Efficient Active Learning of Halfspaces: an Aggressive Approach

Alon Gonen1, Sivan Sabato2, and Shai Shalev-Shwartz1

1School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

2Microsoft Research, New-England

June 2013
Active Learning

Active learning:
- Receive random unlabelled data
- Choose labels to query
- Return hypothesis with low error
- Cost: label complexity = number of queries

This talk:
Efficient active learning of halfspaces

For the talk: focus on realizable case
Logarithmic Saving in \mathbb{R}

- Halfspaces in \mathbb{R} (thresholds):
 - The passive sample complexity is $1/\epsilon$
Logarithmic Saving in \mathbb{R}

- Halfspaces in \mathbb{R} (thresholds):
 - The passive sample complexity is $1/\epsilon$

Mellow approach

Ask everything that you don’t know
Logarithmic Saving in \mathbb{R}

- Halfspaces in \mathbb{R} (thresholds):
 - The passive sample complexity is $1/\epsilon$

Mellow approach

Ask everything that you don’t know

Aggressive approach

- Query the most informative examples
- For thresholds - binary search
Logarithmic Saving in \mathbb{R}

- Halfspaces in \mathbb{R} (thresholds):
 - The passive sample complexity is $1/\epsilon$

Mellow approach

Ask everything that you don’t know

Aggressive approach

- Query the **most informative** examples
- For thresholds - binary search

- For thresholds: label complexity of both approaches: $\log(1/\epsilon)$
Halfspaces in \mathbb{R}^d

CAL [Cohn, Atlas, Ladner (1989)] — Mellow approach

Ask everything that you don’t know
The label of x is unknown if for some h_1, h_2 which are consistent with the examples observed so far, $h_1(x) \neq h_2(x)$

- CAL can be implemented efficiently for halfspaces using LP

Analysis [Hanneke (2007), Friedman (2009)]
For any “smooth” distribution, the label complexity of CAL is $\log(1/\epsilon)$
Halfspaces in \mathbb{R}^d

CAL [Cohn, Atlas, Ladner (1989)] — Mellow approach

Ask everything that you don’t know
The label of x is unknown if for some h_1, h_2 which are consistent with the examples observed so far, $h_1(x) \neq h_2(x)$

- CAL can be implemented efficiently for halfspaces using LP

Analysis [Hanneke (2007), Friedman (2009)]
For any “smooth” distribution, the label complexity of CAL is $\log(1/\epsilon)$

Can we do better using an aggressive approach?
Aggressive can be much better than Mellow

Uniform distribution in \mathbb{R}^{100}
Aggressive can be much better than Mellow

Uniform distribution in \mathbb{R}^{100}

- Tong and Koller 2003:
 - **Aggressive approach**: Query “most informative” example
 - “most informative” \approx closest to the decision boundary
 - No formal guarantees

- Why doesn’t CAL improve over the ERM?
What is hiding under the hood

- Hidden “constants” in the $\log(1/\epsilon)$ bound
- Dependence on the *disagreement coefficient*
 - The disagreement coefficient can be large
 - We show: label complexity can be \ll disagreement coefficient
- The $\log(1/\epsilon)$ rate can be non-interesting
Intermediate summary

<table>
<thead>
<tr>
<th></th>
<th>Mellow</th>
<th>Aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Practice</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Our Work: ALuMA: new aggressive learner which works well in practice and enjoys formal guarantees
Intermediate summary

<table>
<thead>
<tr>
<th></th>
<th>Mellow</th>
<th>Aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Practice</td>
<td>✕</td>
<td>✓</td>
</tr>
</tbody>
</table>

Our Work:

ALuMA: new aggressive learner which works well in practice and enjoys formal guarantees
Relative guarantees

- Given a specific pool of instances $X = \{x_1, \ldots, x_m\}$
- Goal: Find labels of X assuming they are separated by a halfspace
- $\text{OPT}(X) :=$ label complexity of the best active learning strategy for X
- Implementing the optimal algorithm is intractable
- Can we design an **efficient** active learning algorithm whose label complexity is not much larger than $\text{OPT}(X)$?
A known greedy algorithm for a **small finite** \mathcal{H}

