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A method to compute motion models in real time from point-to-line correspon-
dences using linear programming is presented. Point-to-line correspondences are
the most reliable measurements for image motion given the aperture effect, and it
is shown how they can approximate other motion measurements as well. An er-
ror measure for image alignment using the metric and based on point-to-line
correspondences achieves results which are more robust than those for the com-
monly usedL, metric. ThelL; error measure is minimized using linear program-
ming. While estimators based &n are not robust in the breakdown point sense,
experiments show that the proposed method is robust enough to allow accurate mo-
tion recovery over hundreds of consecutive frames. Djheolution is compared to
standardVl-estimators and Least Median of SquardsMedS) and it is shown that
the L; metric provides a reasonable and efficient compromise for various scenar-
ios. The entire computation is performed in real-time on a PC without special hard-
ware. © 2000 Academic Press

Key Words: motion analysis; linear programming.

1. INTRODUCTION

Robust, real-time recovery of visual motion is essential for many vision-based applic:
tions. Numerous methods have been developed for motion recovery from image sequenc
among them are algorithms that compute the motion directly from the grey level values
local measures of them [3, 14, 16, 17, 20]. A second class of algorithms use feature poi
or optical flow to recover motion [1, 9, 15]. A probabilistic error minimization algorithm
[26] can be used to recover motion in the presence of outliers. Another class of algorithn
use explicit probability distributions of the motion vectors to calculate motion models [23]
Black and Anandan presented [7] a framework for robust calculation of optical flow base
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on the Lorentzian estimator and a Graduated Non-convexity algorithm seeking an optin
solution. Bab-Hadiashar and Suter [4] presented a robust optical flow calculation based
LMedS (Least Median of Squares).

Most of the methods cited above have problems when computing high-order motic
models (e.g., an affine motion model or a homography): either they are sensitive to outlie
or the execution speed is slow. Algorithms based on iterative reweightiagtimators
have tuning and initial guess problems, especially in multiple model cased.MéuS
faces complexity and accuracy problems when it is difficult to obtain a good hypothesis k
random selection.

In this paper an algorithm to recover high-order motion models from point-to-line corre
spondences using linear programming is presented. Point-to-line correspondences are ro
in the sense that they are largely insensitive to aperture effects and to T-junctions, unlike
common point-to-point correspondences. Point-to-line correspondences can also appre
mate other measurements as well, such as point-to-point correspondences, corresponde
with uncertainty, and the spatiotemporal constraint.

TheL; metric (O |a — bi|) can be used with the point-to-line correspondences and is
much more robust then thg metric (/> _(a — b;)?). For example, the median minimizes
the L; metric, while the centroid (average) minimizes themetric.L; based estimators
are not robust in the sense of breakdown point [11, 24, 25] as they are sensitive to levere
points. However, our experiments show that in motion analysisitheror measure is robust
enough to compute accurate motion over hundreds of frames, even with large moving outl
objects in the scene. Moreover, this is done in real time on a regular PC (300 MHz).

The linear programming solver does not need an initial guess nor a noise scale estime
which are required for iterative reweighted least-square algorithms (su¢festnators).
Comparisons between estimators based om thraetric and the robudtMedS estimators
show that global motion analysis using the estimator is only slightly less robust than
analysis with the.MedS estimator, but thé; computation is much faster.

The motion analysis consists of computing a model based alignment between succes:
frames. The alignment process consists of two steps: (i) Computing correspondences
representing them as point-to-line correspondences is described in Section 2. (ii) Convert
the alignment problem into a linear program using the point-to-line correspondences a
solvingitis described in Section 3. Section 4 describes experimental results and comparist
with other methods. Section 5 gives concluding remarks. The Appendix describes a possi
explanation for the experimental insensitivitylaf motion estimators to leverage points.

2. POINT-TO-LINE CORRESPONDENCES

Point-to-line correspondences are used due to their insensitivity to the aperture effe
This section describes the aperture effect, point selection for the point-to-line correspo
dence, and the use of point-to-line correspondences to represent normal flow and fu:
correspondences.

2.1. Aperture Effect

A moving line viewed through a small aperture will have an apparent motion whict
is normal to the line. This phenomena is called the “aperture effect.” An example of th
aperture effect is shown in Fig. 1. Given the aperture effect we express a constraint on 1
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FIG.1. Example of an aperture effect. (a) The white arrow represents the actual motion, while the black arro
represents the apparent motion. (b) Point-to-line correspondence.

displacementy, v) such that the poirg = (X, y) in the firstimage has moved to the straight
line s(x 4+ u, y+ v) in the second image defined by the line equation

sx+u y+v)y=a(x+u)+bly+v)+c=0. Q)

Without loss of generality we assume for the rest of the papertafhatb? =1 by nor-
malization.

