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Abstract

We describe a set of image measurements which are
invariant to the camera internals but are location vari-
ant. We show that using these measurements it is pos-
sible to calculate the self-localization of a robot using
known landmarks and uncalibrated cameras. We also
show that it is possible to compute, using uncalibrated
cameras, the Euclidean structure of 3D world points us-
ing multiple views from known positions. We are free
to alter the internal parameters of the camera during
these operations. Our initial experiments demonstrate
the applicability of the method.

1 Introduction
Improving robot e�ciency in advanced industrial

automation requires the inclusion of sensory informa-
tion at many levels, one of the most important is on-
line task control. Range �nders, proximity sensors or
wrist force sensors can only address the sensing prob-
lem in a reliable way when the robot is already at its
target. Visual sensors can be used on-line using the vi-
sual servoing approach. This technique, which consists
of realizing an image-based feedback control loop is of
increasing popularity. However, generally speaking, it
is currently based on the use of a single camera and
operates only on the premise that all the components
are fully calibrated: camera, robot, and world. The
related calibration procedures [15, 5] are tedious, non-
exible and expensive. Mobile robot navigation and
docking require the robot to know where it is. This is
usually achieved through some combination of odome-
try and landmark observations. The possibility of using
visual landmarks viewed through uncalibrated cameras
for self-localization will reduce the cost and enlarge the
potential market of a robot system.

Our main objective is to remove the calibration bot-
tleneck in visually-guided robots. We address the prob-
lem of accurately positioning a robot, with up to 6 de-
grees of freedom, using only pictorial information from
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an uncalibrated camera. We are interested in localiza-
tion even in the absence of an a priori pose estimate,
obviating the need of using Kalman �ltering or optical
ow techniques to estimate odometry. We present a
new method for self-localization based on image mea-
surements which are invariant to the internal parame-
ters of the camera. The invariantmeasures depend only
on (i) the external parameters of the camera which re-
late the camera and world coordinate systems through
rotations and translations, and (ii) the Euclidean coor-
dinates (structure) of the landmarks. Given the land-
marks, we can compute the external parameters of
the camera from the image measurements. Conversely,
given the robot position in a world coordinate system
and the point correspondences in multiple views, we
can compute the 3D Euclidean structure of the points.

The problem of landmark-based position recognition
was �rst formalized by Sugihara [12] as a computa-
tional geometry problem, assuming a completely cali-
brated camera. Recently, Quan and Lan [10] addressed
the problem of �nding linear algorithms for pose de-
termination using calibrated cameras and known land-
marks. Many robot localization methods rely on land-
marks which are either arti�cially added to the envi-
ronment or based on strong assumptions with respect
to the environment [1, 8, 13]. For example, Krotkov [7]
relies on the assumption that the environment is struc-
tured in such a way that vertical lines can be easily ex-
tracted as landmarks. This assumption is problematic
in two ways. First, it places a restriction on the kinds
of environments that can be explored, and second, it
places a restriction on the pose of the camera. Basri
and Rivlin [2] have also exploited the geometric behav-
ior of landmarks in selected model images to provide
navigation information. Exploiting an assumption of
global invertibility of the imaging function and it being
an a�ne projection, Nayar [9] has shown that subspace
methods can provide accurate positional feedback in
su�ciently constrained environments. A key assump-
tion in his work is that each possible viewing position
gives rise to a unique image. In a similar work, Thrun
[14] derives a probabilistic approach to obtain a pose
estimate using a neural net. In the works of both Na-
yar and Thrun, however, all signi�cant variations in the
set of possible images, including those due to lighting



variations, must be explicitly sampled and encoded. In
other work, it has been shown that localization can be
achieved despite unanticipated illumination variations.
That method can also deal with non-invertibility of the
imaging transform, a problem that is typical in uncon-
strained environments.

Our approach is close to that of Dudek et al. [3, 11]
which uses image landmarks to perform position esti-
mation, but learns these landmarks from a preliminary
traversal of the environment (i.e. an o�-line mapping
phase). They have to use the same camera on sub-
sequent localization tasks as they do not compute an
invariant but just use the feature image.