- $V = \mathcal{H}$
- For $t = 1, 2, \ldots$
 - For every $x \in X$ let

 $$V^+(x) = \{ h \in V : h(x) = +1 \}$$

 $$V^-(x) = \{ h \in V : h(x) = -1 \}$$
 - Query the label of $\arg\max_{x \in X} \min\{|V^+(x)|, |V^-(x)|\}$
 - Update $V = \{ h \in V : h(x) = y \}$
- Stop if V is “pure”
A known greedy algorithm for a small finite \mathcal{H}

- $V = \mathcal{H}$
- For $t = 1, 2, \ldots$
 - For every $x \in X$ let

 $$V^+(x) = \{ h \in V : h(x) = +1 \}$$
 $$V^-(x) = \{ h \in V : h(x) = -1 \}$$
 - Query the label of $\arg\max_{x \in X} \min\{|V^+(x)|, |V^-(x)|\}$
 - Update $V = \{ h \in V : h(x) = y \}$
- Stop if V is “pure”

Golovin and Krause 2010:
The label complexity of the greedy algorithm is $OPT \cdot \log(|\mathcal{H}|)$
Challenge: the class of halfspaces is infinite

Natural idea: consider only equivalence classes of H (w.r.t. X)

- By Sauer’s lemma: $|\{h(x_1), \ldots, h(x_m)\}| \leq m^d$
- \[\Rightarrow \text{Label complexity} \leq OPT(X) \cdot d \log(m) \]
- Leads to an inefficient algorithm
Back to halfspaces

- Challenge: the class of halfspaces is infinite
- Natural idea: consider only equivalence classes of \mathcal{H} (w.r.t. X)
 - By Sauer's lemma: $|\{h(x_1), \ldots, h(x_m)\}| \leq m^d$
 - \Rightarrow Label complexity $\leq \text{OPT}(X) \cdot d \log(m)$
 - Leads to an inefficient algorithm
- Instead, consider the full infinite $\mathcal{H} = \{w : \|w\|_2 \leq 1\}$
- This raises the following challenges:
 - Implementing the greedy choice
 - Replacing the factor of $\log(|\mathcal{H}|)$ with finite factor
Implementing the greedy choice

- Replace $|V^+(x)|$ with $\text{Vol}(V^+(x))$

- $V^+(x)$ is a convex polytope:
 - #P-hard to calculate the volume accurately
 - Approximation using a randomized algorithm [Kannan et al. 97]

- We implement an approximate randomized greedy choice
Margin Assumption

- Challenge: \(\log(|\mathcal{H}|) = \infty \)

The margin assumption

The correct halfspace separates the sample with margin \(\gamma \)

The margin assumption

The correct halfspace separates the sample with margin \(\gamma \)
Margin Assumption

- Challenge: \(\log(|\mathcal{H}|) = \infty \)

The margin assumption

The correct halfspace separates the sample with margin \(\gamma \)

![Diagram of margin assumption]

Early termination

- Terminate when the version space is “pure enough”
- Return a majority vote classifier

\[\Rightarrow \text{logarithmic dependence on } 1/\gamma \]
Main Theorem

Theorem

- If the pool X is separated with margin γ, then ALuMA’s label complexity $\leq OPT(X) \cdot d \log(1/\gamma)$

Extensions:

- Can work with kernels
- Can accommodate unrealizable data
Algorithms:
- ERM (passive)
- CAL (active, mellow)
- QBC (active, slight aggressive)
- TK (active, aggressive)
- ALuMA (active, aggressive)
MNIST (Non-Realizable)

Algorithms:

- soft-SVM (passive)
- IWAL (active, mellow)
- ALuMA (active, aggressive)
Summary

- Being aggressive is good (at least, if you’re active)
- ALuMA is a new aggressive active learning algorithm:
 1. A greedy approach
 2. Efficient implementation
 3. Competitive analysis based on margin assumption
 4. State of the art performance

- Many future directions, e.g.,
 - Multi-class
 - Better understanding of the agnostic case
 - Other interesting classes
Absolute guarantees are impossible

To distinguish between the two cases, all points must be queried.

Label complexity = (passive) sample complexity = $1/\epsilon$

[Dasgupta04]