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ABSTRACT
We present FairplayMP (for “Fairplay Multi-Party”), a sys-
tem for secure multi-party computation. Secure computa-
tion is one of the great achievements of modern cryptog-
raphy, enabling a set of untrusting parties to compute any
function of their private inputs while revealing nothing but
the result of the function. In a sense, FairplayMP lets the
parties run a joint computation that emulates a trusted
party which receives the inputs from the parties, computes
the function, and privately informs the parties of their out-
puts. FairplayMP operates by receiving a high-level lan-
guage description of a function and a configuration file de-
scribing the participating parties. The system compiles the
function into a description as a Boolean circuit, and per-
form a distributed evaluation of the circuit while revealing
nothing else.

FairplayMP supplements the Fairplay system [16], which
supported secure computation between two parties.

The underlying protocol of FairplayMP is the Beaver-
Micali-Rogaway (BMR) protocol which runs in a constant
number of communication rounds (eight rounds in our im-
plementation). We modified the BMR protocol in a novel
way and considerably improved its performance by using
the Ben-Or-Goldwasser-Wigderson (BGW) protocol for the
purpose of constructing gate tables. We chose to use this
protocol since we believe that the number of communica-
tion rounds is a major factor on the overall performance of
the protocol.

We conducted different experiments which measure the
effect of different parameters on the performance of the sys-
tem and demonstrate its scalability. (We can now tell, for
example, that running a second-price auction between four
bidders, using five computation players, takes about 8 sec-
onds.)
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1. INTRODUCTION
We present FairplayMP, a generic system for secure multi-

party computation. This is an extension of the Fairplay sys-
tem which supported secure computation by two parties [16].
The extension to the multi-party case is needed since crypto-
graphic protocols for the multi-party scenario are completely
different than protocols for the two-party case. The system
includes two components. The first component is a com-
piler that enables users to describe a function as a program
in a high level language, SFDL 2.0, which is an extension of
the SFDL language used in the two-party Fairplay package.
The compiler translates this program to a representation as
a Boolean circuit. The second component of the system is
a cryptographic engine which executes a protocol that com-
putes a circuit securely. The protocol is based on a protocol
by Beaver, Micali and Rogoway (the BMR protocol) [2], with
enhancements which greatly improve its efficiency.

The goal of secure computation is to enable different par-
ties, each with its own private input, to compute a function
of their joint inputs without revealing any information ex-
cept for the value of the function (and anything implied
by it). The canonical example of secure computation is
the “millionaires problem”, where two millionaires wish to
find out which one of them has more money, but must do
that without involving any other party and without reveal-
ing their actual worth to each other. In more detail, the
setting of secure multi-party computation consists of n par-
ties (or players) with private inputs x1, x2, . . . , xn (where xi
is the private input of party i) that wish to jointly com-
pute the functions fi(x1, ..., xn), where player i receives the
output fi(x1, ..., xn). If there were a trusted party, then all
parties could have sent their inputs to it, and the trusted
party could have privately sent each fi(x1, ..., xn) to player
i. In this setting it is clear that player i learns nothing but
its designated output. Our goal is to have the players alone
perform a joint computation in which each player learns its
designated output, and no other information is leaked to the
players. Namely, they should obtain the same level of pri-
vacy they have in a computation that is run by the trusted
party.

1.1 Motivation
Elections and auctions are just two of many examples of

applications of multi-party computation. Today, most of
those computations are done by a trusted party (e.g., an
auctioneer). The use of secure multi-party protocols can
enable running such applications without any trusted party.
(See [17, 4] for a discussion on the advantages of limiting the
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knowledge that is learned by auctioneers, and a description
of secure protocols for conducting auctions.)

Starting with the seminal work of Yao on secure two-party
computation [19], and of [3, 6, 12] on secure multi-party com-
putation, there have been many theoretical constructions of
secure computation protocols. There are, however, almost
no systems which enable programmers who are not experts
in the theory of secure computation to implement such pro-
tocols (two notable exceptions are the Fairplay and SIMAP
systems, which are described below). Consequently, if one
wishes to implement a system for secure computation then
he or she need to read the relevant papers and implement the
system from scratch. This requirement imposes, of course, a
huge barrier for anyone wishing to use secure computation.
The goal of our work is to change this situation for the case
of multi-party computation.

1.2 Secure Computation and Related Work
We will only discuss here generic solutions for secure com-

putation, namely protocols which can be used for computing
any function (rather than compute a specific application).
For detailed definitions of secure computation see, e.g., the
work of Goldreich [11],

Semi-honest adversaries.
We will focus on protocols which provide security against

semi-honest adversaries (also known as “honest but curious”
adversaries). Adversaries of this type are assumed to follow
the instructions that are prescribed for them by the proto-
col. They may, however, try to learn additional information
from the messages that they receive. A stronger type of
corruption is performed by adversaries that are denoted as
malicious adversaries. These adversaries can operate in an
arbitrary way and do not have to obey the protocol. It is, of
course, easier to ensure security against semi-honest adver-
saries. The current version of FairplayMP provides security
against semi-honest adversaries, future versions will handle
the case of malicious adversaries (even though, as we detail
below, that case is much more complex).1

Security against semi-honest adversaries might be justi-
fied if the parties participating in the protocol are somewhat
trusted (say, if they are different institutions or agencies that
need to compute a function of some information that reg-
ulations prevent them from sharing). This level of security
is also justified if we trust the participating parties at the
time they execute the protocol, but suspect that at a later
time an adversary might corrupt them and get hold of the
transcript of the information received in the protocol.