2 Image invariants with respect to
camera internals

Consider the case when the image projection mT =
(u; v; 1)t of a world point PT = (X;Y; Z; 1)t is de-
scribed by the following model of imaging [5]

�m = A[R j t]P (1)

where A is the matrix of camera internals given by

A =

2
4 fx 0 u0

0 fy v0
0 0 1

3
5 (2)

R and t are the rotation and the translation between
the world and the camera frames, and [R j t] is the
matrix of camera externals given by

[R j t] =

2
4 r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3

3
5 =

2
4 r1

r2

r3

3
5 (3)

Rewriting Equation 1, we have:

u = fx
r1P

r3P
+ u0

v = fy
r2P

r3P
+ v0

(4)

Suppose we know three 3D points, P
T
p =

(Xp; Yp; Zp; 1)
T , p 2 fi; j; kg, and their images on the

image plane, mT
p = (up; vp; 1)

T , p 2 fi; j; kg, then by
eliminating the internals of the camera, we obtain

Kijk =
ui�uj
ui�uk

=
r1Pi
r3Pi

�

r1Pj
r3Pj

r1Pi
r3Pi

�
r1Pk
r3Pk

Jijk =
vi�vj
vi�vk

=
r2Pi
r3Pi

�

r2Pj
r3Pj

r2Pi
r3Pi

�
r2Pk
r3Pk

; (5)

in which Kijk and Jijk are image measurements that
are functions ofR, t and Pp, p 2 fi; j; kg, and are inde-
pendent of the internals of the camera. Thus the above
equations can be re-written as the following constraints

Kijk = fijk(R; t;Pi;Pj;Pk)
Jijk = gijk(R; t;Pi;Pj;Pk)

(6)

The left hand sides of Equation 6 represent image mea-
surement based on three points which are invariant to
the camera internals. The right hand sides are non-
linear trigonometric expressions which are functions of
only the camera externals and the structure (Euclidean
coordinates) of the three points.

Given n � 3 control points in the 3D world, we
get 2(n � 2) independent constraints from one view
of the 3D scene. Suppose the number of views is N ,
then the total number of the independent constraints
is 2N (n� 2).

2.1 Pose estimation using Euclidean land-
marks

Now suppose that we know the Euclidean coordi-
nates (Xi; Yi; Zi) of 5 points in the world coordinate
system. Six independent invariant measurements give
us six equations in terms of the six unknowns in (R; t).
The six equations can be solved numerically for a com-
plete pose estimation using an uncalibrated camera and
known landmarks.

In the case of constrained planar motion,R has only
one degree of freedom and t has two degrees of free-
dom. The total number of unknowns in such a case is
three. Then four control points are su�cient for pose
estimation.

It turns out that in some special cases it is possible
to obtain closed-form or linear solutions to the pose
estimation problem using the image invariants. We
will discuss some of these special cases in Section 3.

2.2 3D Euclidean reconstruction from
known ego-motions

Conversely, suppose that we have a robot whose
ego-motion and odometry can be known exactly from
positional encoders and we know the R and t at N
locations of the camera. With n control points we
have 3n unknowns. In order to compute the Eu-
clidean coordinates of these 3D points, the relationship
2N (n � 2) � 3n must be satis�ed. Thus with 3 views
(N = 3) of at least 4 points (n � 4) we can compute
the 3D Euclidean structure provided the pose of each
of the camera stations are known. Some possibilities
of number of views N and number of control points n
are N = 3 and n � 4; N = 5 and n � 3.

We prove in the appendix that 3 views are manda-
tory for 3D Euclidean reconstruction from known ego-



motions in the case that the internals of the camera
change across views.

2.3 Interpolation of camera motion
In the case discussed in Section 2.2, suppose we do

not know the R and t at one of the N locations of the
camera. Then we have the relationship 2N (n � 2) �
(3n + 6). Thus with 4 views of at least 5 points we
can compute all the unknowns. If the 3D structure is
not of interest then the coordinates of the 3D control
points can be eliminated from the constraints and we
can arrive at the equations for interpolation of camera
motion. Some possibilities for N and n are N = 4 and
n � 5; N = 5 and n � 4; N = 8 and n � 3.

