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Abstract

This thesis aims at characterizing software maintenariogtaes using Linux kernel, based on
calculation of different software metrics. We perform ooalysis and calculation for over 800
versions of the Linux kernel. We perform our analysis usiegesal dissections — comparing
production and development versions, as well as the newsesbranch (2.6), and also com-
paring the core of the kernel to tlaech anddriversdirectories. We present the results and the
calculated metrics and then try to tie them to the differeaimtenance activities and make sig-
nificant observations about them. We also aim at examiningtiedr some of Lehman’s Laws
exist in the development of the Linux kernel.



Acknowledgments

First and foremost, | would like to express my gratitude tofPDror Feitelson, for his in-
valuable support, encouragement, supervision and usgdglestions throughout this research
work. Without his guidance and persistent help this thesisld/not have been possible.

| would like to thank Trinity Software And Beyond Ltd, the é&li representative of the Kloc-
work software, for providing the Klocwork CASE tool, its dguentation and the technical
support.

| am grateful to the Levin Edgar Fund for the generous graattfimded this research.

Finally, | would like to thank my family and friends for thaimconditional love and support
throughout my studies.



Contents

Abstract . .

Acknowledgments . . . . . . . L e 3

1 Introduction
1.1 Softwar

e Evolution and Software Maintenance . ... .. ...... .. ... 1

1.2 Objectives and Contributions . . . . . . . . . . . . .. .. e . 7
1.3 Organization. . . . . . . . . . 8

2 Background 8
2.1 LinuxKernel . . . . . . e
2.2 MaintenancCe . . . . . . . .. e e e e 1
2.3 Lehman’s Laws of Software Evolution . . . . . . . .. ... ........ 11

2.4 Softwar

eMetrics . . . . ... 12

2.4.1 Size Metrics . . . . . . . . e
2.4.2 McCabe’s Cyclomatic Complexity . . . . . ... . ... ... ... 14
2.4.3 Halstead's Software Science . . . . . . . . . . .. ... . 15
2.4.4 Oman’s Maintainability Index . . . . . ... ... ... ...... 16
3 Our ldeas 16
3.1 Different Maintenance Activities . . . . . . . . . ... e e 16
3.2 Lehman'sLaws . . . . . . . . . .
4 Methodology 17
41 ResearchData . . . . . . . . . . . . . 8

4.2 Klocwork — The case ofthe CASEtool . . . . . . . ... ... ...... 19
4.3 OurProgram . . . . . . . e e e e
5 Results 25
5.1 DataUsedinAnalysis . . . . .. . . . . . . .. .. e 25
5.2 Calculated Metrics . . . . . . . . e e 25
5.21 NumberofFiles . . ... .. .. . . . . . . ...
5.2.2 NumberofFunctions . . . . . . . . . .. . . ... ..
523 LinesofCode. . . . . . . . . . . ...
5.2.4 McCabe’s Cyclomatic Complexity . . . . . ... ... ....... 34
5.2.5 Halstead's Software Metrics . . . . . .. ... ... ... ... .. 43
5.2.6 Oman’s Maintainability Index . . . ... ... ... .. ...... 49
5.2.7 Correlation Between Metrics . . . . . . . . . . . . .. . . ... .. 51
5.3 Maintenance Activities . . . . . . . . . e e e e e 53
5.3.1 Development and ProductionVersions . . . . ... .... ... . b3
5.3.2 IntervalsBetweenReleases. . . . . .. .. ... ... ... ... 53
5.3.3 Corrective Maintenance . . . .. . . . . . ... .. 56
5.3.4 Perfective Maintenance . . . . . . . . . ... 56
5.3.5 Adaptive Maintenance . . . . . .. ... ... 0. 7
5.3.6 Preventative maintenance . . . . . . . . . . ..o 58

5.4 Lehman'sLaws . . . . . . . . . e



54.1 ContinuingChange . . . . . . . . . . . . . e 61
5.4.2 Increasing Complexity . . . . . . .. ... ... ... .. .. 62
543 SelfReqgulation . . . .. . .. ... ... 63
5.4.4 Conservation of Organizational Stability (Invatisvork Rate) . . . . . 63
5.4.5 Conservation of Familiarity . . . . ... ... .. ... ...... 64
54.6 ContinuingGrowth . . . ... .. .. ... ... ... ... .. ..., 64
5.4.7 DecliningQuality . . . . . ... ... ... .. 56
548 Feedback System . . . ... ... ... .. 65
6 Conclusions and Future Work 65
6.1 Conclusions . . . . . . . 56
6.2 FutureWork . . . . . . .. 67
References 68

List of Figures

1 Source FilesGrowth . . . . . . . .. 10
2 Linesof Code Growth. . . . . . . . . . . . ... . .. ... 10
3 Output File of Analysis for a Single Source File . . . . . . ... ... ... 23

4  Output File of Analysis foraKernelVersion . . . . . ... ... ...... 24

5 NumberofFiles . . . . . . . . . . . . 27
6 Number of Functions . . . . . . . . . . . . .. 28
7 LinesofCode . . . . . . . . . . 30
8 Lines of Code for Different Directories . . . . . . . .. .. ... . .... 31

9 AverageLOCuperFile. . . . . . . . 32
10 Average LOCperFunction . . . . ... .. ... . .. ... ... ..., 33

11 RatioofComments . . . . . . . . . . ... 35
12 McCabe’s Cyclomatic Complexity . . . . . .. ... ... ... ...... 36

13 Extended McCabe’s Cyclomatic Complexity . -
14  Average McCabe’s Cyclomatic Complexity per Functlon ceieee oo .. 38
15 CDF of McCabe’s Cyclomatic Complexity per Function . . .. . 39