2.2. Point Selection

For computation stability, selected points should be spread evenly over the image. Poil
should be located on strong features such as edges, and they should have balance
direction and Y-direction information. The following steps were carried out to select point:
in real time:

1. N points were evenly spread over the image in a chessboard grid.

2. “Black” points were allowed to move slightly horizontally to find strong vertical edges.
“White” points were allowed to move slightly vertically to find strong horizontal edges.

3. The bestK black points and the bedt white points (X < N) were used as the
selected points.

2.3. Normal Flow

An optical flow constraint can be derived directly from image intensities using the gray
level constancy assumption. This optical-flow constraint is given by [14, 20]

uly +vly + 1y =0, 2

where (1, v) is the displacement vector for the pixel aid Iy, I; are the partial derivatives
of the image at each pixel with respect to X-axis, Y-axis, and time.

Equation (2) describes aline, whichis the aperture effectline. me&nlf is normalized
to 1 the left-hand side of Eq. (2) becomes the Euclidean distance of the pointffom
the line passing throughx & u, y + v), which is also called the normal flow [2].

2.4. Fuzzy Correspondence

An optical flow vector between successive images in a sequence represents the disple
ment between a point in one image and the corresponding point in the second image. Wt
it is difficult to determine this point-to-point correspondence accurately from the image
automatically, a correspondence is usually assigned to the most likely point. For examp
given a point in one image, the corresponding point in the second image will be the or



MOTION ANALYSIS BY LINEAR PROGRAMMING 35

maximizing some correlation measure. However, such correspondences are error prc
especially when other points in the second image have a local neighborhood similar to t
real corresponding point.

A possible solution to this problem is to postpone the determination of a unique corr
spondence to a later stage and to represent the uncertainty as it is given by the correlat
In this case the correspondence will not be a unique point, but a fuzzy measure over a
of possible corresponding points.

The fuzzy correspondence of a pomtan be represented as a matiXp) (the fuzzy
correspondence matrix)[23J is computed using the sum of squared differen&SX)
valuesM(u, v) =a 7 jew(l2( +U, j +v) — 11, j))? for a windowW around poinp in
imagel ;. The parametew is a normalization factor s.p.,, , M(u, v) = 1. Each cell, j)
of M(p) corresponds to the probability that pomhas a displacement of,(j). In many
cases the fuzzy correspondence matrix has a dominant compact shape: points on cor
usually create a strong peak while edges form lines. A common case is an ellipse-like sha
While the fuzzy correspondence matrix contains all correspondence uncertainty, utilizir
this information to its full extent is difficult.

To enable computation of global motion with linear programming, we propose an appro:
imation of the fuzzy correspondence matrix:lgrdistance map obtained from correspon-
dences of a point to two lines. This approximation is given by two ligés, y) = (Ai X +
Biy + C;j) =0, with two associated weighis; (i =1, 2). The weighted sum of both dis-
tances forms aib;“cone.” Each equidistant line on the cone islan“ellipse” with ec-
centricity proportional to the weights of the two lines. Figure 2 shows the approximatiol
of a correspondence matrix by distance map. For the discrete case of the corresponde
matrix, L, distance is also called city-block or Manhattan distance. The distance map
computed using lines and weights obtained by a weighted Hough transform over the or
inal correspondence matrix [19]. The maximum bin corresponds to the main axis line.
second local maximum bin corresponds to the second line. The bin values are taken as
weightsw;. This approximation can also be used to express the point-to-point correspo
dence , y) — (X, ¥') which can be approximated by point-to-two-lines correspondence:
between the pointx; y) and the line X =x’), and between the same point and the line
(y=Y), with weightsw; = w,. The Hough transform is used to find both the lines and the
weights, resulting in the following constraint for the displacement of poiny):

wiSi (X + U, Y+ v) + waS(X +u, y +v) = 0. 3)

The geometrical meaning of this constraint is that pointf has moved by a displacement
of (u, v) and is now located on the intersection of the two liBgs;.