2.4 Interpolation of the image measure-
ments

Suppose we know the R and t for all stations but
do not know the image measurements K's and J 's cor-
responding to one of the stations. Now we have the
relationship 2N (n� 2) � 3n + 2(n � 2). Thus we can
interpolate the image measurements with any of the
following situations - i) N = 3 and n � 8 ii) N = 4
and n � 4 iii) N = 6 and n � 3. Like in the previous
case we can eliminate the coordinates of the 3D control
points if the Euclidean structure is not of interest.

In each of the above cases it is possible to use a
larger number of control points to robustly estimate
the parameters using a suitable nonlinear optimization
technique.

3 Special cases
In what follows we discuss some of the special cases.

3.1 Rotation only about Z-axis

LetXwYwZw be the world coordinate system. Con-
sider restricted motion with rotation � only about the
Zw-axis. This would be the case of a robot moving on
the ground with a special camera looking vertically up
at the landmarks on the ceiling to facilitate localiza-
tion.

Suppose there are three 3D control points lying
on the XwYw plane (ceiling) of the 3D world coor-
dinate system, denoted as (Xi; Yi; 0; 1), (Xj ; Yj; 0; 1)
and (Xk; Yk; 0; 1), with the corresponding image coor-
dinates being (ui; vi; 1), (uj; vj; 1) and (uk; vk; 1), re-
spectively. The image projection is

up = fx
Xpcos�+Ypsin�+t1

t3
+ u0

vp = fy
�Xpsin�+Ypcos�+t2

t3
+ v0

; p 2 fi; j; kg: (7)

By eliminating the internals of the camera from Equa-
tion 7, we obtain

ui�uj
ui�uk

= (Xi�Xj)cos�+(Yi�Yj)sin�
(Xi�Xk)cos�+(Yi�Yk)sin�

vi�vj
vi�vk

=
(�Xi+Xj )sin�+(Yi�Yj)cos�
(�Xi+Xk)sin�+(Yi�Yk)cos�

: (8)

Let K = (ui�uj)=(ui�uk) and J = (vi�vj)=(vi�vk).
Let Ppq stand for Pp �Pq. We obtain

tan� =
�KXik +Xij

KYik � Yij
=
�JYik + Yij
JXki �Xji

: (9)

We can easily compute � (the rotation about Z) from
Equation 9. Once � is obtained, the translation vector
t can be computed as follows. Suppose we get another
3D control point which is not on the plane XwYw,
say (Xj ; Yj; Zj ; 1) (let us not stop at just painting the
ceiling, but hang a few sticks as well). We compute K
and J the in same way as in Equation 8. Then we have

t3
Zj

= Xicos�+Yisin�+t1+Kik

Kik+Xjcos�+Yjsin��(Xicos�+Yisin�)
t3
Zj

= �Xisin�+Yicos�+t2+Jik
Jik�Xjsin�+Yjcos��(�Xisin�+Yicos�)

(10)

where Kik = K(Xicos�+Yisin��(Xkcos�+Yksin�)) =
KK0; and Jik = J(�Xisin� + Yicos� � (�Xksin� +
Ykcos�)) = JJ0. By equating the two equations in 10,
and rearranging the terms, we arrive at

(bj � dj)t1 + (cj � aj)t2 = ajdj � cjbj (11)

where aj = Xjcos� + Yjsin�; bj = �Xjsin� + Yjcos�;
cj = Xicos� + Yisin� � Kik; and dj = �Xisin� +
Yicos��Jik. If we know more 3D control points which
are not on the XwYw plane, we can get more equations
in the form of Equation 11. In such a case, a linear
least squares technique can be used to solve for t1 and
t2. Further, t3 can be computed using the following
relationship

t3 = Zj
cj + t1
aj � cj

= Zj
dj + t2

bj � dj
(12)

Thus, in this special case, we can linearly solve the
localization problem given three Euclidean landmarks
on the XwYw plane and at least one landmark o� the
XwYw plane.