16 Log-log survival functions of McCabe’s Cyclomatic Comyty per Functlon . 40
17  Analysis of constantly high MCC value function. . . . ... ... .. ... 42

18 Analysis of high MCC value function, changing overtime . ... ... .. 42
19 Halstead Volume foreachKernel . . . . .. .. ... ... ...... ... 44

20 Halstead Difficulty foreachKernel . . . . . ... ... ... ... ..... 45

21 Halstead Effort foreachKernel . . . . . . .. .. ... ... .. .. .... 46

22 Average Halstead Metrics per Function. . . . . . . ... ... ......... 48

23 Average Halstead Volume per Function . . . .. ... ... ... ....... 49

24  Average Halstead Difficulty per Function . . . . ... ... ... ... .. 50

25 Average Halstead Effort per Function . . . . .. ... ... ... ...... 51

26 Oman’s Maintainability Index . . . . . .. ... ... ... ... ... 52

27 Intervals Between Releases, Within Major Version . . . ...... . .. ... 54
28 Intervals Between ProductionReleases . . . . . . .. .. .. ... . ... 55

29 Changesin Files, DevelopmentVersions . . . . ... ... .. ...... 59



30 Changes in Directories, DevelopmentVersions . . .. .. ... ..... 60

31 Releases per Month, DevelopmentVersions . . . . ... ... ...... 64
List of Tables

1  Analyzed Versions Information . . . . . . ... ... ... ... 18

2 Halstead Metrics for core Kernel directories-v2.4.25 ...... . . . ... .. 47

3 Lehman’s Laws supportinLinux . . . . . . . .. . .. . ... .. ... ... 62



1 Introduction

1.1 Software Evolution and Software Maintenance

Software Evolution is the software growth process: firstithigal software product is devel-
oped and later on there are stages of updating it thus cgeattome releases of the initial prod-
uct. The process of updating the product is the maintenanasep Usually, as the program is
more successful we see more releases and also a longer maaogéephase.

One of the first computer scientists to research this fieldRvaé M. M. Lehman. He es-
tablished a list of observations of what takes place in safévevolutions, known as “Lehman’s
Laws of Software Evolution”[10, 11]. These laws can be \atigdi and verified using different
software metrics and other types of data (for example limiesdes metric or amount of hours
each developer contributed).

One of the interesting observations is that the software sarginuously change. In other
words, the maintenance process is not only making sure tti@ jprogram is working as re-
quired but also developing it and updating the requirem@#k There is a classification of
software maintenance into 4 types: Corrective, adaptigdeptive, and preventative (preven-
tative is sometimes bundled into perfective) [21, 32, 27].

The process of software evolution is important and sigmtiéa software engineering and
therefore it is interesting to try to characterize and ustderd it. Specifically, we would like to
observe the process in a successful software product.

One of the challenging parts of such research is to find dditgifing data from commer-
cial software is hard and might suffer from confidentialggues. As Kemerer and Slaughter
[8] note, one of the most critical factor of an empirical stud software evolution is finding a
good commercial (closed source) partner that has the ragesata (including past versions)
and who is willing to cooperate with the researchers andthem the data, staff time and other
resources. However, today we can get data from open soundeiqgis. Luckily, this is good
enough, since it was shown that the growth and structurecterstics are similar in open and
close source products [20].

In this study we will use the Linux Kernel. Linux is undoubled successful open source
product. Linux has been used before to provide data to vastudies [1, 28, 27, 5, 20, 33].
Specifically, we will analyze the progress made in hundredgecsions of Linux, released
between March 1994 and August 2008, each containing husdresource files (thousands
in the later versions) and millions of lines of code. Theraavever 800 versions released
in this time span, a larger number of versions, in depth analidth, than used in any other
study. Until 2005, the Linux kernel had two major versionsmtained in parallel — production
and development. We will analyze both in this study, and #isdater versions, without this
separation.

1.2 Obijectives and Contributions

There are two main objectives in this study:

The first is to try to identify and characterize different égpof maintenance activities by
analyzing the different versions of Linux. This will open awopportunity for research on
one of the fundamental aspects of software development @lpdrnthe understanding of the
maintenance process and its role.



The second is to examine the existence of some of Lehman’s ratihe development of
the Linux kernel. A restricted version of this was done inplast by Godfrey and Tu [5], who
examined the growth of the Linux kernel over its first six ywe@lr994-2000), and found that at
the system level its growth was super-linear. Validatiotheflaws was done before, especially
in closed-source products [14, 13]. This was done in mucHhlsnecale with fewer versions
and over a shorter span of time.

The growth of the Linux kernel is in both maintaining the éxig product and its features
and in adding improvements and new features. We will try tarabterize and quantify the
maintenance/development activity and its affect on thensot.

1.3 Organization
The organization of the reminder of this document is as vadto

In chapter 2 we will provide some background regarding threukikernel, software mainte-
nance, Lehman’s laws, and software metrics.

In chapter 3 we will describe and discuss our ideas regattim@nalysis of the maintenance
activities and Lehman laws.

In chapter 4 we will describe and discuss the research peeethe methodology, the data,
the challenges, and our final process.

In chapter 5 we will describe and discuss our results, anidagib try to analyze their impli-
cations for maintenance activities and Lehman’s laws.

In chapter 6 we will provide a summary of our conclusions aisduks future work.

2 Background

2.1 Linux Kernel

The Linux kernel is an operating system kernel used by skdetsibutions [35]. Linus Tor-
valds, the father and creator of the Linux kernel, releasdidsaversion to the internet in
September 1991. There foIIoweé years of development by a growing Internet community,
and then only in March 1994 the first production version wésased.

