
Computer Vision and Image Understanding78,32–52 (2000)
doi:10.1006/cviu.1999.0826, available online at http://www.idealibrary.com on

Real-Time Motion Analysis with
Linear Programming1

Moshe Ben-Ezra, Shmuel Peleg, and Michael Werman

Institute of Computer Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
E-mail: moshe@cs.huji.ac.il, peleg@cs.huji.ac.il, werman@cs.huji.ac.il

Received March 2, 1999; accepted November 5, 1999

A method to compute motion models in real time from point-to-line correspon-
dences using linear programming is presented. Point-to-line correspondences are
the most reliable measurements for image motion given the aperture effect, and it
is shown how they can approximate other motion measurements as well. An er-
ror measure for image alignment using theL1 metric and based on point-to-line
correspondences achieves results which are more robust than those for the com-
monly usedL2 metric. TheL1 error measure is minimized using linear program-
ming. While estimators based onL1 are not robust in the breakdown point sense,
experiments show that the proposed method is robust enough to allow accurate mo-
tion recovery over hundreds of consecutive frames. TheL1 solution is compared to
standardM-estimators and Least Median of Squares (LMedS) and it is shown that
the L1 metric provides a reasonable and efficient compromise for various scenar-
ios. The entire computation is performed in real-time on a PC without special hard-
ware. c© 2000 Academic Press

Key Words:motion analysis; linear programming.

1. INTRODUCTION

Robust, real-time recovery of visual motion is essential for many vision-based applica-
tions. Numerous methods have been developed for motion recovery from image sequences;
among them are algorithms that compute the motion directly from the grey level values or
local measures of them [3, 14, 16, 17, 20]. A second class of algorithms use feature points
or optical flow to recover motion [1, 9, 15]. A probabilistic error minimization algorithm
[26] can be used to recover motion in the presence of outliers. Another class of algorithms
use explicit probability distributions of the motion vectors to calculate motion models [23].
Black and Anandan presented [7] a framework for robust calculation of optical flow based

1 This research was supported by Espirit Project 26247—Vigor.

32

1077-3142/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.

MOTION ANALYSIS BY LINEAR PROGRAMMING 33

on the Lorentzian estimator and a Graduated Non-convexity algorithm seeking an optimal
solution. Bab-Hadiashar and Suter [4] presented a robust optical flow calculation based on
LMedS (Least Median of Squares).

Most of the methods cited above have problems when computing high-order motion
models (e.g., an affine motion model or a homography): either they are sensitive to outliers,
or the execution speed is slow. Algorithms based on iterative reweightingM-estimators
have tuning and initial guess problems, especially in multiple model cases. TheLMedS
faces complexity and accuracy problems when it is difficult to obtain a good hypothesis by
random selection.

In this paper an algorithm to recover high-order motion models from point-to-line corre-
spondences using linear programming is presented. Point-to-line correspondences are robust
in the sense that they are largely insensitive to aperture effects and to T-junctions, unlike the
common point-to-point correspondences. Point-to-line correspondences can also approxi-
mate other measurements as well, such as point-to-point correspondences, correspondences
with uncertainty, and the spatiotemporal constraint.

The L1 metric (
∑ |ai − bi |) can be used with the point-to-line correspondences and is

much more robust then theL2 metric (
√∑

(ai − bi)2). For example, the median minimizes
the L1 metric, while the centroid (average) minimizes theL2 metric.L1 based estimators
are not robust in the sense of breakdown point [11, 24, 25] as they are sensitive to leverage
points. However, our experiments show that in motion analysis theL1 error measure is robust
enough to compute accurate motion over hundreds of frames, even with large moving outlier
objects in the scene. Moreover, this is done in real time on a regular PC (300 MHz).

The linear programming solver does not need an initial guess nor a noise scale estimate,
which are required for iterative reweighted least-square algorithms (such asM-estimators).
Comparisons between estimators based on theL1 metric and the robustLMedS estimators
show that global motion analysis using theL1 estimator is only slightly less robust than
analysis with theLMedS estimator, but theL1 computation is much faster.

The motion analysis consists of computing a model based alignment between successive
frames. The alignment process consists of two steps: (i) Computing correspondences and
representing them as point-to-line correspondences is described in Section 2. (ii) Converting
the alignment problem into a linear program using the point-to-line correspondences and
solving it is described in Section 3. Section 4 describes experimental results and comparisons
with other methods. Section 5 gives concluding remarks. The Appendix describes a possible
explanation for the experimental insensitivity ofL1 motion estimators to leverage points.

2. POINT-TO-LINE CORRESPONDENCES

Point-to-line correspondences are used due to their insensitivity to the aperture effect.
This section describes the aperture effect, point selection for the point-to-line correspon-
dence, and the use of point-to-line correspondences to represent normal flow and fuzzy
correspondences.

2.1. Aperture Effect

A moving line viewed through a small aperture will have an apparent motion which
is normal to the line. This phenomena is called the “aperture effect.” An example of the
aperture effect is shown in Fig. 1. Given the aperture effect we express a constraint on the

34 BEN-EZRA, PELEG, AND WERMAN

FIG. 1. Example of an aperture effect. (a) The white arrow represents the actual motion, while the black arrow
represents the apparent motion. (b) Point-to-line correspondence.

displacement (u, v) such that the pointp= (x, y) in the first image has moved to the straight
line s(x+ u, y+ v) in the second image defined by the line equation

s(x + u, y+ v) ≡ a(x + u)+ b(y+ v)+ c = 0. (1)

Without loss of generality we assume for the rest of the paper thata2+ b2= 1 by nor-
malization.

