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I.  INTRODUCTION

This  report  is  submitted  as  a  final  requirement  for  the
Artificial Intelligence course. We researched AI approaches to
the game of Ultimate Tic-Tac-Toe, including aspects of game
trees, heuristics, pruning, time, memory, and learning. 

II. RULES

Ultimate  Tic-Tac-Toe is a variation of Tic-Tac-Toe which
is more challenging than regular Tic-Tac-Toe for a computer.
The board consists of 9 small 3-by-3 boards, which together
compose a large 3-by-3 board. 

Players  take alternating turns,  and a player  wins a  small
board  just  like regular  Tic-Tac-Toe,  by placing  three  of  his
symbols in a row. When a player wins a small board, they put
their symbol in its position in the large board. The game ends
when one of the players  gets three symbols in a row in the
large board, or in a tie if all squares have been exhausted. 

To make gameplay more interesting, a player must place
their  symbol  in  the  small  board  that  corresponds  to  the
position in the small board of the previous move:

In this example, the blue player played the top-right square
in the bottom-left small grid, so the red player must now play
his turn in the top-right board (colored in yellow).

If all squares in the small board have been exhausted, or if
the board  has  already been  won,  the player  may choose  to
make his move anywhere on the board.

III. EVALUATION

To evaluate  the different  agents  used in the project,  our
main statistical tool will be the binomial test. Because it is an
exact statistical test of the statistical significance, we can get
accurate  p-values  and  not  just  approximations.[1]  In  each
evaluation of two agents, we will present n (number of games
played), the percentage of games won by each player, and the
p-value  of  the  results.  The  starting  player  will  be  chosen
randomly for each game. Our null hypothesis will usually be
that the players have equal strength and will therefore win an
equal number of games. We use the two-tailed variation of the
binomial test to test if either player is better. Tied games are
counted as a half-win for each player.

In other cases, we will want to test the hypothesis that two
players have the same strength (e.g. minimax and alpha-beta),
so  our  null  hypothesis  will  be  that  they  are  unequally
proportioned. We will use a proportion test with a confidence
level  of  0.95,  and  accept  if  the  p-value  of  Pearson's
chi-squared test statistic for 1 degree of freedom is larger than
the commonly accepted threshold of 0.05.[2]



IV. TREE-TRAVERSAL ALGORITHMS

We used three basic search algorithms to traverse the game
tree:  the  Minimax  algorithm to  traverse  the  whole  tree,  the
Minimax  algorithm  with  alpha-beta  pruning  to  decrease  the
number  of  paths  observed  by  the  algorithm,  and  the
Expectimax algorithm, that takes the expectation of the other
player's  values  instead  of  their  minimum.  (We  used  the
Berkeley AI course assignments as a basis for several stages of
the project.)

The game tree is too deep for these algorithms to traverse in
reasonable time, so heuristics are used to approximate the value
of  nodes  of  a  certain  depth  (described  in  the  next  section).
Depth is denoted using the Berkeley notation, where a single
search ply is considered to be a move for each player.

A random agent was easily defeated even by the simplest
agents.  A very  basic  Alpha-Beta  agent  using  the  simplest
heuristic  (heur1)  and  a  depth  of  2  won  96.35%  of  games
(n=10,000;  p-value<10-320)  against  a  random  agent.  An
Alpha-Beta agent using the heur3 and a depth of 2 won 99.4%
of games (n=1,000; p-value<10-280) against a random agent.

Alpha-beta  agents  should  return  identical  results  to
minimax  agents,  only  faster.  Indeed,  when  comparing  an
alpha-beta  agent  to  a  minimax  with  the  same  heuristic  and
depth,  the  results  were  49.6% wins  for  the  minimax  agent
(n=1,000; χ2=0.098; p-value=0.7542), so the agents are indeed
similar in strength. Their speeds were quite different – when
comparing  agents  of  depth  2,  the  minimax  agent  took  an
average of 1,033 milliseconds to make a move, against just 55
milliseconds for an alpha-beta agent (n=10).

Expectimax agents should be better against random agents,
but since our minimax agents already defeat  random agents,
this  is  not  such  a  big  advantage.  Indeed,  when  running  an
expectimax agent against a random agent, it won 100% of the
time (n=100; p-value<10-30), better than minimax agents which
also tied and lost  some games.  When testing an expectimax
agent against a minimax agent with depth of 2 and heur3, the
minimax agent won convincingly with 78% of games (n=100;
p-value<10-7).

