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Abstract —A method for computing the 3D camera motion (the ego-
motion) in a static scene is described, where initially a detected 2D
motion between two frames is used to align corresponding image
regions. We prove that such a 2D registration removes all effects of
camera rotation, even for those image regions that remain misaligned.
The resulting residual parallax displacement field between the two
region-aligned images is an epipolar field centered at the FOE (Focus-
of-Expansion). The 3D camera translation is recovered from the
epipolar field. The 3D camera rotation is recovered from the computed
3D translation and the detected 2D motion. The decomposition of
image motion into a 2D parametric motion and residual epipolar
parallax displacements avoids many of the inherent ambiguities and
instabilities associated with decomposing the image motion into its
rotational and translational components, and hence makes the
computation of ego-motion or 3D structure estimation more robust.

Index Terms —Motion analysis, ego motion, video stabilization, plane-
plus-parallax.

————————   ✦   ————————

1 INTRODUCTION

THE motion observed in an image sequence can be caused by cam-
era motion (ego-motion) and by motions of objects moving in the
scene. In this paper we address the case of a camera moving in a
static scene. Complete 3D motion estimation is difficult since the
image motion at every pixel depends, in addition to the six pa-
rameters of the camera motion, on the depth at the corresponding
scene point. To overcome this difficulty, additional constraints are
usually added to the motion model or to the scene structure.

3D motion is often estimated from the optical or normal flow
derived between two frames [1], [11], [23], or from the correspon-
dence of distinguished features (points, lines, contours) extracted
from successive frames [24], [12], [8]. Both approaches depend on
the accuracy of the feature detection, which can not always be
assured. Methods for computing the ego-motion directly from
image intensities were also suggested [10], [13].

Camera rotations and translations can induce similar image
motions [2], [9] causing ambiguities in their interpretation. The
problem of recovering the 3D camera motion from a flow field is
therefore an ill-conditioned problem, since small errors in the 2D
flow field usually result in large perturbations in the 3D motion
[2]. At depth discontinuities, however, it is much easier to distin-
guish between the effects of camera rotations and camera transla-
tions, as the image motion of neighboring pixels at different
depths will have similar rotational components, but different
translational components [20].

In this paper a method is introduced for computing the ego-
motion based on a decomposition of the image motion into a 2D
parametric transformation and a residual parallax displacement
field. This decomposition can be obtained more robustly, and
avoids many of the inherent ambiguities and instabilities associ-
ated with decomposing a flow field into its rotational and transla-
tional components.

Initially, methods to compute the 2D motion of one image re-
gion [15], [16], [5], [4] are used to detect an image region and com-
pute its 2D parametric motion between two image frames. The two
frames are then registered according to the computed 2D paramet-
ric transformation. This step removes all effects of the camera ro-
tation, even for the misaligned image regions. The residual paral-
lax displacement field between the 2D region-aligned images is an
epipolar field centered at the FOE, which can be computed from
the epipolar field. When calibration information is provided, the
3D camera translation is recovered. The 3D rotation is estimated
by solving a small set of linear equations, which depend on the
computed 3D translation and the detected 2D parametric motion.

As opposed to other methods which use motion parallax for 3D
estimation [20], [21], [19], [8], our method does not rely on parallax
information at depth discontinuities (where flow computation is
likely to be inaccurate). The residual displacements after 2D
alignment provide a dense and more reliable parallax field.

The advantage of the proposed technique is in its simplicity
and in its robustness. No prior detection and matching are as-
sumed, it requires solving only small sets of linear equations, and
each computational step is stated as an overdetermined highly
constrained problem which is numerically stable.

Similar approaches are described in [17], [25], [18], [26], [14]
and are often referred to by the name “plane-plus-parallax,” since
the estimated 2D parametric transformation frequently corresponds
to the induced homography of a 3D planar surface in the scene.