3. L1 ALIGNMENT USING LINEAR PROGRAMMING

Image alignment, or registration, is the process of recovering the coefficients of a glob
motion model using two images. A hierarchy (every model is an extension of the previot
model) of common global motion models is [6]:

Translatior—a two parameter modeli(v): (X, y) — (X + u, y + v); 2D horizontal and
vertical motion.

Similarity—a four parameter moded(b, u, v): (X, y) — (ax+ by +u, —bx+ay -+ v);
translation, scale, and rotation.
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FIG.2. Approximations for fuzzy correspondences. (b) The fuzzy correspondence matrix between success
images for the point that is marked with a white arrow in (a). In this example the camera was not moving and t
“ellipse” is located at the center of the correspondence matrix. (c) Weighted Hough space of the correspondei
matrix. Arrows point to the peak locations. Peak values (591, 1342) are used as weights. (d) The lines usec
approximate the fuzzy correspondence matrix. Intensity corresponds to weight. (e) Weighted sum of city-blot
distance from the two lines in (c) is used as the approximation of the fuzzy correspondence matrix in (b).

Affine—a six parameter modeb(b, c, d, u, v): (X, y) = (ax+by+u, cx+dy+ v);
similarity and shear.
Homography—an eight parameter modeh,(, c,d, e, f, u, v): (x,y) — (Xtby+u

ex+ fy+1°
cx+dy+uvy. R ; :
m), true projective transformation of a plane.

Image registration is useful for many applications including (i) camera stabilization
(i) ego-motion computation, (iii) detection of moving objects, and (iv) mosaicing. The
alignment process has two steps: (i) Computing correspondences and representing tt
as point-to-line correspondences. (ii) Converting the alignment problem into a linear pr
gram using the point-to-line correspondences and solving it. The first step was detail
in Section 2, and in this section the second step is described. In particular, we show h
to compute the eight parameter 2D homography, which corresponds to the transformati
between different views of a planar surface.

A homographyH is represented by a 33 matrix, whoseith row is designatedH;.

H is normalized by settingd; 3 =1 leaving eight independent parameters. A 2D point
p=(x,y,1) (in homogeneous coordinates) located at imageis mapped by the
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homographyH into the 2D pointp’ in imagel , as follows:
. ((Hl -p) (Hz-p) 1)‘
(Hs-p)’ (Hs-p)’
The Euclidean distance of poipt from constraint lines= (Ax+ By+ C), using Eq. (4),
is given by the following equation, which is zero when the alignment is perfect:
A(H1-p)  B(Hz-p) )
+C).
(Hs - p) (Hs - p)

Multiplying Eq. (5) by H3s - p) (which is nonzero for a finite size image) gives the following
linear equation for the residual error of popt

(4)

Gi(p. 9 = ( (5)

ru(p’, ) = du(p’, s)(Hs - p)
= A(H:-p)+ B(H2-p) + C(Hs3 - p). (6)

In order to get a linear equation, we multiplied the geometrical distdp{#, s) by the
(unknown) valuelfi; - p) resulting in an algebraic distance. The coordinatgssifould be
normalized to reduce bias [12, 13]. Setting the residual ep@’, s) to zero gives a linear
constraint on the elements of the homographthat states that poimtis mapped to point
p’ which is on the lines.

In order to recover the eight parameters of the 2D homogrBiphyleast eight such point-
to-line correspondences are required. Each point to two-lines correspondence (the lin
approximation to fuzzy correspondence) gives one equation. When more than eight poi
to-line correspondences are givéiean be recovered by solving the following minimization
problem:

n
H = argmin  wilru(p;, s)I. (7
Ho o
This error minimization problem, a minimization problems in the sendq ¢#lso called
calledLAD for least absolute differences) is converted into the following linear program
where one constraint equation is written for each point-to-line correspondence:

min: zn: wi(z" +7)

i=1

S.t.
Ai(H1-p)+Bi(H2-p))+Ci(Hs-pi)+(z"—7z)=0 z",z >0.

(z" + z7) is the absolute value of the residual ermy(p/, s ). This is done since only
positive values are used in linear programming [8, 18]. Each residual error is represent
by the difference of two nonnegative variablag(p;, s) =z = (z" — z), one of which is
always zero at the above minimum.

Notes.

1. When the constraints are of the fodw —b +z=0, a basic feasible solution that
satisfies the constraints is given ky=0, z=b. This enables the use of an efficient one-
phase simplex algorithm to solve the problem.
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2. This linear program can be used to minimize any linear equation:|Axn{ b|).
Parameter normalization or an additional constraint may be needed to avoid a zero roo
b=0.