In the next 10 years, hundreds of additional kernel versiwee released. These were
all numbered using a 3-digit system. The first digit is theegation; this was 1 in 1994 and
changed to 2 in 1996. The second digit is the major kernela@rsumber, and the third digit
the minor kernel version number. Importantly, a distinetiwwas made between even and odd
major kernel numbers: the even digits correspond to staloléuation versions (1.0.*, 1.2.%,
2.0.x, 2.2.*, and 2.4.*), whereas versions with odd majomivers are development versions
(1.1.%,1.3.%,2.1.%, 2.3,*, and 2.5.*%), used to test newtig@s and drivers leading up to the next
stable version. Accordingly, new releases (with new minamhers) of production versions
included only bug fixes and security patches, whereas nease$ of development versions
included new (but not fully tested) functionality.

The problem with the above scheme was the long lag time uetl functionality (and
new drivers) found their way into production kernels, bessathis happened only on the next
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major version release. The scheme was therefore changkdheit2.6 kernel in December
2003. With this kernel, a fourth number was added. The thiumhlber now indicates new

releases with added functionality, whereas the fourth remmilicates bug fixes and security
patches. Kernel 2.6 therefore acts as production and dawelot rolled into one. However, itis

actually more like a development version, because new itumatity is released with relatively

little testing. It has therefore been decided that versiéril® will continue to be updated with
bug fixes even beyond the release of subsequent versionacaad a more stable production
version.

Although the numbering scheme has grown somewhat messythvath.6 kernel version,
the Linux release archives still provide a huge datasetimiysng the evolution of a large-scale
system over a long period of time. The Linux kernel is highlgitable — all the versions can
be downloaded from www.kernel.org. Also, the Hebrew Ursitgrholds a local mirror of the
entire code.

The Linux kernel sources are arranged in twelve major sebtbiries [24]:

arch — contains all the kernel code which is specific for differarghitectures (for example
1386 for the matching processor).

include — contains most of the include (.h files) needed to build thhaddecode.
init — contains the initialization code for the kernel.

mm — contains the architecture independent memory manageradatfor the kernel.
drivers — all the system device drivers.

Ipc — contains the inter-process communication code for thedter
modules— contains the built modules of the kernel.

fs — contains the file system code for the kernel.

kernel — contains the architecture independent main kernel code.

net— contains the networking code for the kernel.

lib — contains the architecture independent library code ®kérnel.

scripts — contains the scripts used for kernel configuration.

An interesting note is that both tharch and/drivers directories are practically external
to the core of the kernel, and each specific kernel configamatses only a small portion of
these directories. However, these are a major part of the,aslich grows not only due to
improvements and developments in the Linux kernel codd itset also (and mainly) due to
changes in the environment (for example additional drieerd processors). Fig. 1 demon-
strates the growth in these directories. As seen in the fighey consist of around 50% of
the total source files throughout the Linux kernel versioms the “core” of the kernel is only
about 50% of it).

Fig. 2 shows similar ratios and growth, this time compariagber of lines of code (LOC).
In this case we see that the ratio is over 60%. For each of theeBg and throughout this



document, the X-axis of the graphs is the year and the indicatear the lines shows the
appropriate Linux kernel version. The minor versions of ngor version 2.6 are named on
the graph by their third digit (e.g. version 2.6.16 is naméjl 1

250007 Aiipirs
—————— Arch and Drivers Dirs
20000
15000 -
10000 -
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0
94
Figure 1:
The growth of source files in Linux, for all subdirectoriesarsh anddriversonly.
625e+006 1 Aipirs
—————— Arch and Drivers Dirs 2
5e+006 -
3.75e+006 |
2.5e+006 -
1.25e+006 -
0 4
94

Figure 2:
The growth of LOC in Linux, for all subdirectories wsch anddriversonly.
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2.2 Maintenance

As described in the introduction, the maintenance procegecoftware occurs after the first
release, when the product is being updated repeatedly.rédiogpto the literature (for example

[8, 10], at least 50% of the software effort is dedicated tonmtemance. Generally, there are
two types of maintenance — correction of bugs and furtheeldgpment of the product. In the

literature, there is a classification of software mainteeanto four types [21, 32, 26]:

1. Corrective — Correction of discovered problems (fixingfetc).

2. Adaptive — Adapting the software product to the changingrenment (keeping the
software product usable upon changes).

3. Perfective — Improving performance or maintainabilibc{uding adding new features).

4. Preventative (sometimes bundled into perfective) — €xion and detection of latent
faults in the software product before they become effedtiuéis.

An important issue is the relative effort invested in thdetént types of maintenance ac-
tivities [29]. We will attempt to estimate the effort invae with a new kernel version using a
variety of different metrics. One group of metrics consdtsieasures of code changes, includ-
ing the number of files handled (added, deleted, or modifie2l) [Other metrics are the time
spent, and the number of people involved and the rate of nesiores. These measures will be
partly based on the Linux change logs, but with careful r@gartheir potential shortcomings
[4]. Yet another type of metric is how many developers paréte in each type of activity.

Our aim is to be able to determine whether maintenance igcire, perfective, adaptive,
or preventative by examining changes in appropriate coddaaeseln particular, we will com-
pare successive production versions of Linux and succeedsivelopment versions to establish
whether code metrics can be used to distinguish betweeaatve and perfective maintenance.
Finally, we will examine a broad spectrum of metrics befard after restructuring events, and
determine which, if any, of those metrics decrease. Thispuilvide insights into the effects
of restructuring on the metrics concerned.