2.2. Point Selection

For computation stability, selected points should be spread evenly over the image. Points
should be located on strong features such as edges, and they should have balanced X-
direction and Y-direction information. The following steps were carried out to select points
in real time:

1. N points were evenly spread over the image in a chessboard grid.
2. “Black” points were allowed to move slightly horizontally to find strong vertical edges.

“White” points were allowed to move slightly vertically to find strong horizontal edges.
3. The bestK black points and the bestK white points (2K < N) were used as the

selected points.

2.3. Normal Flow

An optical flow constraint can be derived directly from image intensities using the gray-
level constancy assumption. This optical-flow constraint is given by [14, 20]

uIx + v I y + It = 0, (2)

where (u, v) is the displacement vector for the pixel andIx, I y, It are the partial derivatives
of the image at each pixel with respect to X-axis, Y-axis, and time.

Equation (2) describes a line, which is the aperture effect line. WhenI 2
x + I 2

y is normalized
to 1 the left-hand side of Eq. (2) becomes the Euclidean distance of the point (x, y) from
the line passing through (x+ u, y+ v), which is also called the normal flow [2].

2.4. Fuzzy Correspondence

An optical flow vector between successive images in a sequence represents the displace-
ment between a point in one image and the corresponding point in the second image. While
it is difficult to determine this point-to-point correspondence accurately from the images
automatically, a correspondence is usually assigned to the most likely point. For example,
given a point in one image, the corresponding point in the second image will be the one

MOTION ANALYSIS BY LINEAR PROGRAMMING 35

maximizing some correlation measure. However, such correspondences are error prone,
especially when other points in the second image have a local neighborhood similar to the
real corresponding point.

A possible solution to this problem is to postpone the determination of a unique corre-
spondence to a later stage and to represent the uncertainty as it is given by the correlation.
In this case the correspondence will not be a unique point, but a fuzzy measure over a set
of possible corresponding points.

The fuzzy correspondence of a pointp can be represented as a matrixM (p) (the fuzzy
correspondence matrix)[23].M is computed using the sum of squared differences (SSD)
values:M (u, v)=α∑i, j∈W(I 2(i + u, j + v)− I 1(i, j))2 for a windowW around pointp in
imageI 1. The parameterα is a normalization factor s.t.

∑
u,v M (u, v)= 1. Each cell (i, j)

of M (p) corresponds to the probability that pointp has a displacement of (i, j). In many
cases the fuzzy correspondence matrix has a dominant compact shape: points on corners
usually create a strong peak while edges form lines. A common case is an ellipse-like shape.
While the fuzzy correspondence matrix contains all correspondence uncertainty, utilizing
this information to its full extent is difficult.

To enable computation of global motion with linear programming, we propose an approx-
imation of the fuzzy correspondence matrix: anL1 distance map obtained from correspon-
dences of a point to two lines. This approximation is given by two lines,si(x, y)≡ (Ai x+
Bi y+Ci)= 0, with two associated weightswi (i = 1, 2). The weighted sum of both dis-
tances forms anL1“cone.” Each equidistant line on the cone is anL1 “ellipse” with ec-
centricity proportional to the weights of the two lines. Figure 2 shows the approximation
of a correspondence matrix by distance map. For the discrete case of the correspondence
matrix, L1 distance is also called city-block or Manhattan distance. The distance map is
computed using lines and weights obtained by a weighted Hough transform over the orig-
inal correspondence matrix [19]. The maximum bin corresponds to the main axis line. A
second local maximum bin corresponds to the second line. The bin values are taken as the
weightswi . This approximation can also be used to express the point-to-point correspon-
dence (x, y)→ (x′, y′) which can be approximated by point-to-two-lines correspondences
between the point (x, y) and the line (x= x′), and between the same point and the line
(y= y′), with weightsw1=w2. The Hough transform is used to find both the lines and the
weights, resulting in the following constraint for the displacement of point (x, y):

w1s1(x + u, y+ v)+ w2s2(x + u, y+ v) = 0. (3)

The geometrical meaning of this constraint is that point (x, y) has moved by a displacement
of (u, v) and is now located on the intersection of the two liness1, s2.

3. L1 ALIGNMENT USING LINEAR PROGRAMMING

Image alignment, or registration, is the process of recovering the coefficients of a global
motion model using two images. A hierarchy (every model is an extension of the previous
model) of common global motion models is [6]:

Translation—a two parameter model (u, v): (x, y)→ (x+ u, y+ v); 2D horizontal and
vertical motion.

Similarity—a four parameter model (a, b, u, v): (x, y)→ (ax+ by+ u,−bx+ay+ v);
translation, scale, and rotation.

36 BEN-EZRA, PELEG, AND WERMAN

FIG. 2. Approximations for fuzzy correspondences. (b) The fuzzy correspondence matrix between successive
images for the point that is marked with a white arrow in (a). In this example the camera was not moving and the
“ellipse” is located at the center of the correspondence matrix. (c) Weighted Hough space of the correspondence
matrix. Arrows point to the peak locations. Peak values (591, 1342) are used as weights. (d) The lines used to
approximate the fuzzy correspondence matrix. Intensity corresponds to weight. (e) Weighted sum of city-block
distance from the two lines in (c) is used as the approximation of the fuzzy correspondence matrix in (b).