3. If Ais an fn x n) matrix,mis the number of constraint equations arid the number
of parametersnf > n), then the linear program will have a total oii2¢ n) variables: &
variables for the variable vectar, and 2n variables for the slack variable vectorThe
factor of 2 is needed since each variable is represented by a difference of two nonnegat
variables.

4. The slack variable vectarcontains the error measures for each point (the residuals)

5. Additional linear constraints can be added to the recovered model. For example we ¢
define a motion model that is more general than similarity but has bounded affine/projecti
distortions.

4. EVALUATION

Three types of evaluation procedures were performed: (i) testing the algorithm using re:
image sequences, (ii) a comparisom.pfo otherM-estimators and to the_MedS estimator,
and (iii) efficiency considerations. The tests were applied to different types of outliers an
we show that ; provides a good compromise which is stable enough to cope with differen
categories of outliers and efficient enough to be used in real time even for models with
large number of parameters. To balance the evaluation we also describe a scenario wt
L, fails completely. Section 5 discusses the results.

4.1. Image Registration and Mosaicing Experiments

Image registration was introduced in Section 3, mosaicing uses image registration
create large images by seamlessly stitching small images into a large image.

A major problem in image registration and mosaicing is outliers due to multiple model
(either a complex static scene or moving objects in the scene). One way of coping wi
this problem is motion segmentation, which is the process of segmenting the image in
different regions according to their motion. However, motion segmentation is at least «
difficult as motion recovery.

This section describes real image registration and mosaicing in the presence of outli¢
without motion segmentation. The motion analysis is done using point-to-line correspor
dences and linear programmibgD .

To compare our model to existing point-to-point methods, we converted each point-tc
point correspondence to two point-to-line correspondences according to Section 2.4. T
panorama example used point-to-line correspondences computed from fuzzy corresp
dence matrices.

4.1.1. Mosaicing with Similarity Model

A panoramic image was created in real-time (10-12 frames/s, image size Z%D
pixels, motion limits by the correspondence matrixde8 pixels) using a PC, as shown
in Fig. 3.b. While the camera was scanning the scene, a large pendulum was swingir
The size of the pendulum was large enough to create about 15% outliers among the fi
ture points. Since the stabilization algorithm used only frame to frame motion recover
any error will cause the panorama to fail. Figure 3 shows the pendulum (and its shado\
appearing/disappearing several times due to the swinging motion. Hoak¥emes were
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FIG. 3. Mosaicing examples. (a) Points selected for motion computation. Four of the 30 points are locate
on the moving pendulum. (b) Panoramic image that was created while a pendulum was swinging. The alignm
was not affected by the outliers.

correctly aligned with a similarity model as can be seen by the objects that were not occlud
by the pendulum.

4.1.2. Homographies: Comparison with

This off-line experiment compares the computation of a 2D homography usiregis-
tration to the least-squares method for point-to-point registration. Given two images, t
feature points were selected automatically from a bidirectional optical-flow field. Eacl
selected point had a strong intensity gradient, and the optical flow from the first to th
second image agreed with the optical flow from the second to the first image. Select
points are shown in Fig. 4.a.

The alignment of the second image to the firstimage using the homography that minimiz
theL, distance between the computed correspondences is shown in Fig. 4.d. Itis complet
useless due to outliers.

Thel; alignment used the same data, but converted each point-to-point correspondet
into two point-to-line correspondences (point ¢) is converted to the two linex & u) and

FIG. 4. Computing homography using registration compared to, registration. The same feature points
were used in the; minimization and th&, minimization. Both examples are single iteration output; no segmen-
tation and no reweighting were used. (a) Selected feature points are marked on one image. (b) The averag
the two original images to show their misalignment. (c) The average of the images aligned with the homograp
obtained using linear programming. (d) Warping the second image toward the first image with the homograp
obtained using a least-squares method.
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(y =v)). Figure 4.c shows the average of the two images after alignment. The alignment
now very good, and can be compared to Fig. 4.b where the two images were added bef
alignment.

4.1.3. Computing Affine Motion from Normal Flow

An affine alignment between two images can be computed from normal flow by a
iterative method. In this example 112 points residing on strong edges and spread eve
across the image were selected automatically (off-line). The iterations were as follows:

1. The normal flow was computed from spatiotemporal derivatives and represented |
a line constraint as described in Section 2.3.