2.3 Lehman’s Laws of Software Evolution

Lehman studied several large scale systems and identigefdifowing laws of software evo-
lution [10, 11]. These have been extended and modified oeeyghrs from 1974-1996:

1. Continuing Change (1974): A program that is used must béirasally adapted else it
becomes progressively less satisfactory.

2. Increasing Complexity(1974): As a program is evolvectcdmplexity increases unless
work is done to maintain or reduce it.

3. Self Regulation (1974): The program evolution processel§regulating with close to
normal distribution of measures of product and procestatés.

4. Conservation of Organizational Stability (Invariant W&ate) (1980): The average ef-
fective global activity rate on an evolving system in ineauti over the product life time.
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5. Conservation of Familiarity (1980): During the activielof an evolving program, the
content of successive releases is statistically invariant

6. Continuing Growth (1980): Functional content of a progranust be continually in-
creased to maintain user satisfaction over its lifetime.

7. Declining Quality (1996): Programs will be perceived dsdeclining quality unless
rigorously maintained and adapted to a changing operdtemwaronment.

8. Feedback System (1974, updated in 1996): Programmirge8ses contain multi-level
feedback loops and must be treated as such to be successadlfied or improved.

Lehman’s laws were validated in different studies [10, M.,,12, 13], some of which used
different metrics in order to validate the laws. Godfrey dnd[5] examined the growth of
the Linux kernel over six years (1994-2000) and found thahatsystem level its growth was
super-linear, and not slowing down with its growth, as expedy other studies, including
Lehman’s [12].

We will extend the work of Godfrey and Tu [5] to other laws, arging a lot more Linux
versions, over a longer span of time.

2.4 Software Metrics

The software crisis has led to the invention many differardrgitative measures of software
products named “software metrics” [7, 16]. They claim toyide a tool for development and
validation of models in the software process. Most of thelistsion software evolution use
different metrics to demonstrate their point. Generahlgré are product metrics which mea-
sure the product at any stage of its development (size ofribgram, number of documented
lines) and process metrics which measure the developmece$s (such as development time,
methodology, experience of the programming staff). We faitlus on product metrics for
which we have more available data. Within product metrieselare different classes of met-
rics [16]:

1. Size metrics — attempt to quantify the “size” of the softevarhese include LOC (lines
of code), number of comments, number of functions, numberadules, etc.

2. Complexity metrics — attempt to measure the complexitthefsoftware product. Mc-
Cabe’s cyclomatic complexity which measures the numbenad¢pendent paths in the
product’s control graph and its extensions are an exampleest metrics.

3. Halstead Product metrics — known as Halstead’s softwaemce proposes a set of met-
rics that check different aspects of a program: the vocafulze length, and the volume.
These also derive the difficulty, the effort, and the esteddaults in the software.

4. Quality Metrics — attempt to measure aspects like rditgpbcorrectness, maintainabil-
ity by the number of bugs, number of changes in each releasanrtime to failure
(MTTF), etc. Here metrics such as cyclomatic complexity miglso be used, since the
more complex the program is, the harder it is to maintainhie $ame applies to common
coupling that was measured in Linux in several studies andradicate maintainability
of the code [2, 28, 37].
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There are two reasons why it is important to perform codetaseasurements. The first
is accuracy; surveys and logs can be highly inaccurate. anple, a survey of maintenance
managers yielded the result that 17.4 percent of maintenigraorrective in nature; the actual
figure, obtained by analyzing changes to source code, is tharethree times larger [29].
Similarly, a comparison between change logs for three swéwwroducts and the corresponding
changed source code itself showed that up to 80 percent afjesanade to the source code
were omitted from change logs [4].

The second reason why code-based metrics are importaiat isdttain phenomena can be
measured only by examining the code itself. For examplepecomcoupling has been validated
as a measure of maintainability [2], and the only way to meathie common coupling within
a software product is to examine the code itself. In the cédanux, the number of files
and directories of production kernels appears to be quaglest However, common coupling
increases exponentially when considering both produetnmhdevelopment versions combined
[28]. This may be an indication of degraded quality as a tefudorrective maintenance.

Various code metrics have been challenged on both theakeiid experimental grounds.
For example, it has been shown that cyclomatic complexistrsngly correlated with lines
of code; furthermore, cyclomatic complexity measures m@dritow complexity but not data
flow complexity [30]. Similar critiques have been leveledexgt other code metrics [31]. Ac-
cordingly, it is not much use to be told that product A has oegthtic complexity 123 whereas
product B has cyclomatic complexity 456; comparing the neraldoes not tell us much.

However, the objections of the previous paragraph do ndiappen the code metrics in
guestion are applied to successive versions of the sameigirod module. Accordingly, we
will measure changes in a variety of metrics for successarsions of Linux. The metrics
we will examine are LOC, McCabe cyclomatic complexity, Hedsl's software metrics and
Oman’s Maintainability Index. We will also examine someesmetrics such as number of files
and directories, intervals between releases, and files madaries handled (added, deleted,
or modified) in order to understand the broad picture. Eadhede metrics has its advantages
and its disadvantages, as reflected in previous studie]30@,, 20], but these measures have
all been used in empirical studies by other researchers. &gsuaring a set of different metrics
we hope to overcome the disadvantages and to be able to sked fheture.

2.4.1 Size Metrics

Lines of code (LOC) is one of the most used metric in the ltte perhaps since once defined
it is very easy to calculate. The problem is the definition —ewdtd we aggregate also the
commented lines or the empty lines in these measures? Onaonk Wwe want to investigate
the code itself, so it seems that only statements shouldestt&is. On the other hand, the
number of comments affects the understandability of the @dl thus its maintainability, and
the empty lines affect the readability of the code.