We note that protocols secure against malicious adver-
saries are considerably more costly than their semi-honest
counterparts. For example, the generic method of obtaining
security against malicious adversaries is through the GMW
compiler [12] which adds a zero-knowledge proof for every
step of the protocol. Known implementations of secure pro-
tocols provide only security against semi-honest adversaries

1An alternative new security model considers “covert ad-
versaries” [1]. Adversaries of this type may deviate from
the protocol definition in order to cheat, but do not wish
to be identified as cheaters. This model might be relevant
in scenarios where the penalty for being caught cheating is
very high. The covert adversaries model is quite attractive
since it is usually easier to provide security against covert
adversaries than it is to ensure security against malicious
adversaries.

(as is the case with SIMAP), or provide limited security
against malicious adversaries (as is the case with the two-
party version of Fairplay, which increases the overhead by
a factor of c in order to reduce the cheating probability of
malicious adversaries to 1/c). Recent work [15], describes a
highly optimized implementation of a two-party protocol se-
cure against malicious adversaries based on a recent efficient
construction of Lindell and Pinkas [14], but protocols with
similar efficiency do not currently exist for the multi-party
case. Even that implementation introduces a considerable
performance penalty, as it must substantially increase the
number of inputs and the size of the circuit, and must com-
pute multiple copies of the circuit (say, 160 copies in order to
limit the error probability to 2−40). Given this difficulty in
achieving security against malicious adversaries, the current
version of FairplayMP handles only the semi-honest case.

Constant round protocols.
We speculate that a major bottleneck of secure computa-

tion is the number of communication rounds. Namely the
number of times that players need to wait for information
sent from other players in order to continue in the compu-
tation. (The overhead of starting a communication round is
caused by the overhead of the communication infrastructure,
and also from the fact that in each round all parties need to
wait for the slowest party to conclude its work before they
can begin the next round.) For this reason we chose to im-
plement the BMR protocol, which runs in a constant number
of rounds, independently of the function that is being com-
puted. (Other protocols need to perform a communication
round for every level of the circuit representing the com-
puted function.) Our implementation of FairplayMP uses 8
communication rounds.

Feasibility results in secure computation.
The first generic solution for secure two-party computa-

tion was presented by Yao [19]. It runs in a constant number
of communication rounds and is based on using an enhanced
trapdoor permutation. For the multi-party case (namely, se-
cure computation involving more than two parties), the pro-
tocols of Ben-Or, Goldwasser and Wigderson (BGW) [3] and
Chaum, Crépeau, and Damgard (CCD) [6] are based only
on the assumption that a private communication channel
exists between each pair of parties. They require the com-
puted function to be represented as an arithmetic circuit
with gates implementing addition and multiplication over a
finite field. The multi-party protocols of Goldreich, Micali
and Wigderson [12], and Beaver, Micali and Rogoway (the
BMR protocol) [2] are based on representing the function
as a Boolean circuit. The BMR protocol runs in a constant
number of rounds and therefore we have chosen to imple-
ment it. (A newer constant-round protocol for secure multi-
party computation was suggested by Damg̊ard and Ishai [8].
It is, however, quite a bit more complex than the BMR pro-
tocol.)

Implementations of secure computation.
Other notable implementations of secure protocols are the

Fairplay system [16], implementing secure two-party compu-
tation, and the SIMAP system [4], which is focused on im-
plementations of auctions using multi-party computation.

1.3 Paper Structure
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Section 2 provides an overview of the system and of the
high-level language used by it. Section 3 describes the BMR
protocol and our enhancements to this protocol. Section 4
describes the protocol that we implemented. Section 5 de-
scribes the experiments we conducted to explore the perfor-
mance of the system.

2. SYSTEM OVERVIEW
The overall structure of the FairplayMP system is similar

to that of the Fairplay system [16] and its use the following
steps:

1. Users write a program in the high-level programming
language SFDL 2.0.

2. This program is compiled into a low level representa-
tion as a Boolean circuit.

3. Users write a configuration file describing the ip ad-
dresses of the different parties, and different other set-
tings which are needed for the program execution.

4. The program executes the secure multi-party compu-
tation of the Boolean circuit in two steps:

(a) A garbled circuit is created from the Boolean cir-
cuit according to the BMR protocol (see below),
and a garbled version of the input is generated
from the original input.

(b) The garbled circuit is evaluated by the players
who are supposed to receive the output of the
program (the system supports providing each of
these players with a different output).

2.1 The Secure Function Definition Language
As the starting point of any attempt at security is a clear

definition of the requirements, FairplayMP provides a high-
level language for specifying the intended input, output and
computation. The system uses an augmented version of the
SFDL language (Secure Function Definition Language), that
was designed for two-party computation and implemented
in the Fairplay system [16]. The augmentation – version
2.0 – adds multi-player capabilities as well as several other
minor new features. Programs in SFDL define a computa-
tion that is carried out by a virtual “trusted party”. The
SFDL compiler translates the SFDL program into a low-
level description in a form of a Boolean circuit (defined in a
language called SHDL, which is described in [16]). When
writing an SFDL program, one need not care how the trusted
third party will be emulated by the participating players, but
rather only describe the function computed by the program
and the exact intended information input and output.

2.1.1 An example program
Following is an example of a program written in SFDL 2.0,

with comments documenting its operation.

/∗∗
Second Price Auction :
Performs a 2nd pr i c e auct ion between 4
b idde r s . Only the winning b idder and the
s e l l e r l earn the i d e n t i t y o f the winner .
Everyone knows the 2nd h i g h e s t p r i c e .