Affine—a six parameter model (a, b, c, d, u, v): (x, y)→ (ax+ by+ u, cx+ dy+ v);
similarity and shear.

Homography—an eight parameter model (a, b, c, d, e, f, u, v): (x, y)→ (ax+ by+ u
ex+ f y+ 1,

cx+ dy+ v
ex+ f y+ 1); true projective transformation of a plane.

Image registration is useful for many applications including (i) camera stabilization,
(ii) ego-motion computation, (iii) detection of moving objects, and (iv) mosaicing. The
alignment process has two steps: (i) Computing correspondences and representing them
as point-to-line correspondences. (ii) Converting the alignment problem into a linear pro-
gram using the point-to-line correspondences and solving it. The first step was detailed
in Section 2, and in this section the second step is described. In particular, we show how
to compute the eight parameter 2D homography, which corresponds to the transformation
between different views of a planar surface.

A homographyH is represented by a 3× 3 matrix, whosei th row is designatedH i .
H is normalized by settingH3,3= 1 leaving eight independent parameters. A 2D point
p= (x, y, 1)t (in homogeneous coordinates) located at imageI 1 is mapped by the

MOTION ANALYSIS BY LINEAR PROGRAMMING 37

homographyH into the 2D pointp′ in imageI 2 as follows:

p′ =
(

(H1 · p)

(H3 · p)
,

(H2 · p)

(H3 · p)
, 1

)t

. (4)

The Euclidean distance of pointp′ from constraint lines= (Ax+ By+C), using Eq. (4),
is given by the following equation, which is zero when the alignment is perfect:

dH(p′, s) =
(

A(H1 · p)

(H3 · p)
+ B(H2 · p)

(H3 · p)
+ C

)
. (5)

Multiplying Eq. (5) by (H3 ·p) (which is nonzero for a finite size image) gives the following
linear equation for the residual error of pointp:

rH(p′, s) = dH(p′, s)(H3 · p)

= A(H1 · p)+ B(H2 · p)+ C(H3 · p). (6)

In order to get a linear equation, we multiplied the geometrical distancedH(p′, s) by the
(unknown) value (H3 · p) resulting in an algebraic distance. The coordinates ofp should be
normalized to reduce bias [12, 13]. Setting the residual errorrH(p′, s) to zero gives a linear
constraint on the elements of the homographyH that states that pointp is mapped to point
p′ which is on the lines.

In order to recover the eight parameters of the 2D homographyH, at least eight such point-
to-line correspondences are required. Each point to two-lines correspondence (the linear
approximation to fuzzy correspondence) gives one equation. When more than eight point-
to-line correspondences are givenH can be recovered by solving the following minimization
problem:

Ĥ = argmin
H

n∑
i=1

wi |rH(p′i , si)|. (7)

This error minimization problem, a minimization problems in the sense ofL1 (also called
calledLAD for least absolute differences) is converted into the following linear program,
where one constraint equation is written for each point-to-line correspondence:

min:
n∑

i=1

wi (z
+
i + z−i)

s.t.

Ai (H1 · pi)+ Bi (H2 · pi)+ Ci (H3 · pi)+ (z+i − z−i) = 0 z+i , z
−
i ≥ 0.

(z+i + z−i) is the absolute value of the residual error,rH(p′i , si). This is done since only
positive values are used in linear programming [8, 18]. Each residual error is represented
by the difference of two nonnegative variables,rH(p′i , si)= zi = (z+i − z−i), one of which is
always zero at the above minimum.

Notes.

1. When the constraints are of the formAx− b+ z= 0, a basic feasible solution that
satisfies the constraints is given byx= 0, z= b. This enables the use of an efficient one-
phase simplex algorithm to solve the problem.

38 BEN-EZRA, PELEG, AND WERMAN

2. This linear program can be used to minimize any linear equation: min(|Ax− b|).
Parameter normalization or an additional constraint may be needed to avoid a zero root if
b= 0.

3. If A is an (m× n) matrix,m is the number of constraint equations andn is the number
of parameters (m> n), then the linear program will have a total of 2(m+ n) variables: 2n
variables for the variable vectorx, and 2m variables for the slack variable vectorz. The
factor of 2 is needed since each variable is represented by a difference of two nonnegative
variables.

4. The slack variable vectorz contains the error measures for each point (the residuals).
5. Additional linear constraints can be added to the recovered model. For example we can

define a motion model that is more general than similarity but has bounded affine/projective
distortions.

4. EVALUATION

Three types of evaluation procedures were performed: (i) testing the algorithm using real-
image sequences, (ii) a comparison ofL1 to otherM-estimators and to theLMedS estimator,
and (iii) efficiency considerations. The tests were applied to different types of outliers and
we show thatL1 provides a good compromise which is stable enough to cope with different
categories of outliers and efficient enough to be used in real time even for models with a
large number of parameters. To balance the evaluation we also describe a scenario where
L1 fails completely. Section 5 discusses the results.

4.1. Image Registration and Mosaicing Experiments

Image registration was introduced in Section 3, mosaicing uses image registration to
create large images by seamlessly stitching small images into a large image.