Lehman etal. [10, 11] examine the growth of software wittarédo the number of software
modules. As discussed in Godfrey and Tu [5], these can bedemesl as LOC or number of
files. Since there is a variation in the size of files, they dediLOC gives a better picture
of the source code. Capiluppi et. al. [3] examines diffegnictural properties of software
evolution for the ARLA open source system. They find thatladl size related metrics (LOC,
files, folders, etc) grew over releases.

Intervals between releases give a picture of the softwaatthe— highly frequent releases
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indicate high maintenance activity which might mean mamnmgrerand bugs (mainly in the
production versions, as development versions are govdmyddrvalds’s principle of “release
early, release often” [23]). Too rare releases may indisafeware that is not changing and
developing. In a report for the Linux Foundation regardiegsion 2.6.* [9], they show that in
the 2.6.* release the release frequency is about 2.7 mohtfeba releases (between the major
3-digit releases). This follows the decision of Linux toa@tes every 2-3 month in order not
to back up new developments. They also show that the numisvafiopers and number of
companies investing in Linux development is growing overei In fact, according to their
statistics, the number of individual developers has dalbiethe last three years. Still, the
majority of the work is done by a small percentage of the dgyais (the top 10 individual
developers have done 15% of the work, and the top 30 haveilooiatd 30%).

The number of files and directories handled are related tedftevare maintenance. As
shown in [3], reorganization of the code can be identifiedi®/dhanges in the number of files
and directories.

2.4.2 McCabe’s Cyclomatic Complexity

McCabe’s Cyclomatic Complexity (MCC) [15] measures the ptexity of a program. The
idea is to calculate the number of linearly independent paihthe program’s control flow
graph.

The graph G is the control flow graph of a program when its nedegspond to the basic
blocks and a directed edge connects blocks v and u if the hi@ak be executed immediately
after v. The general formula to compute the cyclomatic caxip} is

M=V(G)=E—N+2P
where:
V(G) — Cyclomatic number of G
E — Number of edges
N — Number of nodes
P — Number of connected components in the graph

McCabe also show equivalence to a simpler calculation — timelrer of predicates (con-
ditional branches) in the program plus 1. These includiefitelse, for, while, do, and case
statements. McCabe also introduced what is referred asgterided cyclomatic complexity”
which is counting the actual conditions, and not the cooddl statements. The reason for that
is the connectives “and” and “or” add complexity to the cofe:example “if(c1l and c2) then”
can be written (without connectives) as “if(c1) then if (¢B¢n”. Thus the contribution of the
statement to V(G) should be 2 and not 1. Myers [17] suggebidite cyclomatic complexity
should be the range between the number of predicates plud thaextended complexity.

The cyclomatic complexity of a program is the sum of the cy@tic complexity of all the
functions in the program.

According to McCabe a function with cyclomatic value of ou€r should be rewritten or
remodeled. The SEI (Software Engineering Institute) satggkthe following table:
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V(G) Complexity and Risk
1 —10 | a simple program, without much risk
11 —-20 more complex, moderate risk
21 —50 complex, high risk problem
> 50 | untestable program (very high risk)

As mentioned before, although validated by many studidsastbeen shown that cyclo-
matic complexity is strongly correlated with lines of coflathermore, cyclomatic complexity
measures control flow complexity but not data flow complejd§, 31]. However, since we
are interested in comparing this value for different varsiof the same product we believe that
it is reasonable.

2.4.3 Halstead’s Software Science

Halstead [6] suggested a few metrics that are all based twas@fscience in which a computer
program is a collection of tokens that can be identified asaipes or operands. In C, operators
are the function calls, the different types of parenthabesynary, binary and ternary operators
and reserved words of C which are function-like. Operandsltthe identifiers and constants
in the C program.

The variables are:

n, — Number of distinct operators in a program
no — Number of distinct operands in a program
N; — Total number of operators
N, — Total number of operands

Based on these, the following metrics (Halstead’s Softaience) are calculated:

Vocabularyn = n; 4 ns
LengthN = N; + N,
VolumeV = Nlg,n
Difficulty D = % « 22

n2

Effort E =V x D

These all are defined at the function level. For a program, Weaggregate the Halstead
metrics of all its functions.

The Halstead VolumeHV') actually measures the total number of bits needed to wrée t
program. This is the product of the total number of tokens thedhumber of bits needed to
identify all the unique tokens. Halstead Difficulty/ (D) is the number of unique operators
times the average usage of the operands divided by two. Té@suane indicates how difficult
the program is to develop, maintain and test. The more opsrand the more usage of single
operands, it will be more difficult. Lastly, Halstead Effstsimply HV timesH D.

It should be mentioned thatif equals zerd? V' cannot be calculated. Similarly,qif, alone
is zero, HD cannot be calculated. This can occur in empty functions dumctions which
hold only the “return” statement.
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2.4.4 Oman’s Maintainability Index

Oman developed the Maintainability Index (MI) as a composiktric that attempts to fit data
from several software projects [18, 34]. Ml is defined as:

MI =171~ 5.2In(AvgHV) — 0.23AvgV(G) — 16.2In(AvgLOC) + 50 sin(y/2.46perC M)
where:

AvgHV — average Halstead Volume per module.

AvgV (G) — average cyclomatic complexity per module.

AvgLOC — average lines of code per module.

perC M — average percent of comments per module.

The Ml value is 100-point scale from 25 to 125, matching thesfiwners Oman used in
order to construct the MI formula, where low values correspeith lower maintainability and
high values with higher maintainability.