2. An affine motion model was computed using linear programming from the linea
constraints.

3. The second image was warped toward the first image using the affine model.

4. Steps 1-3 were repeated until convergence.

The iterations are necessary in this case since the accuracy of the normal flow depel
on the accuracy of the spatiotemporal derivatives, which increases as the motion estim
becomes better. Figure 5 shows the registration results farsthegistration by normal
flow lines.

FIG.5. Normal-flow point-to-lineL; registration. (a) Firstimage. (b) Second image. (c) Averaging of (a) and
(b) shows the displacement between the two images. (d) Magnified normal flow of the selected points at the |
iteration, displayed over a gradient map. The outliers are easy to spot. (e) (b) warped toward (a) using the aff
model computed by alignment. (f) Averaging of (a) and (e) shows good alignment in most of the scene.
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4.2. L, Comparison toLMedS and the Tukey M-estimator

M-estimators are not considered robust in the sense of breakdown point, which is zer
[4,11, 25]).L; is a particulaM-estimator and therefore has a zero breakdown point as well.
Moreover, even among-estimators, L, is not considered the best; othéestimators such
as theTukey M-estimator have better resistance to outliers. The Least Median of Square
(LMeds, also called_MS) estimator is a well-known robust estimator [21, 24] which has a
breakdown point of &, the highest value possible. Howeugras a convex linear problem
[8] has the advantage that the optimal solution can be found by a deterministic and ef
cient algorithm. The comparison is therefore between the following (estimator, algorithn
pairs:

(L1, Simplex)—TheL;-based estimatot AD) is defined by

a = argmin rial, 8
g > rial ®)

X;eX

whered is the estimated modeX is the measurement matrix, and, is the residual error
of measurementg with respect to the modal The algorithm used for minimization is the
simplex algorithm. Note that this equation has no scale (variance) associated with it sin
the scale is not required by the simplex algorithm and it does not change the location of t
global minimum.

(Tukey M-estimator, IRLS)—Tha&ukey M-estimator is defined by

a= argminz o(ri.a/oi) ©
a X;jeX
B2[1 _ (1 _ (u)2\3 -
p(U) = 862[1 (- )97 =8
6 lul > B

wherep(u) is the loss functionB is a tuning parameter, ang the scale associate with the
value off; 4.
Equation (9) is often solved by iterative reweighted least-squaRes) [22] with the
weight function
w(u =ria/6) = y(u)/u
)’)? u<B (10)
u > B

YU = p(u) = {;[1_ (5

whereo’ is a scale estimate. The following scale estimation was used in the test:

A N Wilia
o= =, 11
i; N (11)
Initially we setw; =1, B =4.8, and we fine-tuned to be in the range®.. . 46. This fine
tuning proved to be useful, probably due to the aggressive outlier rejection dfitag
M-estimator which rejects the “tail” of the inliers as well.

(LMedS, ProbabilisticAlgorithm)—The LMedS estimator is defined by

& = argmin medianr?,. (12)
a X eX ’
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ais computed using random sampling [10, 24, 26]. The algorithm, giverkitiata points
are required to compute model hypothé&israndomly select§ kpoints hypotheses from
data set. The hypothesa$ with the smallest median is chosen as the estiraate

4.2.1. Synthetic Data Test Configuration

The noise scenario test, ‘the spread-points bi-model scenario test’, and the bi-model st
error scenario test were performed using synthetic data. The tests were general and w
not specifically related to images. All three shared the same basic configuration:

A: R* - R*—the model to be estimated was a randomly selected linear transformatio
of 16 parameters.

X—the measurements were a set of 100 source—target pairs of poRftsTine source
points were randomly selected in the rangel(q, ..., 100]. The inliers were the first
60 points, which were transformed By, the other 40 points were outliers and were set
according to the specific test. Normal noise was added to the target points.

We evaluated the results using a separation criterion of simply counting the number
inliers that were included within the smallestesiduals, whera is the total number of
inliers. The tests consisted of 200 iterations; each time the number of inliers that we
within the smallest 60 residuals was computed for a new sktafdX and the results were
collected in a histogram of 60 bins.

4.2.2. Noise Scenario

In this test the outliers consisted of normal noise=(0, o = 102); inliers had a additive
normal noiseX =0, o = 20).