∗∗/
program SecondPriceAuction {

const nBidders = 4 ;

type Bid = Int<8>; //enough b i t s f o r a b id
// enough b i t s to repre sen t a winner .
type WinningBidder = Int<3>;
type Se l l e rOutput =
struct{WinningBidder winner ,

Bid winningPr ice } ;
// S e l l e r has no input
type S e l l e r = struct{ Se l l e rOutput output } ;
type BidderOutput =
struct{Boolean win , Bid winningPr ice } ;
type Bidder =
struct{Bid input , BidderOutput output } ;
function void main( S e l l e r s e l l e r ,

Bidder [ nBidders ] b idder ){
var Bid high ;
var Bid second ;
var WinningBidder winner ;
winner = 0 ; high = bidder [ 0 ] . input ;
second = 0 ;
// Making the auct ion .
f o r ( i=1 to nBidders−1){

i f ( b idder [ i ] . input > high ){
winner = i ;
second = high ;
high = bidder [ i ] . input ;

}
else

i f ( b idder [ i ] . input > second )
second = bidder [ i ] . input ;

}
// Se t t i n g the r e s u l t .
s e l l e r . output . winner = winner ;
s e l l e r . output . w inningPr ice = second ;
f o r ( i=0 to nBidders−1){

bidder [ i ] . output . win = ( winner == i ) ;
b idder [ i ] . output . w inningPr ice = second ;

}
}

}

2.1.2 SFDL Overview
This subsection provides a very short overview of the SFDL

language. More details can be found in [16] which describes
SFDL 1.0, and a full specification is available on the project’s
web site at: http://www.cs.huji.ac.il/project/Fairplay.

An SFDL program contains two conceptual parts: the first
defines data types that are used in the computation, and the
second defines the computation itself.

The datatype definitions follow a simple C-like syntax
(with a trace of Pascal). It allows booleans, integers whose
length is an arbitrary number of bits, enumerated types, and
composition using arrays and structures. Pointers are not
allowed. Beyond the usual role that datatypes have, they
have an important additional role here: the input and out-
put of each participant must be formailized as such a data
type. Declared types of this format are used in the header of
the main function of the program. Thus, for example, in the
auction program above, a“Bidder”has an 8-bit integer input
and his output is composed of two parts: a boolean specify-
ing whether this bidder won, and an 8-bit output specifying
the winning price. Had we also wanted, for example, to let
the bidders learn the identity of the winner, we would have
needed to declare the “BidderOutput” structure to also have
a “WinningBidder” entry to hold that information.

The second part of the SFDL program is composed of
code that specifies the computation itself. The code is orga-
nized as a sequence of functions. The main functionality of
the program is the evaluation of the last function defined.
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This function must be called “main” and receives the play-
ers’ types and names as its parameters. Thus, for example,
the Auction program above, specifies 5 participants: a sin-
gle “Seller” and 4 “Bidder”s. Each of the participants has
its input and output formats defined by its type, and one of
them may be empty (e.g. the “Seller” in the example above
has no input data).

While the syntax of the code is quite standrad, there are
a few significant limitations forced by the fact that this code
is compiled into a boolean circuit. In particular, recursion
and pointers are not allowed and all loop bounds must be
compile-time constants. Also, there is a huge performance
gap between an efficient array access when the index is a
compile time constant (including for-loop indices – as in the
Auction example above), and the non-efficient access oher-
wise. We refer the reader to the first Fairplay paper [16] for
a full discussion as well as the compilation strategy.

2.1.3 Changes from SFDL 1.0
The main difference from the previous version is a change

in the format of the “main” function header that now allows
an unlimited number of players. This was demonstrated in
the Auction program above.

The other changes are quite minor, of which we will only
shorty mention allowing access to specific bits in an integer
using an array-like notation and the introduction of “generic
functions” where the type of the return value of a function
depends on the types of the function parameters. For exam-
ple, we might want to write a function that shifts any integer
value, regardless of its size, and thus the return value should
be of the same size as the input. This can be done as follows:

function generic s h i f tR i gh t ( Int<> v ) :
Int<v . bitSize> {

f o r ( i = 0 to v . bitSize−2)
s h i f tR i gh t [ i ] = v [ i +1] ;

s h i f tR i gh t [ v . bitSize −1] = 0 ;
}

2.2 The Secure Evaluation Cryptographic En-
gine

Once the intended function was specified in SFDL and
compiled into an intermediate low level circuit format, it
can now be executed securely by our evaluation engine. The
exact configuration and security parameters are specified in
a simple XML configuration file (see below), and beyond
that the security is ensured.

We implemented the protocol of Beaver, Micali and Rog-
away (BMR) [2] with different enhancements which are de-
scribed in Section 3.2. We chose to implement this protocol
for two main reasons:

• We suspected that the number of communication rounds
is a major factor of the run time of the protocol. The
BMR protocol is one of very few multi-party proto-
cols that run in a constant number of communication
rounds, indenpendetly of the function being evaluated
or the number of parties.

• The BMR protocol operates on a Boolean circuit rep-
resentation of the computed function. Other proto-
cols operate on a representation of the function in the
form of an arithmetic circuit, whose atomic gates im-
plement addition and multiplication in a finite field.
We preferred the Boolean circuit representation since

it supports efficient comparisons which we believe is
an important key in all ”real life” programs.

We separated the computation process to three different
processes, each representing a role of a player in the compu-
tation: those players contributing an input, those participat-
ing in the computation and those learning an output (this
is in contrast to the original definitions of multi-party com-
putation where each player participates in all roles). Each
player only participates in computations and interactions
relevant to its roles (but a player can participate in several
roles without compromising security). The number of play-
ers that build the “garbled circuit” and emulate the “trusted
third party” is no longer dependent on the number of in-
put or output players. This allows players to “distribute”
trust among chosen players who are not necessarily related
directly to the function (as input/result players).