How important  is  search  depth?  An  alpha-beta  agent  of
depth 2 won 79.8% of games against  an alpha-beta agent of
depth 1 (n=1,000; p-value<10-80). 

An alpha-beta agent of depth 3 won 69.5% of games played
against a player of depth 2 (n=100; p-value<10-4) and 75.5% of
games played against depth 1 (n=100; p-value<10-6).

V. HEURISTICS

We used several heuristics:

1) Our  simple  heuristic  (heur1)  evaluates  winning  and
losing  with  high  absolute  values:  10,000  for  a  winning
position  and  -10,000  for  a  losing  position.  In  all  other
positions, the score is the number of small boards won minus
the number of small boards lost.

2) Our second heuristic  (heur2)  takes  into  consideration
many more features of the given board: small board wins add
5 points, winning the center board adds 10, winning a corner
board adds 3,  getting a center  square in any small  board is
worth 3, and getting a square in the center board is worth 3.
Two  board  wins  which  can  be  continued  for  a  winning
sequence (i.e. they are in a row, column or diagonal without an
interfering win for the other player  in the third board of the
sequence) are worth 4 points, and a similar sequence inside a
small board is worth 2 points. A symmetric negative score is
given if the other player has these features.
3) Our third heuristic (heur3) uses the fact that there are

only 39 =  19683 possible configurations for any small board.
In the following board, for example, the top-left small board
and  the  top-right  small  board  are  identical  and  will  be
evaluated with the same score. 

We saved  time by memoizing values  for  all  possible  small
board configurations and using these values in our heuristic.
This shortened the time spent on the heuristic considerably,
from 68.243 microseconds on average on the second heuristic
to 33.754 on the third heuristic.
4) Our fourth heuristic (heur4) builds upon the previous

heuristic, but takes advantage of an additional feature: if you
are  sent  to  a  small  board  that  is  full  or  won you  can  play
anywhere, so that add 2 points to the heuristic (and -2 for the
other player). 

The weights of different features of these heuristics were
chosen somewhat arbitrarily. We will return to these weights
when dealing with learning agents.

We tested the heuristics one against the other (heur2 was
not tested here, since it is similar to the heur3, only slower).
The  third  heuristic  proved  to  outweigh  the  simplistic  first
heuristic, winning 84.05% of games when playing with a depth
of 2 (n=1,000; p-value<10-110). heur4 beat heur3 in 50.25% of
the games, which means it is not significantly better (n=1,000;
χ2=0.032; p-value=0.858).

VI. TIME

So  far  we  used  a  constant  depth  for  our  tree-traversing
agents. But the importance of depth changes between different



stages of the game. In the early stages of the game, the search
space is still quite large. In the endgame, the search space is
considerably  smaller,  and  the  importance  of  moves  for  a
winning  result  is  much  more  critical.  For  comparison,  a
minimax agent  using depth=3 will  need to examine 81*96  =
43,046,721 positions,  while  a  minimax agent  using depth=5
will  need  to  examine just  11!  =  39,916,800 positions in  an
endgame with 11 empty squares (and probably less, since many
of the positions are terminal states or forced moves).

We created a family of agents that run a bounded amount of
time for each move. A time-bounded agent evaluates a move
with an increasing depth (starting with 1), returning the action
which was deemed the best in the deepest level he managed to
reach before his time ended. The agent also stops if it reached
the bottom of the game tree.

We first  checked  a  mininax  agent  against  an  alpha-beta
agent.  As  we  have  previous  noted,  an  alpha-beta  agent  is
identical to a minimax agent when they run for a fixed depth,
but takes considerably less time to reach the same result. We
now use this extra time to advance to deeper levels of the game
tree.  Both  agents  were  given  0.1  seconds  to  make a  move,
using heur3. The alpha-beta used his speed to win 71.15% of
games (n=1,000; p-value<10-40).

Speed is important, but since the number of nodes grows
exponentially with depth, the time needed to traverse the tree
also  grows  exponentially  with  depth.  Below  is  a  log-scale
graph for the time needed for an alpha-beta agent to traverse a
given depth. 