A major problem in image registration and mosaicing is outliers due to multiple models
(either a complex static scene or moving objects in the scene). One way of coping with
this problem is motion segmentation, which is the process of segmenting the image into
different regions according to their motion. However, motion segmentation is at least as
difficult as motion recovery.

This section describes real image registration and mosaicing in the presence of outliers
without motion segmentation. The motion analysis is done using point-to-line correspon-
dences and linear programmingLAD .

To compare our model to existing point-to-point methods, we converted each point-to-
point correspondence to two point-to-line correspondences according to Section 2.4. The
panorama example used point-to-line correspondences computed from fuzzy correspon-
dence matrices.

4.1.1. Mosaicing with Similarity Model

A panoramic image was created in real-time (10–12 frames/s, image size 320× 240
pixels, motion limits by the correspondence matrix of±8 pixels) using a PC, as shown
in Fig. 3.b. While the camera was scanning the scene, a large pendulum was swinging.
The size of the pendulum was large enough to create about 15% outliers among the fea-
ture points. Since the stabilization algorithm used only frame to frame motion recovery,
anyerror will cause the panorama to fail. Figure 3 shows the pendulum (and its shadow)
appearing/disappearing several times due to the swinging motion. However,all frames were

MOTION ANALYSIS BY LINEAR PROGRAMMING 39

FIG. 3. Mosaicing examples. (a) Points selected for motion computation. Four of the 30 points are located
on the moving pendulum. (b) Panoramic image that was created while a pendulum was swinging. The alignment
was not affected by the outliers.

correctly aligned with a similarity model as can be seen by the objects that were not occluded
by the pendulum.

4.1.2. Homographies: Comparison withL2

This off-line experiment compares the computation of a 2D homography usingL1 regis-
tration to the least-squares method for point-to-point registration. Given two images, the
feature points were selected automatically from a bidirectional optical-flow field. Each
selected point had a strong intensity gradient, and the optical flow from the first to the
second image agreed with the optical flow from the second to the first image. Selected
points are shown in Fig. 4.a.

The alignment of the second image to the first image using the homography that minimizes
theL2 distance between the computed correspondences is shown in Fig. 4.d. It is completely
useless due to outliers.

TheL1 alignment used the same data, but converted each point-to-point correspondence
into two point-to-line correspondences (point (u, v) is converted to the two lines (x= u) and

FIG. 4. Computing homography usingL2 registration compared toL1 registration. The same feature points
were used in theL1 minimization and theL2 minimization. Both examples are single iteration output; no segmen-
tation and no reweighting were used. (a) Selected feature points are marked on one image. (b) The average of
the two original images to show their misalignment. (c) The average of the images aligned with the homography
obtained using linear programming. (d) Warping the second image toward the first image with the homography
obtained using a least-squares method.

40 BEN-EZRA, PELEG, AND WERMAN

(y= v)). Figure 4.c shows the average of the two images after alignment. The alignment is
now very good, and can be compared to Fig. 4.b where the two images were added before
alignment.

4.1.3. Computing Affine Motion from Normal Flow

An affine alignment between two images can be computed from normal flow by an
iterative method. In this example 112 points residing on strong edges and spread evenly
across the image were selected automatically (off-line). The iterations were as follows:

1. The normal flow was computed from spatiotemporal derivatives and represented by
a line constraint as described in Section 2.3.

2. An affine motion model was computed using linear programming from the linear
constraints.

3. The second image was warped toward the first image using the affine model.
4. Steps 1–3 were repeated until convergence.

The iterations are necessary in this case since the accuracy of the normal flow depends
on the accuracy of the spatiotemporal derivatives, which increases as the motion estimate
becomes better. Figure 5 shows the registration results for theL1 registration by normal
flow lines.

FIG. 5. Normal-flow point-to-lineL1 registration. (a) First image. (b) Second image. (c) Averaging of (a) and
(b) shows the displacement between the two images. (d) Magnified normal flow of the selected points at the last
iteration, displayed over a gradient map. The outliers are easy to spot. (e) (b) warped toward (a) using the affine
model computed byL1 alignment. (f) Averaging of (a) and (e) shows good alignment in most of the scene.

MOTION ANALYSIS BY LINEAR PROGRAMMING 41

4.2. L1 Comparison toLMedS and theTukey M-estimator

M-estimators are not considered robust in the sense of breakdown point, which is zero
[4, 11, 25]).L1 is a particularM-estimator and therefore has a zero breakdown point as well.
Moreover, even amongM-estimators, L1 is not considered the best; otherM-estimators such
as theTukey M-estimator have better resistance to outliers. The Least Median of Squares
(LMedS, also calledLMS) estimator is a well-known robust estimator [21, 24] which has a
breakdown point of 0.5, the highest value possible. However,L1 as a convex linear problem
[8] has the advantage that the optimal solution can be found by a deterministic and effi-
cient algorithm. The comparison is therefore between the following (estimator, algorithm)
pairs:

(L1, Simplex)—TheL1-based estimator (LAD) is defined by

â= argmin
a

∑
xi∈X

|ri,a|, (8)

whereâ is the estimated model,X is the measurement matrix, andr i,a is the residual error
of measurementsxi with respect to the modela. The algorithm used for minimization is the
simplex algorithm. Note that this equation has no scale (variance) associated with it since
the scale is not required by the simplex algorithm and it does not change the location of the
global minimum.