2 EGO-MOTION FROM 2D IMAGE MOTION

2.1 Basic Model and Notations
Let (X, Y, Z) denote the Cartesian coordinates of a scene point with
respect to the camera (see Fig. 1), and let (x, y) denote the corre-
sponding coordinates in the image plane. The image plane is lo-

cated at the focal length: Z = fc. The perspective projection of a

scene point P = (X, Y, Z)
t
 on the image plane at a point p = (x, y)

t
 is

expressed by:
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The camera motion has two components: a translation T = (TX, TY,

TZ)
t
 and a rotation W = (WX, WY, WZ)

t
. Due to the camera motion

the scene point P = (X, Y, Z)
t
 appears to be moving relative to the

camera with rotation -W and translation -T, and is therefore ob-

served at new world coordinates ¢ = ¢ ¢ ¢P X Y Z
t

, ,c h , expressed by:

P
¢
 = M-W ◊ P - T                                        (2)

where M-W is the matrix corresponding to a rotation by -W.
With a small field of view and a relatively small camera rota-

tion [1], the 2D displacement (u, v) of an image point (x, y) in the
image plane can be expressed by [22], [1]:
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All points (X, Y, Z) of a planar surface in the 3D scene satisfy a
plane equation Z = A + B ◊ X + C ◊ Y, which can be expressed in
terms of image coordinates by using (1) as:

1
Z x y= + ◊ + ◊a b g                                     (4)

where a = 1
A , b = - B

f Ac
, and g = - C

f Ac
. In a similar manipulation

to that in [1], substituting (4) in (3) yields the 2D quadratic transfor-
mation:
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Equation (5), expressed by eight parameters (a, b, c, d, e, f, g, h),
describes the 2D parametric image motion of a 3D planar surface.
The quadratic transformation in (5) is a good approximation to the
2D projective transformation assuming a small field of view and a
small rotation.

Fig. 1. The coordinate system. The coordinate system (X, Y, Z) is at-
tached to the camera, and the corresponding image coordinates (x, y)

on the image plane are located at Z = fc. A point P = (X, Y, Z)
t
 in the

world is projected onto an image point p = (x, y)
t
. T = (TX, TY, TZ)

t
 and

W = (WX, WY, WZ)
t
 represent the relative translation and rotation of the

camera in the scene.

2.2 General Framework of the Algorithm
In this section we present a scheme which utilizes the robustness
of the 2D motion computation for computing 3D motion between
two consecutive frames:

1) A single image region with a 2D parametric image motion is
automatically detected (Section 3). As mentioned in Section
2.1, this image region typically corresponds to a planar sur-
face in the scene, or to a distant part of the scene.

2) The two frames are registered according to the computed
2D parametric motion of a detected image region. This
alignment of an image region cancels the rotational compo-
nent of the camera motion for the entire scene (proved in
Section 2.3).

3) The FOE (and the camera translation) is computed from the
residual epipolar displacement field between the two regis-
tered frames (Section 2.4).

4) The 3D rotation of the camera is computed (Section 2.5)
from the 2D motion parameters of the detected image re-
gion and the 3D translation.

2.3 Canceling Camera Rotation by 2D Region Alignment
At this stage we assume that a single image region with a
parametric 2D image motion has been detected, and that the 2D
image motion of that region has been computed (see Section 3).

Let (u(x, y), v(x, y)) denote the 2D image motion of the entire

scene from frame f1 to frame f2, and let (us(x, y), vs(x, y)) denote the
2D image motion of a single image region (the detected image
region) between the two frames. Let S denote the 3D surface corre-

sponding to the detected image region, with depths Zs(x, y). As

mentioned in Section 2.1, (us, vs) can be expressed by a 2D
parametric transformation (5) when S satisfies one of the following
conditions:

1) S is a planar surface in the 3D scene,
2) S is an arbitrary 3D scene, but the camera’s motion is only

rotation or zoom, or
3) S is a portion of the scene that is distant enough from the

camera compared to the camera translation.

Assuming the existence of such a surface S in the scene is not a
severe restriction, as most indoor scenes contain a planar surface,
and in outdoor scenes the ground or any distant object can serve
as such a surface. Note also that only the 2D motion parameters
(us(x, y), vs(x, y)) of the 3D surface S are estimated. Neither the 3D
structure of S nor the 3D motion parameters are estimated at this
point.