To recap, the three supported player types are:

• Input players (IP) - The players which contribute input
for the computation.

• Computation players (CP) - The players which build
the garbled circuit and emulate the trusted third party.
(The protocol will be secure as long as an adversary
cannot corrupt half or more of the CPs. Therefore it is
reasonable to envision scenarios with a large number
of IPs but only, say, about ten CPs, implemented by
more trusted parties.)

• Result players (RP) - The players which receive some
output out of the circuit.

We conducted different experiments which are described
in Section 5 and which demonstrate the scalability of the
system. In particular, they show that the depth of the circuit
does not affect the overhead.

The FairplayMP package is available for download on the
project’s web site.

2.3 The configuration file
The system uses a configuration file (config.xml) which has

two main purposes. The first is to coordinate between all the
computers involved in the computation (i.e. the computers
that provide input, perform the computation and provide
output – each of them must have a copy of this file). In
this part of the xml file, the name of the circuit file and a
list of the participating IP addresses are given. The second
purpose is to set all the security parameters needed for the
computation, such as the pseudo-random generator (PRG)
to use, port numbers, the certificate store that will be used
for SSL connections and the prime number that will be used
as a modulus in the computation (the length of this modulus
is related to the security parameter k – it must be at least
k times the number of CPs plus 2). The full version of this
paper includes an example configuration file.

2.4 The interface between the two system parts
The FairplayMP package is composed of two components:

the SFDL 2.0 compiler and the FairplayMP cryptographic
engine executing the secure multi-party computation. Al-
though the package is intended to allow users to easily use
the combined functionality, write a function and compute
it, some users might want to use only one part of the sys-
tem. For this reason we created a standard interface between
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the two parts of the system, in fact both a data interface
and a programmatic api. (Our own implementation indeed
goes through these two interfaces.) The data interface is in
SHDL (Secure Hardware Definition Language) that contains
a specification of the function and its inputs and outputs as
a low-level boolean circuit. The programmatic interface is
a Java-language Intreface (defined in Circuit.java) which di-
rectly interfaces to the cryptographic engine. The full docu-
mentation and source code are available on the project’s web
site at: http://www.cs.huji.ac.il/project/Fairplay.

These interfaces allow either using our cryptographic en-
gine to evaluate functions that were specified by means other
than SFDL (e.g. optimized by hand), or to use the SFDL
language with a different (boolean-circuit-based) cryptographic
engine.

3. THE BMR PROTOCOL
We first describe the basic properties of the protocol of

Beaver, Micali and Rogaway (the BMR protocol) [2], and
then describe our enhancements to this protocol. The details
of the BMR protocol appear in the full version of our paper.

3.1 The Basic BMR Protocol
The BMR protocol [2] implements secure multi-party com-

putation in a constant number of rounds. It is essentially a
multi-party version of Yao’s two-party protocol. The proto-
col has two phases. During the first phase a“garbled circuit”
and a matching set of “garbled inputs” are created by the
input players and the computation players. Then, in the sec-
ond phase, each of the result players evaluates the garbled
circuit individually. We are only concerned in this paper
with security against semi-honest adversaries, and therefore
are able to present a protocol which is simpler than the orig-
inal protocol (which uses generic zero-knowledge proofs to
provide security against malicious adversaries). The proto-
col is based on the following two principles:

Hiding values of internal wires: Two random seeds are
attached to each wire in the circuit (in Yao’s paper [19]
these seeds are referred to as garbled values, but we also
refer to them as seeds since they are used as an input to a
pseudo-random generator). Each seed is actually defined as
the concatenation of seeds generated by each of the parties
(namely, seed si is defined as si = s1i ◦ · · · sni ). One of the
seeds of a wire represents the value 0 and the other seed
represents the value 1. For each gate the seeds of the output
wire are hidden using the seeds of the input wires, according
to the truth table of the gate. Consequently, knowledge of
one seed for each of the two input wires of a gate enables to
uncover a single seed of the output wire, corresponding to
the appropriate output derived from these input values.

Randomizing the 0/1 values: Using random seeds instead
of the original 0/1 values does not hide the original value if it
is known that the first seed corresponds to 0 and the second
seed to 1. Therefore, an unknown random bit, denoted by λ,
is assigned to each wire. We define the external value of each
wire as the exclusive-or of the real value (or original value) of
the wire and the λ value attached to the wire. This enables
the evaluation process to use the external value of the wire
while concealing its real value. A party participating in the
protocol might know the seed matching the external value 1
(and know that the external value is 1), but without knowing
λ it gains no information about the real value of the wire.

The first phase of the protocol (where the parties con-

struct the garbled circuit) is computed using a secure multi-
party computation that is done separately, but in parallel,
for each gate. (This is the major bottleneck of the computa-
tion. We were able to improve its run time, as is detailed in
Section 3.2.) In the second phase, the result players receive
information which enables them to compute the output of
the function. The entire protocol runs in a constant number
of communication rounds.

3.2 Our Enhancements to the Basic BMR Pro-
tocol

Constructing the tables.
In order to simplify the secure computation of the truth

tables, we replaced in this computation the exclusive-or op-
eration (which is used is order to hide the seed s1i ◦ · · ·◦sni of
an output wire by “exclusive-or”-ing it with the expansion of
the seeds of the input wires) with an addition operation in
a finite field. This enhancement allows us to use the BGW
protocol (due to Ben-Or, Goldwasser and Wigderson [3])
which is more efficient as it can apply atomic operations to
the entire string s1i ◦ · · · ◦ sni which is a single item in the
field. Of course, this requires that items in the finite field be
longer than |s1i ◦ · · · ◦ sni |. This requirement should typically
not be a problem, since for n CPs and for seeds of length m
the modulus should only be of length nm+ 1. The number
of servers n is pretty low (say, 10 or less servers), and m
is typically in the range 64-128, and therefore the length of
the modulus should not exceed lengths which are common
in cryptography.