This implies that time is important only if the agent passes
the threshold needed to fully compute the next level.

We tested the strength of a time agent against a constant
depth agent. Both agents were alpha-beta agents using heur3.
Below is a graph for the amount of time given to the timed
agent plotted against its win rate.

This graph shows the amount of time used by a constant
depth of 2 agent (blue line) plotted against the ordinal number

of the turn currently played. The horizontal green line is used
as a reference for a constant time agent – if the line is above the
the blue line then the constant  time player  would have also
succeeded  in  evaluating  the  move for  depth  2,  while  if  the
green line is below the the blue line, it would have to return the
evaluation of a shallower lever.

This is the graph for a player of depth 3:

We  can  see  that  the  first  move  takes  a  long  time  to
compute, since there are 81 possible moves. We see a general
trend of decline in the time needed until about 30-40 moves in,
then a leap, probably because boards are starting to be filled up
and players are sent to them, meaning they can play anywhere.

We tested the time agent  against  a constant  depth agent.
This is the graph for the winning odds of a time-bounded agent,
plotted against  the amount of time it was given. Here is the
graph when playing against a player of constant depth 2: 



Here is the graph of a time-bounded player against a player
of constant depth 3:

We  can  see  the  agent  getting  better  with  more  time,
surpassing the constant  depth agent  somewhere  between t=1
and  t=2.  Adding  more  time  after  that  does  not  change  the
outcome significantly, due to the exponential time gap between
depth=3 and depth=4. 

How  much  does  adding  time  help  against  another  time
bounded player? We checked several timed agents against an
agent with 0.1 seconds. 

Again,  we see  that  more  time helps  an  agent  win more
games, but due to the exponential time gap between levels, the
slope levels off.  

In conclusion, time-bounded agents have the advantage of
being able to quickly compute many levels of the tree, which is
especially important in endgame positions. They do have their
drawbacks, however, since they aren't as efficient in positions
which do require a large computational effort,  which are the
positions  where  the  player  is  not  limited  to  a  single  small
board.  They  are  also  wasteful  in  the  sense  that  the
computational power is wasted if the timeout happened before
the level was completed. Due to the exponential gap between
levels, this can be quite a considerable proportion of the time.

VII. MEMORY

We have previously used memoization in the construction
of heur3,  keeping  the  values  of  small  boards.  We will  now
build agents using transposition tables, saving time instead of
recomputing positions that were already evaluated.

Our  first  agent  is  a  basic  one,  which  just  saves
combinations of boards and depths in a transposition table, and
checks  every  position  it  gets  to  see  if  it  has  already  been
evaluated. An infinite memory is unpractical (and after about
200,000,000 boards the computer becomes unresponsive),  so
we limited the  agents memory size.

We tested this agent with memory of 106 boards against the
memory-less  time-bounded  agent.  The  results  were  quite
similar for both agents: 50.5% (n=100, p-value≈1), slightly in
favor of the memory agent. 

This agent is not very efficient in his memory usage, since
it remembers all positions it has encountered, but many of them
are very rare and have a low probability of appearing again. We
therefore created a new agent that works in a FIFO method,
discarding  the  last  used  position  once  it  encounters  a  new
position  and  it  has  reached  the  full  capacity  of  memory
allocated.  Again,  we  tested  this  agent  with  memory  of  106

boards  against  the  memory-less  time-bounded  agent.  The
results were again very similar: 48% (n=100) for the memory
agent.

We  also  tried  to  use  the  symmetry  of  rotation  and
reflection.  For  example,  the  following  eight  boards  are
equivalent, and should therefore have equal heuristic value. 



This should help both in terms of time (we don't have to
reevaluate the same board eight times) and in terms of memory
(we only have to remember one representative of the group).
When evaluating a position, the agent will check all 8 possible
rotations  and  reflection  to  see  if  their  values  were  already
evaluated.

In practice, however, this did not work well. The overhead
caused by hashing 8 different boards for every node of the tree
took toll on the limited time, and when running a symmetry
agent against  a memory-less agent, the symmetry agent won
only 43.5% of games (n=100, p-value>0.19).