Thomas [33] notices that the term perCM should refer to thetion of comments in the
file and not the percentage. This is because if we refer teeptage perCM is between 0 and
100, thus 2.46 perCM is between 0 and 246 and the square roetigsbetween 0 and 15.68.
If we use a fraction (i.e. perCM is a value between 0 and 1) raémge of\/2.46perC'M is
0 to approximately;. Therefore, perCM will be calculated as the ratio of commaeatthe
total number of lines. Also, like Thomas [33] we will consideerCM as the ratio between
comments and comments plus lines of code with no commentsaokd This way a line
which contains both code and comment appears as a commeaaisbus a line of code.

The LOC value will be the average lines of codes with no conmtmenblank lines. The
other values are straight forward (when we consider moduigefanction).

Also, the value of Ml per series will be the average value ofgdt files in the series.

3 Ourldeas

3.1 Different Maintenance Activities

In regards to the Linux kernel code we associate the diftdygres of maintenance activities
with different parts of the kernel, as follows:

1. Corrective maintenance is reflected in successive vessibproduction kernels. This is
a reasonable partition due to the structure of the Linuxisass We can safely assume
that successive versions in the production kernel are lyst@irective.

2. Adaptive maintenance is reflected in @aeh anddrivers directories (especially in the
development kernels). Since tlech and drivers directories encapsulate most of the
interactions of the system with its environment, a changkem will indicate adaptation
to a change in the environment.
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3. Perfective maintenance is reflected in successive veysiadevelopment kernels. Again,
this matches the structure of the Linux versions — we canmsghat successive ver-
sions in the development kernels will be perfective.

4. Preventative maintenance is reflected in isolated evaentgich many files are parti-
tioned, removed, or moved (mainly in development kerndt®re we assume that pre-
ventative maintenance is related to code reorganizatidrcan be identified, for exam-
ple, by changes in the number of directories [3].

Collecting data and calculating different software metrdll allow us to further characterize
the maintenance process in Linux.

3.2 Lehman’s Laws

Most of our analysis of Lehman’s laws stems from previowsditure regarding verification of
these laws [14, 13]. We will examine the Laws@dntinuing ChangeContinuing Growthand
Self Regulatioraccording to the number of LOC in each version (similarly tod@ey’s test
of the Continuing Growthlaw in Godfrey and Tu [5]). Continuing Change will be examine
through thearch anddriversdirectories, as these have to do with changes in the enveatm
The other two can be examined looking at all directories dy anthe core kernel. Contin-
uing Growth (which deals with added features) will be exasdimainly through releases of
development kernels, where we expect functionality to lmkedd

The law of Increasing Complexitwill be analyzed using the different software metrics
(McCabe’s Cyclomatic Complexity, Halstead Metrics).

The law oflnvariant Work Ratevill be analyzed using information on code changes in files
and directories. It is common to try and examine this law gisimork hours” or number of
developers, but as we have stated above, it is hard to findistarimation, and even if it will
be found, itis of doubious accuracy. Another idea that wéakiéck is the number of versions
released per time unit, as an indication of constant wokk r&his will be examined especially
in development versions, where version releases are nearednt and versions are more easily
released (less stable releases can be released, in coomgargroduction versions).

The law of Conservation of Familiarityill be examined by incremental growth, as sug-
gested in [13]. For this analysis we will use successiveiorssof release 2.6, in which the
versions are released in a relatively stable rate and are managed.

The laws ofDeclining Qualityand the law ofFeedback Systenase not in the scope of this
work, but we will try to make observations about them. Ac@ogdo Lehman et al. [13], the
first follows the principle of uncertainty and is supportatedo a theoretical analysis. The
second is supported by the other 7 laws, since it can be usatidoalize them. Moreover, for
the feedback systems, there was much work on supportintathid.ehman’s FEAST project)
including different measures and regressions and systeancligs.

For each analysis, we will examine the data in two differeneéadories divisions — all
directories and the core kernel (i.e. without oalgh anddrivers).

4 Methodology

We have measured the different properties and metrics dfithex Kernel in a manner that we
will now describe.
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Major Version| Number of Versiong Last Version Included
v1.0 1 1.0
vl.l 36 1.1.95
vl.2 14 1.2.13
v1.3 114 1.3.100 (pre2.0.14)
v2.0 41 2.0.40
v2.1 142 2.1.132 (2.2.0-pre9)
v2.2 27 2.2.26
v2.3 61 2.3.51 (2.3.99-pre9)
v2.4 61 2.4.36.6
v2.5 76 2.5.75
v2.6 12 2.6.10
v2.6.11 13 2.6.11.12
v.2.6.12 7 2.6.12.6
v2.6.13 6 2.6.13.5
v2.6.14 8 2.6.14.7
v2.6.15 8 2.6.15.7
v2.5.16 63 2.6.16.62
v2.6.17 15 2.6.17.14
v2.6.18 9 2.6.18.8
v2.6.19 8 2.6.19.7
v2.6.20 22 2.6.20.21
v2.6.21 8 2.6.21.7
v2.6.22 20 2.6.22.19
v2.6.23 18 2.6.23.17
v2.6.24 8 2.6.24.7
v2.6.25 12 2.6.25.11
Table 1:

Analyzed Versions Information - the names and number ofieessanalyzed for each major
version.

4.1 Research Data

We examined all the version from March 1994 to August 2008s¢hare 810 versions in to-

tal. This includes 144 production versions (1.0, 1.2.*,2.9.2.* and 2.4.*), 429 development

versions (1.1.*, 1.3.*, 2.1.*, 2.3.* and 2.5.*), and 237 siens of 2.6.*. The detailed informa-

tion on these versions appears in Table 1. Notice that fodévelopment versions 1.3, 2.1,
and 2.3, the last versions were called pre-2.0, 2.2.0-piek2e8.99-pre, respectively, and were
designed to ease the move between versions. In these theagarmne of the last “pre” version

is in parentheses.