Let f R
1  denote the frame obtained by warping the entire frame

f1 towards frame f2 according to the 2D parametric transformation

(us, vs) extended to the entire frame. This warping will bring the
image region R, corresponding to the detected surface S, into per-

fect alignment between f R
1  and f2. In the warping process, each

pixel (x, y) in f1 is displaced by (us(x, y), vs(x, y)) to form f R
1 . Points

that are not located on the parametric surface S (i.e., Z(x, y) π

Zs(x, y)) will not be in registration between f R
1  and f2. We will now

show that the residual 2D image displacements between the two

registered frames ( f R
1  and f2) forms an epipolar field centered at

the original FOE, i.e., affected only by the camera translation T.

Let P1 = (X1, Y1, Z1)
t
 denote the 3D scene point projected onto

p1 = (x1, y1)
t
 in f1. According to (1):
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Due to the camera motion (W, T) from frame f1 to frame f2, the

point P1 will be observed in frame f2 at p2 = (x2, y2)
t
, which corre-

sponds to the 3D scene point P2 = (X2, Y2, Z2)
t
. According to (2):

P2 = M-W ◊ P1 - T.                                     (7)

The warping of f1 by (us, vs) to form f R
1  is equivalent to applying

the camera motion (W, T) to the 3D points as if they are all located

on the surface S (i.e., with depths Zs(x, y)). Let Ps denote the 3D
point on the surface S which corresponds to the pixel (x, y) with

depth Zs(x, y). Then:
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After the image warping, Ps is observed in f R
1  at p

R 
= (x

R
, y

R
)
t
,

which corresponds to a 3D scene point P
R

. Therefore, according
to (2) and (8):
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By substituting (9) in (7), P
R

 can be expressed as:
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Equation (10) shows that P
R

 is independent of the camera rotation

W. Moreover, P
R

 is on the straight line passing through P2 and -T.

Therefore, the projection of P
R

 on the image plane (p
R

) is on the

straight line passing through the projection of P2 (i.e., p2) and the

projection of -T (i.e., the FOE). This means that p
R

 is found on the

radial line emerging from the FOE toward p2. In other words, the
residual image displacements between the registered frames f R

1

and f2 (i.e., p
R - p2) form an epipolar field centered at the FOE.

(Note that the magnitudes of the residual displacements depend

on the scene structure, 
Z
Z

s

1
, however their directions do not.)

In Fig. 2, the optical flow is displayed before and after registra-
tion of two frames according to the computed 2D motion parame-
ters of the image region (the region in this case is the wall at the
back of the scene). The optical flow is given for display purposes
only, and was not used for registration. After registration, the ro-
tational component of the optical flow was canceled for the entire
scene, and almost all flow vectors point towards the real FOE (Fig.
2c). Before registration (Fig. 2b) the FOE mistakenly appears to be
located elsewhere (in the middle of the frame). This is due to the

ambiguity caused by the rotation around the Y-axis, which visu-
ally appears as a translation along the X-axis. This ambiguity is
resolved by the 2D registration.

2.4 Computing Camera Translation
Once the rotation is canceled by the 2D alignment of the detected
image region, the ambiguity between image motion induced by
3D rotation and that induced by 3D translation no longer exists
(see Section 2.3). Having cancelled effects of camera rotation, the
residual displacement field is directed towards, or away from, the
FOE. The computation of the FOE therefore becomes overdeter-
mined and numerically stable, as there are only two unknowns to
the problem: the 2D coordinates of the center of the epipolar field
(i.e, FOE) in the image plane.

    

(a)                                                         (b)

   

(c)                                                         (d)
Fig. 2. The optical flow before and after 2D alignment of the image
region corresponding to the the wall. The camera was translating and
rotating, and the real FOE is marked by {+}. The optical flow is given
only for display purposes, and it is not used for the registration. (a) One
of the frames in the sequence. (b) The optical flow to another frame
(before registration), overlayed on Fig. 2a. The FOE mistakenly ap-
pears to be in the wrong location (in the middle of the frame). This is
due to the ambiguity caused by the camera rotation around the Y-axis.
(c) The optical flow after 2D alignment of the wall. The flow is induced by
pure camera translation (after the camera rotation was canceled), and
points to the correct FOE. (d) An example of depth map, computed using
the recovered ego-motion. Bright regions correspond to near objects.