Our  memory  agents  until  now  computed  the  hash
separately  for  each  board.  The  changes  between  boards  are
local and limited to adding a single symbol (or removing it,
when  returning  upwards  in  a  tree  search).  To speed  up  the
hashing process, we tried a different hashing technique. Zobrist
hashing generates  random integers  in  the  range [0,  2256]  for
each possible element of the board: 81 squares of the board ×
2 possible symbols, one for each agent. The hash function of a
board is the bitwise xor of all elements. The random integers
are  large  enough  for  hash  collisions  to  be  probabilistically
improbable.  Updating  the  board  between  two  consecutive
states is a matter of a single xor, making it much faster than
recomputing the whole board. In practice, however, this agent
produced  only  a  negligible  advantage  over  a  memory-less
agent, winning 52.5% of games (n=100, p-value>0.76).

 In conclusion, using transposition tables did not prove to
be  advantageous.  This  is  probably  due  to  the  exponential
number of possible boards growing in each turn.

VIII. LEARNING

Our next family of agents uses learning to try and improve
performance. Our main direction is reinforcement learning, and
Q-learning in particular.

Our basic attempt was a learner for state-action pairs. We
initialized a dictionary for every pair. After  every move, we
updated the value of the pair using the difference between the
values  of the two consecutive positions,  multiplied by some
alpha value and a discount value. The score of a given position
was defined as 500 for a winning position and -500 for a losing
position. In all other positions, the score is the number of small
boards won minus the number of small boards lost. (This is the
same as heur1). We divided the games into two stages – in the
first  half  the  player  plays  a  random  move  with  a  certain
probability,  and  chooses  the  best  stat-action  pair  with  the
complement probability. In the second half the player always
issues his policy.

The results were disastrous – this player won only 0.5% of
games  against  a  regular  alpha-beta  agent  (n=1,000,
p-value<10280).  This  is  due  to  insufficient  feedback  –  only
rarely will a player visit a state twice, and so the q-values are
not able to propagate properly.

We then tried learning with features. Instead of a dictionary
with  action-state  pairs,  we  learn  features  of  advantageous
states, and these features can be shared by many states.

We initialized a weight vector for many features, previously
described  in  the  heuristics  section  (heur2).  This  time,  we
updated the weight vector using the difference between state
scores.  However,  this  agent  also failed miserably against  an
alpha-beta agent. Again, it won just 0.4% of games (n=1,000,
p-value<10280).

It turns out that single transition Q-learning isn't fit for this
game, since the rewards are so scarce the agent cannot learn in
reasonable  time.  In  contrast  to  games  like  Pacman,  where
rewards are frequent enough so the player has a chance to learn
the correct weights for the features.

Further  improvements  are  possible.  It's  possible  to
remember the whole history of a game, then update the feature
vector at the end of the game with all moves played during the
game, not just the last one. It's also possible to learn values for
all possible binary feature vectors. We did not implement these
agents, but conjecture they will show better performance.

IX. SHOULD YOU GO FIRST OR SECOND?

We can also use the agents developed to determine other
questions about the nature of the game.

In  game theory,  Zermelo’s  theorem states  that  for  every
deterministic two-player game with perfect information, either
one of the players has a winning strategy, or both players have
strategies  that  guarantee  a tie.  The theorem only proves the
existence  of  a  strategy  but  does  not  include  a  constructive
proof.

Some games have been analyzed and such strategies have
been found. Regular Tic-Tac-Toe, for example, is a tied game if
both  players  play  optimally.  Other  games,  like  Chess,  are
harder to analyze. Does Ultimate Tic-Tac-Toe have a winning
strategy? Is it better to go first or second? We cannot give an
analytical model, but we can try to find a statistical answer. We
ran  two  identical  alpha-beta  time-bounded  agents  (0.1
seconds),  and  tested  which  player  has  a  better  chance  of
winning.  The  first  player  won  56.17%  of  games  (n=300,
p-value<0.05),  meaning  he  has  a  statistically  significant
advantage. 

[1] https://en.wikipedia.org/wiki/Binomial_test

[2] Test  of  Equal  or  Given  Proportions,
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prop.test.html

[3] XKCD: Tic-Tac-Toe http://xkcd.com/832/

http://xkcd.com/832/
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prop.test.html
https://en.wikipedia.org/wiki/Binomial_test
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