The resulting histogram is shown in Fig. 6. We can see that for this scenariakiae
M-estimator provided the best results, followed biledS, which was closely followed by
LAD. In many similar tests (with slightly different parameters) we found the same pattern—
the Tukey M-estimator converges very fast (4—6 iterations) and gives the best estimate
provided that the scale is tuned and the initial guess is “good enough.” Figure 7 shows t
initial guess (SQ), the first and the sixth iteration of tHakey M-estimator.

100 T T T T T T
o

Lided=

| I L

[CEN 2 b M 65 O 6O B 5B [ M

FIG. 6. Monte Carlo test histogram for the noise scenario. Tukey M-estimators produced the best results,
followed byLMeds, which was closely followed byAD.
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FIG. 7. Tukey M-estimator converges. (a) Residuals of the initial guess (LSQ). (b) Residuals after the first
iteration. (c) Residuals after the sixth iteration over the ground truth transformation residuals. The two graphs :
almost identical.

Experimental notes: (i) It is essential to have a good scale estimate; if the scale estim
is wrong the algorithm does not converge to the model. (i) Wrong estimation, especial
underestimation, can occur during iterations and spoil a previous good result.

4.2.3. Spread-Points Bi-Model Scenario

In this test the outliers were transformed by a second linear transformation.

Both inliers and outliers had additive normal noige<0, o = 20).

The resulting histogram is shown in Fig. 8. We can see that for this scenatitus
produced the best resultAD closely followed it, and thdukey M-estimator failed. The
residuals of the_MedS, LAD, and theTukey M-estimator after six iterations are shown in
Fig. 9. TheTukey M-estimator was initialized usind. SQ and it could not recover from the
LSQ error. Applying a two phase algorithm usibiledS or LAD as an initializer may solve
this problem.

4.2.4. Bi-Model, Shift Error Scenario

The probabilistic. MedS solution is based onld -points hypotheses, whekeis usually
the minimal number of points required to solve fokWhat happens if none of th€-points
hypotheses is close & For example, led be the location of a single point R"; X points
with added noise vect@with a symmetric distribution of orientations but with magnitude
greater than some positive radiRsa will be still the centroid of the measurements points
therefore can be easily estimated by least squares; however, the best estimate the probabi
LMedS can provide will be at leastR” from a. This problem can be solved by increasing
K—however, this will exponentially increase the computation time. In this test shift error
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FIG. 8. Monte Carlo test histogram for the bi-model scenario. Left:LMedS, and Tukey M-estimators
histogram for model-1. Rightukey M-estimator histogram for model-2. A good separation would result in peaks
around 60 at the first model and around 40 at the second model.

were added to the bi-model scenario to cause bad hypothesis. The residuals of the gro
truth,LMedS, LAD are shown in Fig. 10. We can see thatitA® produced a better estimate
then the probabilistitMedS however thé-Meds still produced a good separation. Attempts
to completely break down themedsS resulted with a complete break downL#D as well.

"M__

4) " W 3 ® & @ ®m A B B @KL W A ® m B W N B N W

R L

FIG. 9. Residuals for the bi-model scenario. (8D residuals over the ground truth residuals. bjedS
residuals over the ground truth residuals.Ti&ey M-estimators residuals after six iterations—failed to converge
to any model.
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FIG.10. Residuals forthe shift+bi-model scenario. (a) Ground truth residuals, (Byiduals over the ground
truth residuals. (c)lMedsS (10,000 iterations) residuals over the ground truth residuals.

4.2.5. Close-Points Bi-Model Scenario

This scenario used a very simple, yet difficult synthetic scene that was specially design
to break down the AD estimator (no dominant motion-see appendix). This scenario ha
two identical patches (from real images) sliding in opposite directions. This scenario |
difficult in the sense that (i) both patches have identical texture and identical magnituc
displacement (ii) points are not spread across the image. About 100 “good” points we
automatically selected at a ratio of approximately 42 :58. “Good” points were points the
were located on a strong texture using a gradient map (called a reliability map in Fig. 1.
and the forward and backward optical flow agree. These points were fed,inte and
probabilisticLMedS solvers. The results are shown in Fig. 11. We can see thatMheS
was the only estimator in the test that could separate the two motions.

4.3. Efficiency Considerations

This section discusses the time efficiencyRIS, probabilisticLMedS, and linear pro-
gramming. TheRLS algorithm used foM-estimators computation is very efficient and
consists of few (3—10) least squares reweight iterations.