The shares of the string s1i ◦· · ·◦sni itself can be generated
in a distributed way: Party j chooses sji and shifts it to the
right k · (n − j) times. It sends shares of this string to the
parties. The sum of the shares that each party receives is a
share of s1i ◦ · · · ◦ sni .

The computation of the table is then completed in two
computation steps. In order to compute the correct value
of the table (of a gate with input wires a, b and output wire
c) the protocol first computes shares of λaλb and then com-
putes λa

⊗
λb from the three shared values: λa, λb and λaλb.

Then the protocol computes the value (λc−λaλb)2, which is
either 1 or 0, depending on whether λc = λaλb. This value
is multiplied by the concatenation of the appropriate seed
values to obtain the right value for the table entry.

Collective coin flipping.
Each λ value must be a random bit which is shared among

the computation players using addition in a finite field. Gen-
erating such a bit is easy in a field of characteristic 2. We
need, however, to generate this bit is a finite field with a
larger characteristic. This is done using a recent protocol
due to [7], which is based on arithmetic operations that are
implemented using the BGW protocol. The protocol is se-
cure against coalitions of up to bn/2c corrupt players. It is
described in the full version of our paper, and also in the
details of the implemented protocol in Section 4.

Player types.
The original BMR paper assumed that all players have

inputs, all of them participate in the computation, and all of
them should learn an output. We define three possible types
of players: input players (IPs), computation players (CPs)
and output/result players (RPs). A player can possibly have
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several of these roles. A typical scenario might involve many
input players and only a handful of computation players.
Security is ensured as long as the adversary cannot corrupt
more than a strict minority of the computation players. (It
can corrupt any number of input or result players). The
computation players should therefore be more trusted, and
be chosen in a way which supports the assumption that it is
unlikely that half or more of them are corrupt.

With regards to result players, we make sure that each
result player receives from the computation players only the
bits that are relevant to its output. This ensures in a simple
way that each result player can only recover its own output
and learns nothing else (in other protocols, on the other
hand, encryption might be needed to ensure this property).

Handling large fan-out.
The output of a gate might be input to several other gates

(namely, the gate might have fan-out greater than 1). The
protocol must ensure, however, that the single seed value is
expanded to different values in every gate. The expansion
of the seed is therefore done using a cryptographic function
F which has two inputs: the seed of the input wire, and
the index of the gate to which the wire enters. As a result,
different g and h values are generated for every gate in which
the wire is used.2

4. THE IMPLEMENTED PROTOCOL
We decided to implement the program in Java in order

to support easy cross-platform usage. The focus in our im-
plementation was on performance in terms of the number
of communication rounds and the size of the messages (note
that no public key operations are needed, and therefore the
computation costs does not necessarily dominate the com-
munication overhead). FairplayMP separates the code to
four main packages that work together in a modular way:

The player package holds the three different types of play-
ers which implements the Player interface. Each of these
runs as a different thread in order to prevent a bottleneck
from occurring when one computer is participating in more
then one role.

The communication package holds the server and client
threads which use SSL encryption in a peer to peer commu-
nication model. It also contain the Msg and MsgCP class
which define a message in the protocol.

The circuit package holds the Circuit interface and the
SHDL Circuit implementation.

The utils package includes the rest of the classes, including
the implementation of the pseudo-random generator and of
the BGW [3] protocol.

4.1 Players
We denote the number of computation players by n. Be-

low we list the tasks implemented by each type of players.

2In the theoretical analysis of the system we cannot model
the cryptographic function F as a simple PRG, since a PRG
provides a pseudo-random output only if its input is random
(and the gate id is not random). The function F can be
modeled as a pseudo-random function (PRF) whose key is
the seed and whose input is the gate index (it is well known
how to construct a PRF from a PRG). In FairplayMP we
implement F by applying a hash function such as SHA-1 to
the exclusive-or of the seed and the gate index.

4.1.1 Input players (IP)
Each IP performs the following tasks for each wire w of

its input wires, which has an input value bw:

1. Creates a random bit λw and random seeds of length
nk: si2w and si2w+1 (representing 0 and 1, respectively).

2. Shares λw using (bn/2c + 1)-out-of-n secret sharing
between all the computation players. The seeds s2w
and s2w+1 are also split to n concatenated seeds of
length k (s2w is split into s12w ◦ · · · ◦ sn2w and s2w+1 is
split in a similar way). The k-bit seeds si2w and si2w+1

are sent to the ith computation player.

3. Sends the seed s(bw⊕λw) and the bit (bw ⊕ λw) to the
result players. (These values correspond to the exter-
nal value of this wire, and since the value of λw is
secret, the real value is kept hidden.)

4.1.2 Computation players (CP)

1. For each wire w (which is not an input wire) each com-
putation player i generates two random seeds of length
k: si2w and si2w+1 (representing 0 and 1, respectively).
It then shifts each of these seeds to the right k · (n− i)
times. It sends to the other computation players shares
of the resulting strings, using (bn/2c+ 1)-out-of-n se-
cret sharing. (Note that for every index v the sum
of the shares that each party receives is a share of
sv = s1v ◦ · · · ◦ smv , which is string of length nk.)

Let us denote by evv the external value of wire v,
namely the result of the exclusive-or of λw and of the
real value of the wire (the Binary value of the wire
when the circuit is fed with the input of the players).