To locate the FOE, the parallax optical flow between the regis-
tered frames is computed, and the FOE is located using a search
method similar to that described in [20]. Candidates for the FOE
are sampled over a half sphere and projected onto the image
plane. For each such candidate, a global error measure is com-
puted from local deviations of the flow field from the radial lines
emerging from the candidate FOE. The search process is repeated
by refining the sampling (on the sphere) around good FOE candi-
dates. After a few refinement iterations, the FOE is taken to be the
candidate with the smallest error.

Since the problem of locating the FOE in a purely translational
(epipolar) flow field is a highly overdetermined problem, the
computed flow field need not be accurate. This is opposed to most
methods which try to compute the ego-motion from the flow field,
and require an accurate flow field in order to resolve the rotation-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  3,  MARCH  1997 271

translation ambiguity [2]. Furthermore, the residual flow field can
be estimated more accurately than general flow, as it is globally
constrained to lie on an epipolar field. Once the FOE is estimated,
and given camera calibration information, the 3D camera transla-

tion (TX, TY, TZ) is recovered.

2.5 Computing Camera Rotation
Let (a, b, c, d, e, f, g, h) be the 2D motion parameters of an image
region as expressed by (5). Given these 2D motion parameters and

the 3D translation parameters of the camera (TX, TY, TZ), the 3D

rotation parameters of the camera (WX, WY, WZ) (as well as the sur-

face parameters of the plane (a, b, g)) can be obtained by solving
(6), which is a set of eight linear equations in six unknowns.

Since the parameters g and h in the quadratic transformation of
(5) are second order terms, they are not as reliable as the other six
parameters (a, b, c, d, e, f). Therefore, whenever possible (when the
set of (6) is numerically overdetermined), we avoid using the last
two equations (of g and h), and use only the first six. This yields
more accurate results.

2.6 Experimental Results
The camera motion between the two frames in Fig. 2 was:

(TX, TY, TZ) = (1.7cm, 0.4cm, 12cm) and (WX, WY, WZ) = (0
o
, -1.8

o
, -3

o
).

The computation of the 3D motion parameters of the camera (after

calibrating TZ to 12cm, as 
r
T  can only be determined up to a scale

factor, yielded: (TX, TY, TZ) = (1.68cm, 0.16cm, 12cm) and (WX, WY,

WZ) = (-0.05
o
, -1.7

o
, -3.25

o
).

Once the 3D motion parameters of the camera are computed,
the 3D scene structure can be reconstructed using a scheme similar
to that suggested in [10]. Correspondences between small image

patches (currently 5 ¥ 5 pixels) are computed only along the radial
lines emerging from the FOE (taking the rotations into account).
The depth map is computed from the magnitude of these dis-
placements. In Fig. 2d, the computed inverse depth map of the

scene 1
Z x y,c h

FH IK  is displayed. Similar approaches to 3D shape recov-

ery have since been suggested by [25], [18], [26], [14].
Fig. 3 shows an example where the ego-motion estimation was

used to electronically stabilize (i.e., remove camera jitter) a se-
quence obtained by a hand held camera.

3 COMPUTING A 2D PARAMETRIC MOTION

We use the method described in [16] to detect a 2D parametric
transformation of an image region. This method is briefly de-
scribed in this section. Other methods for computing a 2D
parametric region motion [7], [3] can be used as well.