4.3.1. Probabilistid.MedS Time Complexity

Given that the probability of choosing an outliejisthe probabilityp of having at least
one perfect guess (no outliers in klselected points) afteriterations is given by [10]

p=1-[1-(@1-q4" (13)
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FIG. 11. Comparison betweely, optimalL;, and probabilistic. MedS affine image registration of the two
block motion test case. (a) First imade)( (b) Second imagd §). (c) Difference before registration. (d) Optical
flow image. (e) Reliability map. (f) Point selection. (g)warped usind., recovered model. (H} warped using
L; recovered model. (k), warped using-MedS recovered model. (m) Error of the registration—failed to
lock onto one object. (n) Error of thie registration—failed to lock onto one object. (0) Error of theeds
registration—succeeded.

Given the desired probability of succegssthe number of necessary iteratidris given by

t =In(1— p)/In(L — (1 - q)"). (14)

The number of iterations required to reach a certain level of confidence is exponenti
in k and inq. Still the probabilisticLMedS is widely used in computer vision since the
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number of data points needed for obtaining a hypothesis is rather small, for example or
seven data points (triplets) are required for computing the 26 parameters (up to a sc
factor) of the trilinear tensor. There is, however, a hidden assumption here. The hidd
assumption is that the data is dichotomic—if a point is not an outlier than all its coordinate
are good. Clearly this assumption is not true for several reasons, including the apertt
effect and the camera and scene geometry. Breaking this dichotomy will be very expens
ask will become the number of parameters in the model. Another aspect of the prob
bilistic LMedS complexity is the required probability of succgssFor examplep = 0.95

is not considered good enough for video processing as it implies 1-2 bad frames eve
second (and more than 20 bad frames for even a simple mosaic built from several hundi
frames).

4.3.2. Linear Programming Complexity

The complexity of the linear program is polynomial in the number of constraints, whict
equals the number of correspondences. In most practical cases, however, the complexit
known to be nearly linear. During testing the number of pivot operations was approximate
n’, wheren was the number of points.

4.3.3 Synthetic Test Performance Comparison

In this test we tried to compare the actual performance of computiigusing prob-
abilistic algorithm and linear programming. The test consisted of the following synthetit
data:

Number of matched pairs.100 point-to-point correspondences.
Rank of linear model. k4.

Outliers probability. g=0.4 (three motion models; matched pairs are distributed as
follows: 20, 60, 20).

Added noise. Normal distribution with zero mean and variance is 5% of the range.

Even though the probabilistic algorithm was able to execute 7000 iterations during t
time the single-iteration linear programming executed, the results obtained were inferior
linear programming as seen in Fig. 12.

4.3.4. Real-Time Performance

Programs for video mosaicing and for image stabilization were written based on fuzz
correspondences (Section 2.4). Execution was on a PC using Windows NT with no spec
hardware. Image sequences were directly processed from the camera at 10-12 frames
second. The panorama in Fig. 3 was created in real time using this program. In order to fi
the time allocation within the program a profiler was used to measure the time of maj
program components. The profiling report is shown in Table 1; we can see that the line
programming solver used only 20% of the total time—less than the time required to wal
the image using MMX technology.
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TABLE 1
Profiling Results

Description Total time (s) Percentage  Average time (ms)

Next frame 64.72 18.75% 15.56
Locate points 3.12 0.90% 0.75
Hough lines 76.52 22.17% 18.41
Solve LP 73.72 21.36% 17.74
Warp 78.85 22.85% 18.97
Display 14.32 4.15% 3.44
Everything else 33.86 9.81% 1.36

Note 4156 frames were stabilized in 345.10% &2 Fps. The com-
ponents were: next frame, capturing the next frame time (using double
buffer technique); locate points, “good” point selection for the point-
to-line correspondence; Hough lines, computing the correspondence
matrix and find lines using the Hough transform; solve LP, linear pro-
gramming solver; warp, image warping using MMX technology; ev-
erything else, Nonprofiled code including operating system overhead.
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FIG. 12. Comparing performance of linear programming and a probabilistic algorithm running for the same
time. sixty of the 100 points are in the desired mode(0.4). (a) Error plot for the linear programming solution.
Clean separation is obtained. (b) Error plot for the probabilistieds solution. Separation between inliers and
outliers is possible, but not for all points.
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5. SUMMARY

This paper has presented a new approach to motion analysis by converting image m
surements into point-to-line correspondences and computing the motion model uaing a
estimator computed by linear programming. The approach was robust enough and effici
enough to allow real-time mosaicing in the presence of outliers—a task that required cc
rect alignment of all frames used to construct the mosaic. The paper compatgsithe
estimator computed by linear programming to Tlakey M-estimator computed byRLS
and toLMedS computed by the probabilistic algorithm. ThaD, linear programming ap-
proach was shown to be a good and stable compromise between efficiency and robustn
It performed very well in various scenarios while having a nearly linear time complexity
The comparison showed that:

IRLS, Tukey M-estimator—Provided superior results for the noise-only scenario, however,
it completely failed for the bi-model scenario or when the noise scale estimator was n
good enough.