The result players need to know the external values of
all wires. We therefore ask the computation players
to compute and use the value sv = s1v ◦ · · · ◦ smv ◦ evv.
This is done in the following way: each computation
player sums the shares of s2w, and similarly it sums
the shares of s2w+1 that it received. It then multiplies
each of these results by 2. Finally, it adds 1 to the
latter of these two results.

For every wire w, the computation players also engage
in a secure computation in which each of them com-
putes a share of a random bit λw (according to the
method listed in Section 3.2). (Overall, this step re-
quires two messages.)

2. If the input wires of a gate are wires α and β and the
output wire is wire γ we denote a = 2α, b = 2β and
c = 2γ (therefore for wire α the value 0 is represented
by sa and the value 1 by sa+1, and the same holds for
β and γ with respect to b and c.)

The parties then collectively compute the entries of
the truth tables of a gate which implements the Binary
operation

⊗
, according to the following definition:

Ag = g1
a + · · ·+ gna + g1

b + · · ·+ gnb

+

{
s1c ◦ · · · ◦ snc ◦ 0 if λα

⊗
λβ = λγ

s1c+1 ◦ · · · ◦ snc+1 ◦ 1 otherwise

Bg = h1
a + · · ·+ hna + g1

b+1 + · · ·+ gnb+1

+

{
s1c ◦ · · · ◦ snc ◦ 0 if λα

⊗
λβ = λγ

s1c+1 ◦ · · · ◦ snc+1 ◦ 1 otherwise
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Cg = g1
a+1 + · · ·+ gna+1 + h1

b + · · ·+ hnb

+

{
s1c ◦ · · · ◦ snc ◦ 0 if λα

⊗
λβ = λγ

s1c+1 ◦ · · · ◦ snc+1 ◦ 1 otherwise

Dg = h1
a+1 + · · ·+ hna+1 + h1

b+1 + · · ·+ hnb+1

+

{
s1c ◦ · · · ◦ snc ◦ 0 if λα

⊗
λβ = λγ

s1c+1 ◦ · · · ◦ snc+1 ◦ 1 otherwise

In order to perform this computation, each CP i oper-
ates as follows:

(a) For each gate:

i. For each seed of each input wire it creates
the values g, h by applying the cryptographic
function F to the seed and to the index of the
gate which it enters (see Footnote 2 above for
a description of the modeling and implemen-
tation of F ). The player computes for exam-
ple, for the first seed of wire α, the values
gia | hia = F (sia, gate id). The length of the
output of F is |gia|+ |hia| = 2|F|, where F is
the finite field which is used by the system.

ii. It sends shares of the results of the previous
step to all other CPs. Secret sharing is done
using a threshold of (bn/2c+ 1)-out-of-n.

iii. It computes the truth table of the gate. For
example, for entry Ag it performs the follow-
ing operations (similar operations are applied
to the other entries):

A. Adds the shares of g1
a, . . . , g

n
a and of g1

b , · · · , gnb
that it received.

B. Applies the multiplication step of the BGW
protocol to the shares of λα and λβ , to
obtain a share of λαλβ (the share is in
(bn/2c+1)-out-of-n secret sharing, as are
the previous shares).

C. Computes a share of λα
⊗
λβ by applying

linear operations to the shares that it has
of λα, λβ and λαλβ (any Boolean function⊗

of λα, λβ can be expressed as a linear
combination of λα, λβ and λαλβ .)

D. Subtracts the share of λγ from the result.
This results in a share of 0 if λα

⊗
λβ = λγ

and a share of either 1 or −1 otherwise.

E. Raises the result to the power of two. This
provides a share of 0 if there is equality
and a share of 1 otherwise. Denote this
share as vi. (Raising to the power of two
is implemented as a multiplication step of
the BGW protocol.)

F. Multiplies vi with the share of the seed
sc+1, and multiplies (1−vi) with the share
of the seed sc. The multiplications are
done using the BGW protocol.

G. Sums the results of the last step, and adds
this value to the shares of g and h that
were received. The result is a share of Ag
using (bn/2c+ 1)-out-of-n secret sharing.

3. For all gates, it sends to all the result players the share
of Ag, . . . , Dg from above.

4. It also sends to each result players the shares it has of
the λ values associated with the output wires of this
result player.

4.1.3 Result players (RP)

1. For each input wire the player receives the string sbw⊕λw

and the external value bw ⊕ λw from the IP which is
responsible for the wire.

2. For every gate, it receives shares from every CP and
uses them to reconstruct the entries Ag, . . . , Dg of the
truth table of that gate.

3. Initially for each input wire of the circuit, the player
holds the seed s2w or s2w+1, and the corresponding
external value (2w or 2w + 1).

Suppose inductively that the player holds sa+p for the
left input wire of a gate, and sa+q for the right input
wire, where a and b are even and p, q ∈ {0, 1} are the
external values of these wires. Suppose that the out-
put wire of the gate is γ. Let FL denote the left half of
the output of F , and let FR denote its right half. Then
it should expand each part of the seed (for each com-
putation player) by computing the following functions:
∀1 ≤ i ≤ n gia+p = FL(sia+p, g), hia+p = FR(sia+p, g),

gib+q = FL(sib+q, g), hib+q = FR(sib+q, g). It can then
compute the right seeds for γ by computing:

σγ =



Ag − g1
a+p − . . . − gna+p − g1

b+q − . . .− gnb+q
if p = 0 and q=0

Bg − h1
a+p − . . . − hna+p − g1

b+q − . . .− gnb+q
if p = 0 and q=1

Cg − g1
a+p − . . . − gna+p − h1

b+q − . . .− hnb+q
if p = 1 and q=0

Dg − h1
a+p − . . . − hna+p − h1

b+q − . . .− hnb+q
if p = 1 and q=1

The least significant bit of the string σγ that is com-
puted is the external value of the wire γ. The rest of
σγ contains the concatenation of seeds of this wire.