(Tukey M-estimator, IRLS)—TheTukey M-estimator is defined by

â = argmin
a

∑
xi∈X

ρ(ri,a/σi) (9)

ρ(u) =


B2

6

[
1− (1− (u

B

)2)3] |u| ≤ B

B2

6 |u| > B
,

whereρ(u) is the loss function,B is a tuning parameter, andσi the scale associate with the
value ofri,a.

Equation (9) is often solved by iterative reweighted least-squares (IRLS) [22] with the
weight function

w(u = ri,a/σ̂) = ψ(u)/u

(10)
ψ(u) = ρ(u)′ =

{
u
[
1− (u

B

)2]2 |u| ≤ B

0 |u| > B
,

whereσ̂ is a scale estimate. The following scale estimation was used in the test:

σ̂ =
N∑

i=1

wi r i,a

N
. (11)

Initially we setwi = 1, B= 4.8, and we fine-tunedσ to be in the range 2 ˆσ . . .4σ̂ . This fine
tuning proved to be useful, probably due to the aggressive outlier rejection of theTukey
M-estimator which rejects the “tail” of the inliers as well.

(LMedS, ProbabilisticAlgorithm)—The LMedS estimator is defined by

â= argmin
a

median
xi∈X

r 2
i,a. (12)

42 BEN-EZRA, PELEG, AND WERMAN

â is computed using random sampling [10, 24, 26]. The algorithm, given thatk data points
are required to compute model hypothesisâh, randomly selectsS k-points hypotheses from
data set. The hypothesisâ∗ with the smallest median is chosen as the estimateâ.

4.2.1. Synthetic Data Test Configuration

The noise scenario test, ‘the spread-points bi-model scenario test’, and the bi-model shift
error scenario test were performed using synthetic data. The tests were general and were
not specifically related to images. All three shared the same basic configuration:

A: R4→ R4—the model to be estimated was a randomly selected linear transformation
of 16 parameters.

X—the measurements were a set of 100 source–target pairs of points inR4. The source
points were randomly selected in the range [−100, . . . ,100]. The inliers were the first
60 points, which were transformed byA; the other 40 points were outliers and were set
according to the specific test. Normal noise was added to the target points.

We evaluated the results using a separation criterion of simply counting the number of
inliers that were included within the smallestn residuals, wheren is the total number of
inliers. The tests consisted of 200 iterations; each time the number of inliers that were
within the smallest 60 residuals was computed for a new set ofA andX and the results were
collected in a histogram of 60 bins.

4.2.2. Noise Scenario

In this test the outliers consisted of normal noise (x̄= 0, σ = 102); inliers had a additive
normal noise (̄x= 0, σ = 20).

The resulting histogram is shown in Fig. 6. We can see that for this scenario theTukey
M-estimator provided the best results, followed byLMedS, which was closely followed by
LAD. In many similar tests (with slightly different parameters) we found the same pattern—
the Tukey M-estimator converges very fast (4–6 iterations) and gives the best estimate,
provided that the scale is tuned and the initial guess is “good enough.” Figure 7 shows the
initial guess (LSQ), the first and the sixth iteration of theTukey M-estimator.

FIG. 6. Monte Carlo test histogram for the noise scenario. TheTukey M-estimators produced the best results,
followed byLMedS, which was closely followed byLAD.

MOTION ANALYSIS BY LINEAR PROGRAMMING 43

FIG. 7. Tukey M-estimator converges. (a) Residuals of the initial guess (LSQ). (b) Residuals after the first
iteration. (c) Residuals after the sixth iteration over the ground truth transformation residuals. The two graphs are
almost identical.

Experimental notes: (i) It is essential to have a good scale estimate; if the scale estimate
is wrong the algorithm does not converge to the model. (ii) Wrong estimation, especially
underestimation, can occur during iterations and spoil a previous good result.

4.2.3. Spread-Points Bi-Model Scenario

In this test the outliers were transformed by a second linear transformation.
Both inliers and outliers had additive normal noise (x̄= 0, σ = 20).
The resulting histogram is shown in Fig. 8. We can see that for this scenario theLMedS

produced the best result,LAD closely followed it, and theTukey M-estimator failed. The
residuals of theLMedS, LAD, and theTukey M-estimator after six iterations are shown in
Fig. 9. TheTukey M-estimator was initialized usingLSQ and it could not recover from the
LSQ error. Applying a two phase algorithm usingLMedS or LAD as an initializer may solve
this problem.

4.2.4. Bi-Model, Shift Error Scenario

The probabilisticLMedS solution is based on aK -points hypotheses, whereK is usually
the minimal number of points required to solve forâ. What happens if none of theK -points
hypotheses is close tôa? For example, leta be the location of a single point inRn; X points
with added noise vectorewith a symmetric distribution of orientations but with magnitude
greater than some positive radiusR. a will be still the centroid of the measurements points
therefore can be easily estimated by least squares; however, the best estimate the probabilistic
LMedS can provide will be at least “R” from a. This problem can be solved by increasing
K—however, this will exponentially increase the computation time. In this test shift errors

44 BEN-EZRA, PELEG, AND WERMAN

FIG. 8. Monte Carlo test histogram for the bi-model scenario. Left:L1, LMedS, and Tukey M-estimators

histogram for model-1. Right:Tukey M-estimator histogram for model-2. A good separation would result in peaks
around 60 at the first model and around 40 at the second model.

were added to the bi-model scenario to cause bad hypothesis. The residuals of the ground
truth,LMedS, LAD are shown in Fig. 10. We can see that theLAD produced a better estimate
then the probabilisticLMedS however theLMedS still produced a good separation. Attempts
to completely break down theLMedS resulted with a complete break down ofLAD as well.

