
is roughly the same. As to the UsGNCM, we believe that
if given a sufficient number of iterations, the ROC curve
of UsGNCM will turn competitive to that of K-Gaussians.
To conclude, with limited computational resources, target
detection results demonstrate the advantage of using K-
Gaussians over the rest of the algorithms, and whose results
are achieved by roughly 2/3 the running time of that of
UsGNCM.

V. SUMMARY

Parameter estimation of signals generated from a mixture
of sources is a fundamental problem, with various applica-
tions such as HSI. In this paper, we introduced the DNCM,
which allows for measurements that are convex combinations
of Gaussians, and is a variant of the classical NCM model.
This leads to a simple and intuitive model formulation,
which can be easily seen as an extension of the GMM and
NMF. Importantly, our deterministic method which we call
K-Gaussians, is composed of relatively simple steps and
results in a scalable estimation algorithm. Numerical ex-
periments demonstrate that K-Gaussians estimates improve
upon VCA initialization, allowing for full covariances, and
is comparable to competitive methods such as UsGNCM,
achieved at a relatively shorter running time. However, the
DNCM suffers from a few potential weaknesses, namely
high dimensionality, non-linearity and non-convexity.

On the practical side, one open issue is formulating a
model where endmembers are not statistically independent,
as it is the case in most real life data. Another issue is the
case of unknown component number, and whether we can
incorporate that in the model.

Another drawback which should be addressed is that
our experience suggests that K-Gaussians is sensitive to
its initialization and may be attracted to a nearby local
minimum. Along a different axis, the K-Gaussians can be
further generalized by assuming colored independent noise.
We leave all these questions for investigation in future
research.
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Fig. 8: ROC curves of the first target (right) and second target (left) from right panel of Fig. 7, on SHARE 2012 data, using
MF detector.

APPENDIX: DERIVATION OF THE EM STEPS

Recall that all columns of X are instances of K endmem-
ber distributions, so that the prior probability of xk is

xk ∼ N
(
mk, Q̂

(k)
)
. (30)

Because both xk and y are Gaussian, which are linearly
related through

y = Xâ + ε̂, ε̂ ∼ N (0, σ̂2I). (31)

The stacked vector
[

xk
Xâ + ε̂

]
is normally distributed, with

mean
[

m̂k

M̂Â

]
and covariance

[
Q(k) âkQ

(k)

âkQ
(k) Q̂ (â) + σ̂2I

]
(note

that different columns of X are independent). Using that, and
the rule for Gaussian conditional expectation/covariance, we
arrive at equation (11), and the conditional covariance given
in (16).

It remains to derive E
(
XTX|y, Θ̂

)
. Notice that

[
XTX

]
ij

=

p∑
`=1

[xi]` [xj ]` . (32)

We can write the expectation of each term in the sum as:

E
(

[xi]` [xj ]`

∣∣∣y, Θ̂) =

E
(

[xi]`

∣∣∣y, Θ̂)E([xj ]`

∣∣∣y, Θ̂)︸ ︷︷ ︸
(I)

+

Cov
(

[xi]` , [xj ]`

∣∣∣y, Θ̂)︸ ︷︷ ︸
(II)

. (33)

We use (11) to compute the term (I) in (33), as
E
(

[xi]` |y, Θ̂
)

is the `-th element of E
(
xi|y, Θ̂

)
from (11).

Turning now to (II), we suppose that i 6= j, where xi and xj
are statistically independent (from this case we will be able
derive an expression also when i = j). Given Θ̂, the stacked
vector

[
[xi]` , [xj ]` ,y

T
]T

has the following distribution:[xi]`
[xj ]`

y

 ∣∣∣Θ̂ ∼ N(
[m̂i]`

[m̂j ]`
M̂â

 ,S),

where

S =



Q̂
(i)
`,` 0

0 Q̂
(j)
`,`

âiQ̂
(i)
`,1 · · · âiQ̂

(i)
`,p

âjQ̂
(j)
`,1 · · · âjQ̂

(j)
`,p

âiQ̂
(i)
`,1 âjQ̂

(j)
`,1

...
...

âiQ̂
(i)
`,p âjQ̂

(j)
`,p

Q̂(â) + σ̂2I


. (34)

Recall that we assume the linear model (31), where the k-th
column of X is distributed according to (30), which explains
the above expectation and the covariance diagonal blocks.
As to the off diagonal blocks, we simply obtain that from
Cov ([xi]` ,Xâ + ε̂) and the fact that xi, xj are independent.
To be clear, in (34) we denote the (m,n)-th entry of Q̂(i)

by Q̂
(i)
m,n. Using again the conditional covariance rule of

Gaussian vectors, we get:

Cov
([

[xi]`
[xj ]`

] ∣∣∣y, Θ̂) = S1,1 − S1,2

(
Q̂(â) + σ̂2I

)−1
S2,1,

with S1,1,S1,2,S2,1 as the corresponding blocks in (34).
Plugging in the blocks in (34), the (2, 1) and (1, 1) entries
of the above covariance, corresponding to the cases i 6= j
and i = j respectively, are:

Cov
(

[xi]` , [xj ]` |y, Θ̂
)

=

−âiâj
[
q̂
(i)
`

]T (
Q̂(â) + σ̂2I

)−1
q̂
(j)
` , i 6= j,

Q̂
(i)
`,` − â2i

[
q̂
(i)
`

]T (
Q̂(â) + σ̂2I

)−1
q̂
(i)
` , i = j

(35)

where q̂
(i)
` is the `-th column of Q̂(i). We therefore have

derived an expression for (II) in (33).
In order to obtain an expression for (32), we need to sum

the covariances in (35) over `. From these equations, one

can verify that
p∑̀
=1

Cov
(

[xi]` , [xj ]` |y, Θ̂
)

is equivalent to

the trace of Ẑij defined in (13).
Altogether, from (32),(33) and the last results, we arrive
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Fig. 9: SHARE 2012 experiment: estimated abundances (first row) and their corresponding endmember means ±0.5 × std.
(second row, colored area between graphs) of 6 components, for each algorithm: VCA, K-Gaussians, UsGNCM and GMM.

at (12):

[
E
(
XTX|y, Θ̂

)]
ij

=[
E
(
X|y, Θ̂

)T
E
(
X|y, Θ̂

)]
ij

+ Tr
{

Ẑij
}
,

Derivation of (20)-(21). Using the definition of Lg in (8),

the objective of (19) can be written as:

N log|Q(k)|

+E

(
N∑
n=1

([Xn]k −mk)
T
(
Q(k)

)−1
([Xn]k −mk)

∣∣∣∣∣y, Θ̂
)
.

(36)

Considering mk, it can be easily confirmed that the gradient

of (36) vanishes at 1
N

N∑
n=1

E
(

[Xn]k |yn, Θ̂
)

, and therefore

m̃k in (20) is the minimizer. Now, plugging in m̃k, (36) can
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be written as:

N log|Q(k)|+ Tr
{(

Q(k)
)−1

B
}
,

where

B = E

(
N∑
n=1

([Xn]k − m̃k) ([Xn]k − m̃k)
T

∣∣∣∣∣y, Θ̂
)
.

Taking derivative over Q(k), we arrive at the term:

N
(
Q(k)

)−1
−
(
Q(k)

)−1
B
(
Q(k)

)−1
,

which vanishes at Q(k) = 1
NB. One can then use the result

on m̃k from (20) to simplify this term and get (21).
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