4. For each output bit w:

(a) The player reconstructs λw according to the shares
received from each CP.

(b) It computes the exclusive-or of λw and the exter-
nal bit of this wire (computed by the gate from
which it is output) to get the desired output bw.

4.2 Security
The protocol is secure against a coalition of at most bn/2c

corrupt computation players, as long as they operate in a
semi-honest way. Adding any number of corrupt, but semi-
honest, input players or result players does not affect the
security of the protocol. We will only sketch here the ar-
guments showing the security of the protocol (that are, of
course, based on the security of the BMR and BGW proto-
cols). In Step 1 each computation player receives shares
of a (bn/2c + 1)-out-of-n secret sharing scheme, and en-
gages in the bit-flipping protocol of [7]. It Step 2 it runs
the BGW protocol. Therefore, as long as we assume that
the BGW protocol and the bit-flipping protocol are imple-
mented securely, a coalition of at most bn/2c computation
players learns nothing (in particular, it does not learn the λ
values of wires).

7



5. PERFORMANCE
We performed different experiments to examine the per-

formance of the system. In addition to checking the overall
runtime, we examined the effects of different properties of
the computed function, such as the number of gates or the
depth of the circuit, and the effects of different properties of
the computation setting, such as the number of players and
mixing strong and weak machines in the same setting. We
used both “real life” SFDL 2.0 programs that were trans-
lated by the SFDL compiler to circuits, and hard coded java
implemented circuits (using the Circuit.java interface).

The setting: All experiments were run in the Hebrew
University’s CS lab on a grid of computers, each with two
Intel Xeon 3GHz CPU processors and 4GB of RAM. (The
last experiment used also a different machine, as is detailed
below.) The pseudo-random function F was implemented
as SHA-1. All results were computed as an average of three
different runs on all the computers and measured in millisec-
onds.

5.1 Experiments

Measuring the general run time.
We checked the run time of computing circuits which are

structured as full binary trees. The depth of the circuits
ranged from 1 to 10, where the number of gates in a circuit
of depth d is 2d. These circuits were computed in settings
with 5,7,9 and 11 computation players (CPs).3 The security
parameter was set to k = 80, and the length of the modulus
was set to be just long enough for each setting, namely it
was equal to k times the number of CPs plus 2 (e.g., 402
bits for a setting with 5 CPs). The results of the experi-
ments appear in Table 1. (The results do not include the
run time of input players, which is negligible. The run time
of the CPs includes the time spent waiting for messages and
receiving them. The run time of the RPs includes only the
computation time. We do not detail in this table the run
time for circuits of depth 1 to 4, for lack of space.)

We analyze the run time in detail below. Overall, the
run time seems to be reasonable. For example, with 5 CPs
(namely, providing security against coalition of any two cor-
rupt CPs), computing a circuit with 1024 gates takes about
10 seconds. We show below that the run time grows lin-
early with the number of gates, and therefore we expect,
for example, that a very large circuit with 100,000 gates
will be computed in about 1000 seconds, or 16 minutes.
This computation is not instantaneous, but its running time
seems reasonable for important applications (for example,
the privacy-preserving sugar beet auction reported in [4] ran
for half an hour, in a setting with only three servers).

Dependency on the size of the circuit.
Theoretically, if we fix the number of players and increase

the size of the circuit, we expect the run time of both the
computation players (CP) or the result players (RP) to be
a linear function of the size of the circuit. Figure 1 plots

3Recall that a setting with 5 CPs is the minimal setting
providing security against collusions of two servers. Se-
curity against corrupt servers that do not collude can be
achieved with only two servers, using the two-party protocol
of Yao [19]. Therefore a setting with 5 CPs is the minimal
setting in which it makes sense to use secure multi-party
computation.

Depth 5 6 7 8 9 10
Gates (1) 32 64 128 256 512 1024

5 CPs
CP (2) 2234 2622 3218 4299 6215 9635
RP (3) 64 130 234 440 770 1394

7 CPs
CP (2) 2684 3358 4480 6281 9682 17095
RP (3) 86 154 295 608 1105 2093

9 CPs
CP (2) 3278 4380 5915 8835 15293 28045
RP (3) 115 219 438 845 1621 3150

11 CPs
CP (2) 3921 5575 8000 12925 23678 54497
RP (3) 144 289 569 1123 2198 4276

Table 1: Run time (in msec) of evaluating full binary
circuits of different sizes, with security parameter
k = 80, for different numbers of CPs. The length of
the modulus is k times the number of CPs, plus 2.
(1) Number of gates in the circuit. (2,3) Average
running time of the Computation Player, and the
Result Player, respectively.
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Figure 1: A plot of the running time (in msecs) of
the CPs and RPs as a function of the number of
gates, in a setting with 5 CPs. The data was taken
from Table 1.

(based on the results of Table 1) the run time of the CPs
and RPs as a function of the circuit size in a setting with 5
CPs.

Conclusion: Our experimental results show that the run
time has linear dependency on the size of the circuit.

Dependency on the number of computation players.
When comparing the run time of computing the same cir-

cuit in settings with different numbers of computation play-
ers we should recall that part of the computation has lin-
ear dependency on the number of players (e.g. computing
the gates truth table), while part of the computation has
quadratic dependency on the number of players (e.g. ex-
ecuting the interpolation step of the BGW protocol for a
polynomial whose degree in linear in the number of play-
ers). The communication sent and received by each player
is always linear in the number of players. We plot in Figure 2
the run time of computing three different circuits (with 256,
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Figure 2: A plot of the run time (in msecs) of the
CPs as a function of the number of CPs, for circuits
with 256, 512 and 1024 gates, respectively. The data
was taken from Table 1.