3.2 Motion and Structure from planar mo-
tion and rotation about Z

In the case described above, suppose we do not know
the coordinates of the control points on the XwYw

plane (the ceiling). Consider planar motion on a plane
parallel to the XwYw plane and rotation only about
Zw. By rearranging the terms in Equation 8 and letting
Ppq stand for Pp � Pq, we obtain

Xij + Yijtan� �KijkXik �Kijktan�Yik = 0
Xijtan� � Yij � Jijktan�Xik + JijkYik = 0

: (13)

Now suppose we know the image points of any 4 3D
points on the XwYw plane, which are in general posi-
tion. We then have totally 2(4 � 2) = 4 equations as
follows

M(�)X = 0 (14)



whereM is a 4�8 matrix whose entries are dependent
on tan(�) and the invariants K's and J 's,

X =
�
X12 Y12 X13 Y13 X14 Y14

�t
: (15)

If the camera undergoes rotation with another angle
�0, and we know the matching points of the �rst view,
then we have a relationship similar to Equation 14

N(�0)X = 0 (16)

Putting Equation 14 and Equation 16 together we ob-
tain

A(�; �0)X = 0;A(�; �0) =

�
M(�)
N(�0)

�
(17)

Equation 17 is a set of 8 nonlinear equations in X,
tan(�) and tan(�0). Because X is nonzero vector, we
have that det(AT

A) = 0, which is a polynomial equa-
tion in tan(�) and tan(�0). Given a reference view with
�0 = �0, e.g., �0 = 0, which we can take as the orienta-
tion initialization of the 3D world coordinate system,
we can easily get any other rotation angle � by solving
the polynomial equation. If the initial orientation is
not set, the rotation angle can only be determined up
to a shift of any given angle.

Moreover, X is the eigenvector of the smallest eigen-
value of AT

A and the Euclidean coordinates can be
determined up to a scale assuming the �rst point to be
the origin. The scale can be set by knowing any one
length.

3.3 Planar motion and rotation about Y
axis

LetXwYwZw be the world coordinate system. Con-
sider restricted motion with rotation � only about the
Yw-axis. This would be the case of a robot moving on
the ground with a camera mounted horizontally (we
look normally, at last). Consider three points in the
world coordinate system (Xi; Yi; Zi; 1), (Xj ; Yj; Zj; 1)
and (Xk; Yk; Zk; 1), with the coordinates of their im-
ages being (ui; vi; 1), (uj; vj; 1) and (uk; vk; 1), respec-
tively.

By projecting the 3D control points on to the image
plane, we have

up = fx
Xpcos�+Zpsin�+t1
�Xpsin�+Zpcos�+t3

+ u0

vp = fy
Yp+t2

�Xpsin�+Zpcos�+t3
+ v0

; p 2 fi; j; kg: (18)

Now, let the �rst two points i and j be on the Yw

axis and the third point k be on the XwYw plane. By
eliminating the internal parameters of the camera from
the above equation we obtain

Kk =
ui�uj
ui�uk

= 0

Jk =
vi�vj
vi�vk

= Yi�Yj

(Yi+t2)�
Yk+t2

1�Xk
sin�
t3

: (19)

If we consider another point l on the XwYw plane, we
obtain, similarly,

Kl =
ui�uj
ui�ul

= 0

Jl =
vi�vj
vi�vl

= Yi�Yj

(Yi+t2)�
Yl+t2

1�Xl
sin�
t3

: (20)

Because Kk and Kl vanish, we can separate the terms
of sin� and t3 to obtain

t3
sin�

=
Xk((1� Jk)Yi � Yj � Jkt2)

Yi � Yj + Jk(Yk � Yi)

=
Xl((1� Jl)Yi � Yj � Jlt2)

Yi � Yj + Jl(Yl � Yi)
= Ts: (21)

t2 can be easily found from Equation 21. In order to
�nd �, we have to know another control point lying on
the plane YwZw, say m. Following exactly the deriva-
tion process of Equation 21, we can obtain a similar
relationship as follows

t3
cos�

= �
Zm((1� Jm)Yi � Yj � Jmt2)

Yi � Yj + Jm(Ym � Yi)
= Tc: (22)

Since we know t2, Ts and Tc could be computed, then
tan� = Tc=Ts and t3 = Tssin� = Tccos�.