Let R be an image region that has a single 2D parametric trans-
formation q between two frames, I(x, y, t) and I(x, y, t + 1). q is a
quadratic transformation expressed by eight parameters q = (a, b,
c, d, e, f, g, h) (see (5)). (u, v) = (u(x, y; q)), v(x, y; q)) is the 2D motion
field described by q. To solve for the unknown parameters of q,
the following SSD error measure is minimized:

E I x y t I x u y v t
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b g
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The objective function E is minimized via the Gauss-Newton op-
timization technique, over a coarse-to-fine multi-resolution data
structure. Let qi denote the current estimate of the quadratic pa-
rameters. After warping the inspection image (I(x, y, t + 1)) to-

wards the reference image (I(x, y, t)) using the parametric trans-
formation qi, an incremental estimate dq can be determined. After
iterating certain number of times within a pyramid level, the proc-
ess continues at the next finer level [6], [5], [16].

 
(a)                                                        (b)

 

(c)                                                        (d)
Fig. 3. Camera stabilization. (a) One of the frames in the sequence. (b)
The average of two frames, having both rotation and translation. The
white lines display the image motion. (c) The average of the two
frames after (automatic) 2D alignment of the shirt. Only effects of cam-
era translation remain. (d) The average of the two frames after recov-
ering the ego motion, and canceling the camera rotation. This results in
a 3D-stabilized pair of images (i.e., no camera jitter).

When the above technique is applied to a region R, the refer-
ence and the inspection images are registered so that the image
region R is aligned. However, a region of support R of an image
segment with a single 2D parametric motion is not known a priori.
To allow for automatic detection and locking onto a single 2D
parametric image motion, a robust version of this scheme is ap-
plied [16], [4]. The robust version of the algorithm incorporates
two additional mechanisms to the above described scheme:

1) Outlier Rejection: The local misalignments at each iteration
provide weights for the weighted-least-squares regression
process of the next iteration.

2) Progressive Model Complexity: The complexity of the 2D
parametric motion model used in the regression process is
gradually increased with the progression of the iterative
process and the outlier rejection. Initially a simple 2D uni-
form displacement (two parameters) is used, and is gradu-
ally refined to a 2D affine transformation (six parameters)
and further to a 2D quadratic transformation (eight pa-
rameters). The progressive complexity scheme focuses first
on the most stable constant terms (a and d), then further re-
fines them along with the linear terms (b, c, e, f), and finally
refines all parameters along with the least stable quadratic
terms (h and g). This provides the algorithm with increased
stability and locking capabilities, thus avoids converging
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into local minima.

The increased robustness and accuracy of the global 2D parametric
motion estimation in comparison to flow-based estimation meth-
ods is due to the following: Optical flow estimation suffers from
inaccuracies due to lack of local texture (i.e., within small win-
dows). These inaccuracies lead to large errors in the interpretation
the image motion in terms of its rotational and translational com-
ponents [2]. 2D parametric estimation, on the other hand, is ex-
pressed in terms of few parameters (e.g., eight), yet has a substan-
tially larger region of support in the image. Therefore, the “flow”
estimation of a 2D parametric motion is highly constrained and
well conditioned. Decomposing the image motion into a 2D
parametric transformation and a residual (epipolar) parallax dis-
placement field benefits from this property.

4 CONCLUDING REMARKS

A method for computing ego-motion in static scenes was intro-
duced. At first, an image region with a dominant 2D parametric
transformation is detected, and its 2D motion parameters between
successive frames are computed. The 2D motion is then used for
image warping, which cancels the rotational component of the 3D
camera motion for the entire image, and reduces the problem to a
pure 3D translation case. The FOE and the 3D camera translation
are computed from the 2D registered frames, and the 3D rotation
is computed using a small set of linear equations.

The advantage of the presented technique is in its simplicity,
and in the robustness and stability of each computational step. The
interpretation of the image motion in terms of a 2D parametric
transformation and a residual (epipolar) parallax displacement
field, can be obtained more robustly, and avoids many of the in-
herent ambiguities and instabilities associated with decomposing a
flow field into its rotational and translational components. Hence,
the proposed method provides increased numerical stability and
computational efficiency. There are no severe restrictions on the
camera motion or on the 3D structure of the environment. Most
steps use only image intensities, and the optical flow is used only
for extracting the FOE in the case of pure epipolar field, which is
an overdetermined problem and hence does not require accurate
optical flow. The inherent problems associated with optical flow or
with feature matching are therefore avoided.
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