Depth 32 64 128 256 512 1024
Gates 32 64 128 256 512 1024
CP 2259 2641 3228 4342 5998 9639
RP 65 127 239 435 798 1396

Table 2: The run time of evaluating of a circuit
whose depth is equal to the number of gates, in a
setting with 5 CPs. (Results should be compared to
the first two lines of Table 1.

512 and 1024 gates, respectively, taken from Table 1) as a
function of the number of CPs.

Conclusion: The dependency on the number of CPs is
greater than linear and is close to quadratic (the quadratic
regression correlation coefficient is 0.997 or better). More
data points are needed for a more accurate analysis.

Measuring the effect of the circuit depth.
A major advantage of the BMR protocol is that it runs in

a constant number of communication rounds and therefore
its run time should be independent of the circuit depth. We
verified this property by running experiments which eval-
uated circuits constructed as a linked list (namely, where
∀1 ≤ i ≤ d there is exactly one gate in distance i from the
root). In experiment i we examined a circuit with 2i gates
and depth 2i (compared to 2i gates and a depth of i in ex-
periment i in the previous setting). We ran this experiment
with 5 CPs and security parameter k = 80.

The results are described in Table 2. A comparison to
Table 1 (the part describing the results for 5 CPs) shows
that the measured times in the two tables are within 3.5%
of each other.

Conclusions: The results demonstrate that, as expected
from the BMR protocol, the depth of the circuit has marginal
effect on the run time of the protocol. We believe that
other protocols for secure multi-party computation would
have performed pretty badly in this experiment.

Dependency on the security parameter k.
We measured the effect of changing the security parameter

k. (Typically, k should be sufficiently long to be a key for
a symmetric encryption function, namely be in the range
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Figure 3: The run time (in msecs) as a function of
the security parameter k, in a setting with 5 CPs
and a circuit of 1024 gates.

[64, 160]). We ran experiments of computing a circuit with
1024 gates in a setting with 5 computation players, with the
security parameter k taking the values 32, 64, 96 and 128,
and the modulus being of length 5k+2 bits. The results are
shown in Figure 3.

Conclusion: The dependency of the run time on k is
very close to linear.

“Real life” functions.
We wanted to check whether the system can be used for

solving real life problems. For this purpose we experimented
with protocols for computing auctions and for voting.

Second Price Auction: We ran this experiment using the
example program SecondPriceAuction given in Section 2.1.1.
It involves four input players (bidders) with 8 bit bids and
one result player (seller). We ran this example with five
computation players which were the four bidders and the
seller. (Therefore this experiment is similar to the first set
of experiments in Table 1 which uses five CPs.) The SFDL
program was compiled to a circuit with 400 gates. The mea-
surements of the run time were 5387 msec for the CPs and
640 msec for the RP. These results are comparable to the 512
gate experiment in Table 1. The total run time of the ex-
periment (including all communication delays) was around
8 seconds. We repeated this experiment with 10 bidders,
resulting in a compiled circuit with 1380 gates, where five of
those bidders were also computation players. The run time
was 27306 msec for the CPs and 5908 msec for the RP.

Voting: We ran a simple SFDL program for voting (this
program appears in the full version of the paper). The pro-
gram involves 30 voters and 5 computation players which
were run on different machines than those used by the vot-
ers . The circuit contained 1383 gates. The run time for the
computation players was around 15 seconds. (We suspect
that the improvement in the run time compared to that of
the second price auction with 10 bidders, which uses a cir-
cuit of a comparable size, was the result of the fact that the
CPs were run on different computers than those running the
IP and RP threads. Some other tests that we made support
this explanation.)

Conclusions: Both results are very reasonable and are
similar to those of computing complete binary tree with the
same number of gates. The running time is proportional to
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Depth 5 6 7 8 9 10
Gates 32 64 128 256 512 1024

Strong machine
CP 5099 6510 9224 14251 23627 41572
RP 62 128 221 426 794 1402

Weak machine
CP 4876 6414 9444 14679 24653 43310
RP 237 442 903 1614 3122 6233

Table 3: The performance of the weak machine
player and the strong machine player in a mixed
environment, when evaluating a full binary circuit
using 5 CPs, four of which running on strong ma-
chines and the other one using a weak machine.

the number of gates in the compiled version of the examples.

Measuring the influence of a less powerful computer.
This experiment examines the increase in run time which

is caused by changing the homogeneous setting (where all
players are run on strong machines), to a mixed setting
where one of the players uses a weaker computer (a Pen-
tium III machine with 512MB of RAM). The experiment
repeated the first experiment (Table 1), namely, it used 5
CPs to evaluate a circuit which is a complete binary tree,
with security parameter k = 80. We detail in Table 3 the
performance of the weak and strong machines in this exper-
iment.

Conclusions: In the mixed setting the run time of the
RP on the slow machine is of course considerably slower
than that of the faster player. This is not surprising since
the computational capabilities of the machines are very dif-
ferent. It is more interesting to examine the run time of
the computation player (CP). This time is about the same
on both types of machines (give or take 5%). However, the
run time of the fast machine is much slower in this experi-
ment than its run time in a comparable experiment in the
homogeneous setting (as is described in the first row of Ta-
ble 1). This means that the performance of fast machines is
dramatically reduced if even a single player is using a weak
machine. The reason for this is that in every communication
round the fast players have to wait until the weakest player
finishes its computation and sends its results.
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