LMedsS, probabilisticctMedS —Never completely failed in tests, but behaved worse than
(LAD, LP) in a shift error model, and less well than theey M-estimator in a noise-only
scenario. This estimator is nondeterministic and of exponential time complexity—but sti
very useful in vision due to the usually small number of guesses needed for hypothe:
construction.

LAD, LP—Performed very close taviedS. It failed when no dominant motion was present
(see Appendix). It performed better thaMeds in the shift error scenario, and better than
the Tukey M-estimator in the bi-model scenario. The algorithm does not require an initial
guess nor a noise scale estimator; it is deterministic, has a convex objective function (a
hence a global minima s guaranteed), and has nearly linear complexity. Agood comprom
in most practical scenarios.

A practical recommendation would be to usap, LP) or a robust.MedS estimator as
an initial guess if the complexity allows it—then iterate eithetRlyS or by (LAD, LP) [5]
to improve the accuracy of the result.

APPENDIX A

Dominance in Motion Analysis Domain

M-estimators have a breakdown point of zero. Still as seen in the t@gisyas able to
resist 40% outliers quite similar taviedS and theTukey M-estimator. It was even better
thanLMedsS in the noise outliers scenario. We try to explain this difference by looking at
the relationship between leverage points, dominant motion, and the fact that images h:
bounded regiond_everage points are outliers that are far enough that even a single poi
can flip the recovered model very far from the real model (forLthe estimator).

An example of a leverage point is shown in Fig. Al.a. Linés the real model; points
di, ..., 07 are located on liné\. Point p satisfies

Li(p. A) > > Li(g. B), (A1)
i=1

whereL;(a, b) represents the; distance betweea andb. This causes the model to flip
into line B. Figure Al.b describes a very similar setup with potpts . ., 7 spread along
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FIG. Al. Leverage points for line and motion models. (a) Pqins a leverage point that causes the model
to switch to an incorrect modd. (b) The points on lineA are spread across the image. Pgintannot be far
enough to switch the model and still be in the image boundaries. (c, d) p@re leverage point that causes the
model to switch to an incorrect rotation motion. (e) Poigts. . q, are spread across the image. Pgirdannot
move far enough to switch the model and still be in the image boundaries. (f) Dominant lineA+Srdominant
since it has lower error then lin® or any lineC in between.

the line A. This time there is no single point in the bounded rectangle that qualifies as
leverage point. There is no room for a lever long enough to flip the model. In this particule
case the breakdown point of the metric is larger than zero—we then refer to like
as the “dominant line.” Figure Alc shows an “image” displacement map of five points
Pointsq, ..., g4 belong to the motion model, in this case pure translation, while point
p is a leverage point. Figure Ald shows & 96olution” for the model recovery (shown
in light-gray). Again, the error (measured from the base of the arrow to the head of th
corresponding (gray) arrow) for the leverage pombecomes zero, while the sum of
residual errors for the model poirts, . . ., g7 is smaller than the original error @f. As in
the previous example, if the poings, . . ., g were spread across the image as in Fig. Ale,
then within the bounds of the image there is no single displacement that can act as a le
(up to similarity model), and the breakdown point in this particular case is greater tha
Zero.

The notion of dominant region or dominant motion forms a generalization. For example
line Ain Fig. Al.fis the dominant line since it has a lower minimum value than line B or
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any superposition of the two models—for example, link S easy to see that the example
satisfies these conditions (moving likeby ¢ in any direction and any orientation may

re

duce the error at most 3or p; ... ps but will cost more than&for q; ... q7). As seen

from the examples, for complex models such as affine or homography, it is not easy to s
if a dominant motion exists. A known strategy is to spread points as much as possible a
not to overparameterize the model.

In practice, the background of a scene usually forms a large model that is spread acr

the image, and thus is not subject to leverage points within the image boundaries.
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