FIG. 9. Residuals for the bi-model scenario. (a)LAD residuals over the ground truth residuals. (b)LMedS

residuals over the ground truth residuals. (c)Tukey M-estimators residuals after six iterations—failed to converge
to any model.

MOTION ANALYSIS BY LINEAR PROGRAMMING 45

FIG. 10. Residuals for the shift+bi-model scenario. (a) Ground truth residuals. (b)L1 residuals over the ground
truth residuals. (c)LMedS (10,000 iterations) residuals over the ground truth residuals.

4.2.5. Close-Points Bi-Model Scenario

This scenario used a very simple, yet difficult synthetic scene that was specially designed
to break down theLAD estimator (no dominant motion-see appendix). This scenario had
two identical patches (from real images) sliding in opposite directions. This scenario is
difficult in the sense that (i) both patches have identical texture and identical magnitude
displacement (ii) points are not spread across the image. About 100 “good” points were
automatically selected at a ratio of approximately 42 : 58. “Good” points were points that
were located on a strong texture using a gradient map (called a reliability map in Fig. 11)
and the forward and backward optical flow agree. These points were fed intoL2, L1 and
probabilisticLMedS solvers. The results are shown in Fig. 11. We can see that theLMedS
was the only estimator in the test that could separate the two motions.

4.3. Efficiency Considerations

This section discusses the time efficiency ofIRLS, probabilisticLMedS, and linear pro-
gramming. TheIRLS algorithm used forM-estimators computation is very efficient and
consists of few (3–10) least squares reweight iterations.

4.3.1. ProbabilisticLMedS Time Complexity

Given that the probability of choosing an outlier isq, the probabilityp of having at least
one perfect guess (no outliers in allk selected points) aftert iterations is given by [10]

p = 1− [1− (1− q)k]
t
. (13)

46 BEN-EZRA, PELEG, AND WERMAN

FIG. 11. Comparison betweenL2, optimalL1, and probabilisticLMedS affine image registration of the two
block motion test case. (a) First image (I 1). (b) Second image (I 2). (c) Difference before registration. (d) Optical
flow image. (e) Reliability map. (f) Point selection. (g)I 2 warped usingL2 recovered model. (h)I 2 warped using
L1 recovered model. (k)I 2 warped usingLMedS recovered model. (m) Error of theL2 registration—failed to
lock onto one object. (n) Error of theL1 registration—failed to lock onto one object. (o) Error of theLMedS

registration—succeeded.

Given the desired probability of successp, the number of necessary iterationst is given by

t = ln(1− p)/ln(1− (1− q)k). (14)

The number of iterations required to reach a certain level of confidence is exponential
in k and inq. Still the probabilisticLMedS is widely used in computer vision since the

MOTION ANALYSIS BY LINEAR PROGRAMMING 47

number of data points needed for obtaining a hypothesis is rather small, for example only
seven data points (triplets) are required for computing the 26 parameters (up to a scale
factor) of the trilinear tensor. There is, however, a hidden assumption here. The hidden
assumption is that the data is dichotomic—if a point is not an outlier than all its coordinates
are good. Clearly this assumption is not true for several reasons, including the aperture
effect and the camera and scene geometry. Breaking this dichotomy will be very expensive
ask will become the number of parameters in the model. Another aspect of the proba-
bilistic LMedS complexity is the required probability of successp. For example,p= 0.95
is not considered good enough for video processing as it implies 1–2 bad frames every
second (and more than 20 bad frames for even a simple mosaic built from several hundred
frames).

4.3.2. Linear Programming Complexity

The complexity of the linear program is polynomial in the number of constraints, which
equals the number of correspondences. In most practical cases, however, the complexity is
known to be nearly linear. During testing the number of pivot operations was approximately
n1.7, wheren was the number of points.

4.3.3 Synthetic Test Performance Comparison

In this test we tried to compare the actual performance of computingLAD using prob-
abilistic algorithm and linear programming. The test consisted of the following synthetic
data:

Number of matched pairs.100 point-to-point correspondences.

Rank of linear model. k= 4.

Outliers probability. q= 0.4 (three motion models; matched pairs are distributed as
follows: 20, 60, 20).

Added noise. Normal distribution with zero mean and variance is 5% of the range.
Even though the probabilistic algorithm was able to execute 7000 iterations during the

time the single-iteration linear programming executed, the results obtained were inferior to
linear programming as seen in Fig. 12.

4.3.4. Real-Time Performance

Programs for video mosaicing and for image stabilization were written based on fuzzy
correspondences (Section 2.4). Execution was on a PC using Windows NT with no special
hardware. Image sequences were directly processed from the camera at 10–12 frames per
second. The panorama in Fig. 3 was created in real time using this program. In order to find
the time allocation within the program a profiler was used to measure the time of major
program components. The profiling report is shown in Table 1; we can see that the linear
programming solver used only 20% of the total time—less than the time required to warp
the image using MMX technology.