In Equation 18,Kk vanishes because both 3D points
i and j are on the Yw axis. Kk would not be zero if
we choose 3 points in general position. Now that we
know �, t2 and t3, solving for t1 is trivial. If three
points (Xi; Yi; Zi; 1), (Xj ; Yj; Zj ; 1) and (Xk; Yk; Zk; 1)
are in general position, then the image measurement
Kijk does not vanish and we have

t1 =
Kijk(

b
a
� f

e
) � ( b

a
� d

c
)

( 1
a
� 1

c
) �Kijk(

1
a
� 1

e
)
; (23)

where a = �Xisin�+Zicos�+t3; b = Xicos�+Zisin�;
c = �Xjsin� + Zjcos� + t3; d = Xjcos� + Zjsin�;
e = �Xksin�+Zkcos�+ t3; and f = Xkcos�+Zksin�.

Thus, in this special case, we obtain a closed form
solution to the localization problems with specially lo-
cated landmarks - two on the Yw axis, two on the
XwYw plane and one on the ZwYw plane.

4 Results
We present some results of both simulations and

tests carried out on a experimental set up.
In Figure ??, we show images of two positions of a

calibration object obtained using a stationary Pulnix
CCD camera. The world coordinates corresponding to
both the positions of the calibration object are known
and they serve as Euclidean landmarks. We refer to the
world points (corners) on our calibration objects with
numbers assigned according to a row major order.



In Table ?? we give the camera external parameters
for four stations of the camera as obtained using Tsai's
calibration method [15]. We assume that all correspon-
dence information is known (hand picked).

In Table ??, we plot the di�erences between some
three point invariants as measured from the image and
as obtained synthetically by projecting the world co-
ordinates according to Equation ??. We �nd that the
actual measurements adhere to the projection model
with reasonable accuracy.

5 Conclusion

We have described image measurements which are
camera invariant but location variant. Using such un-
calibrated image measurements we have presented a
method of estimation of camera externals from known
Euclidean landmarks. We have also shown that it is
possible, using the uncalibrated image invariants, to
compute the Euclidean structure of world points from
multiple views with known camera positions. Our ini-
tial experiments show that the invariants are stable and
it is indeed possible to compute the position informa-
tion reliably.

The landmark based self-localization presented in
this paper does not require camera calibration mak-
ing it suitable for robot navigation applications where
accurate calibration is not possible due to continually
changing parameters and parts of the system. The
method is also ideally suited for visual servoing using
a feed-back loop.

The method can capitalize on the bene�ts of both
image and landmark-based methods. Images can be
encoded as a set of visual features called landmarks.
Potential landmarks can be detected using an atten-
tion mechanism implemented as a measure of unique-
ness. These can then be selected and represented by an
appearance-based encoding. Localization can be per-
formed using a landmark tracking and interpolation
method which obtains an estimate accurate to a frac-
tion of the environment sampling density. Localization
can thus be a two-step process consisting of an o�-line
preprocessing stage and an on-line estimation stage.
The o�-line stage may consist of building a represen-
tation of the environment in the form of an invariants
database, which is later used for positioning. The on-
line stage can then use the database to match currently
observed invariants to previously stored invariants us-
ing an interpolation method. These matches can then
used to compute individual position estimates in a ro-
bust fashion.

We believe that that the camera invariant measure-
ments described in this paper can be used in a variety
of robotic applications.
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6 Appendix
When the internal parameters change across views,

2 views are not su�cient to reconstruct the 3D scene.
Because the 2D camera can be viewed as 2 separate 1D
camera, we prove this observation by use of 1D camera.

Suppose we have N views taken by 1D camera with
the internal parameters of the camera changing across
views, the number of unknown internal parameters is
2N . The number of 3D pionts to be reconstructed on
the trifocal plane is n, therefore we have 2n variables
of 3D entities. While we have totally Nn equations
to solve this problems. In order for this problem to
be sovable, the relationship Nn � 2(N + n) must be
satis�ed. When N = 2, the above relationship never
establish.

As a byproduct of this observation, we are not able
to interpolate the third view/position in the cases of
2D/3D interpolation, i.e., at least four views/stations
are required.