We aimed at examining the entire source code of Linux KerAdlpical C program con-
sists of files with two different suffix: .h or .c. The .c filesnsist of the executable statements
and the .h files of the decelerations. Both should be looked atder to get the full picture
of the Linux code. Some studies included only the .c files ¢baample [28]), but their results
are problematic because they do not include the decelesatiathe header files. Godfrey and
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Tu [5] examined all the source files which are both .c and .k.fillhomas [33] also examined
both .h and .c files. However, since he used a CASE tool whighires preprocessing, only
files in the preprocessed configuration were examined.

We decided to examine both the development and the produaticsions in order to iden-
tify different patterns in each of their metrics. Thomag[88amined only the second gener-
ation production series (2.0.*, 2.2.* and 2.4.*), and Gegfand Tu [5] examined both devel-
opment and production version until January 2000 (the lextyction version was 2.2.14 and
the last development version was 2.3.39). They examingdsmmhe of each group of kernels,
when they decided to examine more production kernels, whare less frequently released.

4.2 Klocwork — The case of the CASE tool

Our initial research plan was to use Klocwork, the CASE (CotepAided Software Engineer-
ing) tool used by Thomas [33]. Klocwork (see www.klocwordk) is a static code analyzer.
It can detect a wide variety of defects and vulnerabiliteswell as architecture and header
file anomalies. In addition, it can compute nearly 100 défgrmetrics: at the file level, at the
function level, and (for object-oriented languages) atdlass level. These metrics vary from
the familiar (e.g., lines of code, cyclomatic complexitylstead volume) to the less frequently
encountered (e.g., average level of control nesting).

Klocwork is powerful; it can analyze large software produatonsisting of 5 million or
even 10 million lines of code. As mentioned above, Klocwodeke with pre-compiled code.
In theory, pre-compiling Linux is easy; all one has to do isnwoke the gcc compiler with
the appropriate options. The resulting code can then be istglimio Klocwork. In practice,
there are serious problems, because the C language has@&woliirme. Some features have
been dropped (“deprecated”), and others have been addedrdhegly, each version of Linux
has to be pre-compiled using an appropriate version of thecgmpiler. The source code of
each version of gcc is available on the Web, together withltaries. The problem is that, to
compile a given version of gcc, one needs a compiled verditreappropriate earlier version
of the gcc compiler for the appropriate operating systenis &lso requires choosing a specific
configuration for each compilation. The chosen configuratudl affect the structure and the
function of the pre-compiled Linux kernel, and the files twdt be analyzed.

Another problem we find with the analysis of pre-compiled&@thd not the code as is,
is that we are interested in complexity from the developgoist of view, and not complexity
of the compiled binary. For example, macros are tools to Biynfhe readability of code:
the macro %define MAX(X,Y) (X > Y)?X : Y” should not increase the complexity
of the code each time a developer uses it. True, in run timedkde will be more complex,
but the whole purpose if such macro is to “hide” the conditm to effectively reduce the
independent paths in the code and the MCC. Thus, we belie¢éttbse should be counted as
seen by the developer and not by the computer (i.e. as theisbeééore pre-processing).

To avoid compilation, Klocwork allows to manually chooseedtories of files and header
files which will be directly pre-compiled with the Klocworke-processor (avoiding the use of
gcc). This option allows analyzing the entire code, with pedfic configuration limitations,
but does not include all the linking and the definitions. Wetfeat using this method, we will
truly analyze the code as a developer or a software engina&s vt — the whole source code,
including all possible definitions. We decided to go on anaticme with this method.

In order to make sure that we do not suffer from choosing theshaod, we extensively
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compared the results of the gcc method and the Klocwork pregssing method. Although
the second method allowed analysis of much more files (ovien€stmore files analyzed and
over 6 times data size than the gcc method), our comparisealer two major problems with
the Klocwork pre-processing method:

a) Definition Problems: Without compilation there were nérdgons of certain values (for
example Linux configuration macros). This resulted in irgistent code being created.
We came up with three different ways to handle this:

1. Manually choose which definitions should be used and tathes®. This option
limits us to a chosen configuration, and therefore was nademo

2. Edit all the files before the Klocwork analysis, and remall¢he #if, #else pre-
processor commands. This led to an inconsistent code somoe of the time the
#if scope defines a function in one way, and #else scope in another. We had to
impose our own logic in choosing which scope is better.

3. Leaving the situation as is. Klocwork handles lack of d&@ins by choosing the
“else” branch in the pre-processing. This means that iboearts of the code are
in a scope of#ifdef pre-processor commands we do not analyze them. We will
analyze only the#else scope or thétifndef scope. Basically, this is equivalent
to our configuration being the “else” configuration. We amaly the cases and
occurrences of such pre-processor commands (As descnlibd appendix), and
found out that about 30% of the lines out of all the lines in toele are in the
#if scope in the early version and about 20% in the later ondss means that
the upper bound of code not analyzed will be 30% (m#mlyhave #else in their

scope, and there are alggafndef scopes, so these are analyzed). We came to a

conclusion that when we choose the no-compilation methostiWanalyze a large
amount of the code, which is our main interest. This resualigdfinitions that are
not consistent or do not define a “normal” configuration ofxnbut working in
this method still allows us to analyze more code and undeadtatter the trends in
Linux kernel code.

b) Errors in Metrics: Some of the metrics were miscalculatgthout proper gcc pre-
compilation.