48 BEN-EZRA, PELEG, AND WERMAN

TABLE 1

Profiling Results

Description Total time (s) Percentage Average time (ms)

Next frame 64.72 18.75% 15.56
Locate points 3.12 0.90% 0.75
Hough lines 76.52 22.17% 18.41
Solve LP 73.72 21.36% 17.74
Warp 78.85 22.85% 18.97
Display 14.32 4.15% 3.44
Everything else 33.86 9.81% 1.36

Note. 4156 frames were stabilized in 345.107 s= 12 Fps. The com-
ponents were: next frame, capturing the next frame time (using double
buffer technique); locate points, “good” point selection for the point-
to-line correspondence; Hough lines, computing the correspondence
matrix and find lines using the Hough transform; solve LP, linear pro-
gramming solver; warp, image warping using MMX technology; ev-
erything else, Nonprofiled code including operating system overhead.

FIG. 12. Comparing performance of linear programming and a probabilistic algorithm running for the same
time. sixty of the 100 points are in the desired model (q= 0.4). (a) Error plot for the linear programming solution.
Clean separation is obtained. (b) Error plot for the probabilisticLMedS solution. Separation between inliers and
outliers is possible, but not for all points.

MOTION ANALYSIS BY LINEAR PROGRAMMING 49

5. SUMMARY

This paper has presented a new approach to motion analysis by converting image mea-
surements into point-to-line correspondences and computing the motion model using aLAD
estimator computed by linear programming. The approach was robust enough and efficient
enough to allow real-time mosaicing in the presence of outliers—a task that required cor-
rect alignment of all frames used to construct the mosaic. The paper compares theLAD
estimator computed by linear programming to theTukey M-estimator computed byIRLS
and toLMedS computed by the probabilistic algorithm. TheLAD, linear programming ap-
proach was shown to be a good and stable compromise between efficiency and robustness.
It performed very well in various scenarios while having a nearly linear time complexity.
The comparison showed that:

IRLS,Tukey M-estimator—Provided superior results for the noise-only scenario, however,
it completely failed for the bi-model scenario or when the noise scale estimator was not
good enough.

LMedS, probabilisticLMedS —Never completely failed in tests, but behaved worse than
(LAD, LP) in a shift error model, and less well than theTukey M-estimator in a noise-only
scenario. This estimator is nondeterministic and of exponential time complexity—but still
very useful in vision due to the usually small number of guesses needed for hypothesis
construction.

LAD,LP—Performed very close toLMedS. It failed when no dominant motion was present
(see Appendix). It performed better thanLMedS in the shift error scenario, and better than
theTukey M-estimator in the bi-model scenario. The algorithm does not require an initial
guess nor a noise scale estimator; it is deterministic, has a convex objective function (and
hence a global minima is guaranteed), and has nearly linear complexity. A good compromise
in most practical scenarios.

A practical recommendation would be to use (LAD, LP) or a robustLMedS estimator as
an initial guess if the complexity allows it—then iterate either byIRLS or by (LAD, LP) [5]
to improve the accuracy of the result.

APPENDIX A

Dominance in Motion Analysis Domain

M-estimators have a breakdown point of zero. Still as seen in the tests,LAD was able to
resist 40% outliers quite similar toLMedS and theTukey M-estimator. It was even better
thanLMedS in the noise outliers scenario. We try to explain this difference by looking at
the relationship between leverage points, dominant motion, and the fact that images have
bounded regions. Leverage points are outliers that are far enough that even a single point
can flip the recovered model very far from the real model (for theLAD estimator).

An example of a leverage point is shown in Fig. A1.a. LineA is the real model; points
q1, . . . ,q7 are located on lineA. Point p satisfies

L1(p, A) >
n∑

i=1

L1(qi , B), (A.1)

whereL1(a, b) represents theL1 distance betweena andb. This causes the model to flip
into line B. Figure A1.b describes a very similar setup with pointsq1, . . . ,q7 spread along

50 BEN-EZRA, PELEG, AND WERMAN

FIG. A1. Leverage points for line and motion models. (a) Pointp is a leverage point that causes the model
to switch to an incorrect modelB. (b) The points on lineA are spread across the image. Pointp cannot be far
enough to switch the model and still be in the image boundaries. (c, d) Pointp is a leverage point that causes the
model to switch to an incorrect rotation motion. (e) Pointsq1 . . .q4 are spread across the image. Pointp cannot
move far enough to switch the model and still be in the image boundaries. (f) Dominant line—lineA is dominant
since it has lower error then lineB or any lineC in between.

the line A. This time there is no single point in the bounded rectangle that qualifies as a
leverage point. There is no room for a lever long enough to flip the model. In this particular
case the breakdown point of theL1 metric is larger than zero—we then refer to lineA
as the “dominant line.” Figure A1c shows an “image” displacement map of five points.
Pointsq1, . . . ,q4 belong to the motion model, in this case pure translation, while point
p is a leverage point. Figure A1d shows a 90◦ “solution” for the model recovery (shown
in light-gray). Again, the error (measured from the base of the arrow to the head of the
corresponding (gray) arrow) for the leverage pointp becomes zero, while the sum of
residual errors for the model pointsq1, . . . ,q7 is smaller than the original error ofp. As in
the previous example, if the pointsq1, . . . ,q2 were spread across the image as in Fig. A1e,
then within the bounds of the image there is no single displacement that can act as a lever
(up to similarity model), and the breakdown point in this particular case is greater than
zero.

The notion of dominant region or dominant motion forms a generalization. For example,
line A in Fig. A1.f is the dominant line since it has a lower minimum value than line B or

MOTION ANALYSIS BY LINEAR PROGRAMMING 51

any superposition of the two models—for example, line C. It is easy to see that the example
satisfies these conditions (moving lineA by ε in any direction and any orientation may
reduce the error at most 3ε for p1 . . . p3 but will cost more than 3ε for q1 . . .q7). As seen
from the examples, for complex models such as affine or homography, it is not easy to see
if a dominant motion exists. A known strategy is to spread points as much as possible and
not to overparameterize the model.

In practice, the background of a scene usually forms a large model that is spread across
the image, and thus is not subject to leverage points within the image boundaries.

REFERENCES

1. G. Adiv, Determining 3-d motion and structure from optical flow generated by several moving objects,IEEE
Trans. Pattern Anal. Mach. Intell.7(4), 1985, 384–401.

2. Y. Aloimonos and Z. Duric, Estimates the heading direction using normal flow,Int. J. Comput. Vision13(1),
1994, 33–56.

3. P. Anandan, A computational framework and an algorithm for the measurement of visual motion,Int. J.
Comput. Vision2, 1989, 283–310.

4. A Bab-Hadiashar and D. Suter, Optic flow calculation using robust statistics, inIEEE Conf. on Computer
Vision and Pattern Recognition, 1997, pp. 988–993.

5. M Ben-Ezra, S. Peleg, and M. Werman, Efficient computation of the most probable motion from fuzzy
correspondences, inIEEE Workshop on Applications of Computer Vision (WACV98), 1998.

6. J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, Hierarchical model-based motion estimation, in
European Conf. on Computer Vision, 1992, pp. 237–252.

7. M. J. Black and P. Anandan, The robust estimation of multiple motions: Parametric and piecewise-smooth
flow-fields,Comput. Vision Image Understanding63(1), 1996, 75–104.

8. Vasek Chv´atal,Linear Programming, Freeman, New York, 1983.

9. O. D. Faugeras, F. Lustman, and G. Toscani, Motion and structure from motion from point and line matching,
in Int. Conf. on Computer Vision, 1987, pp. 25–34.

10. M. A. Fischler and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications
to image analysis and automated cartography,Comm. ACM24(6), 1981, 381–395.

11. P. J. Rousseeuw, F. R. Hampel, E. M. Ronchetti, and W. A. Stahel,Robust Statistics: The Approach Based on
Influence Functions, Wiley, New York, 1986.

12. R. I. Hartley, In defence of the eight-point algorithm,IEEE Trans. Pattern Anal. Mach. Intell.19(6), 1997,
580–593.

13. R. I. Hartley, Minimizing algebraic error in geometric estimation problems, inInt. Conf. on Computer Vision,
1998, pp. 469–476.

14. B. K. P. Horn and B. G. Schunck, Determining optical flow,AI 17, 1981, 185–203.

15. T. S. Huang and A. N. Netravali, Motion and structure from feature correspondence: A review,Proc. IEEE
82(2), 1994, 252–268.

16. M. Irani and P. Anandan, Robust multi-sensor image alignment, inInt. Conf. on Computer Vision, 1998,
pp. 959–966.

17. M. Irani, B. Rousso, and S. Peleg, Recovery of ego-motion using region alignment,IEEE Trens. Pattern Anal.
Mach. Intell.19, 1997, 268–272.

18. H. Karloff,Linear Programming, Birkhäuser Verlag, Basel, 1991.

19. Martin D. Levine,Vision in Man and Machine, McGraw–Hill, New York, 1985.

20. B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, in
Int. Joint Conf. on Artificial Intelligence, 1981, pp. 674–679.

21. P. Meer, D. Mintz, and A. Rosenfeld, Analysis of the least median of squares estimator for computer vision
applications, inIEEE Conf. on Computer Vision and Pattern Recognition, 1992, pp. 621–623.

52 BEN-EZRA, PELEG, AND WERMAN

22. P. W. Holland, and R. E. Welsch, Robust regression using iteratively reweighted least-squares,Comm. Statist.-
Theor. Meth. A6, 1977, 813–827.

23. Y. Rosenberg and M. Werman, Representing local motion as a probability distribution matrix and object
tracking, inImage Understanding Workshop, 1997, pp. 153–158.

24. P. J. Rousseeuw, Least median of squares regression,J. Amer. Statist. Assoc. 79, 1984, 871–880.

25. P. J. Rousseew and A. M. Leroy,Robust Regression and Outlier Detection, Wiley-Interscience, New York,
1987.

26. P. H. S. Torr and D. W. Murray, Outlier detection and motion segmentation, inSPIE, Vol. 2059, pp. 432–443,
1993.

	1. INTRODUCTION
	2. POINT-TO-LINE CORRESPONDENCES
	FIG. 1.

	3. L1 ALIGNMENT USING LINEAR PROGRAMMING
	FIG. 2.

	4. EVALUATION
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	TABLE 1
	FIG. 12.

	5. SUMMARY
	APPENDIX A
	FIG. A1.

	REFERENCES