While we felt that we can overcome the problem in (a), as dessmabove, we couldn’tignore
the fact that sometimes some of the metrics are miscalcllaBne option was to go back
and use the standard way of operating Klocwork — using theagp@ate gcc and choosing
a (maybe few) specific configuration. Another option was yotér do our analysis using a
different tool.

Eventually, we decided to write our own tool. This had, of is&) its own problems and
limitations, but we felt that this way, although we limit @eives to a few specific metrics, we
know exactly how they are calculated.

4.3 Our Program

We coded a perl program that, given a c-code file, separatewiits different tokens, and
generates an output file that calculates the following roein the following manner:
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The following are calculated at the file level:

lines — simply counting the number of lines in the file.
empty — the lines that have no character written in them.

comments — the lines that contain any type of comment (/*artd // comments which were
allowed later in the C compiler)

combined comments — the lines that contain both commentsted statements.
define — number oftdefine commands.

include — number oftinclude commands.

includes (local only) — number of local includes.

funcNum — number of functions in this file.

ifElse — number of#if/ #elif/ #ifdef/#ifndef directives.

MCC — McCabe’s Cyclomatic Complexity. It is the aggregatadrall the cyclomatic com-
plexity values of all the functions in the file.

EMCC — Extended McCabe’s Cyclomatic Complexity. It is theyagpation of all the ex-
tended cyclomatic complexity values of all the functiongha file.

The following are calculated at the function level:

funcName — the function name

valid operators — all operators to be counted in the fundfitescribed below).
valid operands — all operands to be counted in the functiesddbed below).
unique operators — distinct operators from the valid oesaist.

valid operands — distinct operands from the valid operaisds |

num lines — lines in this function.

num empty — empty lines in this function.

num comments — commented lines in this function.

num combined comments — combined commented lines in thigifum

num ifElse —#if/ #elif/ #ifdef/#ifndef in this function.

MCC — McCabe’s Cyclomatic Complexity. It is calculated as ttumber of if/case/for/while
commands in the code and the number of “? :” ternary operator.

EMCC - Extended McCabe’s Cyclomatic Complexity. It is céted as MCC plus the num-
ber of “ands” and “ors” in the conditions of the above pretksa
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Operators and Operands:
The distinction between operators and operands is as fellbased on [25] for pascal, [19]
for c):

Operands: Identifiers, constants.
Operators:

Function calls,

The following reserved words: break, case, continue, digfda, else, for, goto, if,
return, sizeof, switch, while.

The following symbols{} () [I! % & |x+—/,.:;<>=7~"#\""%=&&
E=|ls=4+++=—-——=—> ... /=1 << <<=<=>=>>>>==="=

|= =& #+#
With the following rules:
1. In parentheses only the opening parenthesis counts.

2. In if(), for(), while(), and switch() the parentheses arpart of the construct. Also in
“case:” the colon is part of the construct.

3. The ternary operator ?: is counted as one operator.
4. The comments are not considered for any of this.

5. The string between quotation mark is counted as a singdeaod. Same with a string
between<> in #include.

As for the #if/ #elif/ #ifdef/#ifndef issues we found in Klocwork, we decided to analyze
the entire code, including the scope of these pre-proce&ssomands. This way we analyze
the code as the programmer sees it — a whole file, with therdiftgpossibilities of definitions.
When analyzing these lines created inconsistent code Xonple both thetif and the#else
declared the same function with different input parametetsoth had an opening parenthesis
without a closing one), we identified this file and counted jrablematic file. Later on, we
didn’t use it in our analysis.

Fig. 3 demonstrates the analysis of the Linux/kernel/patiile in version 1.0. Each anal-
ysis file has a different length — depending on the numbermétions in the file.

We ran this program for all the .c and .h files of all the versiameating an output file with
the calculated metrics for each one. Then, for each versmaggregated all the data from
these output files and generated one output file per versiinthve following information:
total number of files, total number of functions, number opgnfunctions, number of empty
files, number of problematic files, number of defines, numlbencdudes, number of if/else
commands, total lines of code, lines of code without comsenblanks, McCabe Cyclomatic
Complexity value, Halstead’s Software Science metricsa@mMaintainability Index.

As mentioned above, the size of each of these output fileooptional to the number of
functions each source files contain. We separated the seddach kernel major version (v1.0,
v1.1,v1.2,v1.3,v2.0,v2.1,v2.2,v2.3,v2.4,v2.5 and yRoGts own directory which contains
all the files of the appropriate minor versions. The sizefie$é directories ranges from 2 MB
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lines: 35

enpty:. 6

comrents: 10

combi nedcoments: 1
define: 0O

i ncl ude: 3

i ncludes(l ocal only): O
funcNum 1

ifElse: O

MCC: 3

EMCC. 3

funcName: panic
valid operators: 37
val i d operands: 20
uni que operators: 14
uni que operands: 13
numlines: 12
numenpty: 1

num comments: O

num conbi ned coments: 0
numifElse: 0

MCC. 3

EMCC. 3

Figure 3:An example of the output file for a single source file.

in v1.0 and hundreds of MB in v1.* series, to a few GB in the \&ties and around 20GB for
the v2.6 series, depending on the number of files in eachoreesid the number of functions
in each. These files contains large amounts of data, whichaaceto handle and analyze, thus
a single file for each version was needed.

Aggregating metrics at the kernel level

We used the same approach used in other studies (such asaffBfs explained in the
original metrics definitions.

LOC can be calculated at all levels — function, file or entieerlel. Here, the A-LOC value
for the entire kernel is all the lines (including commentd blanks) in all the files in the kernel.
LOC are all the lines not including comments or blanks.

McCabe is at the function level, and for a specific file McCapeamatic complexity is
simply the sum of all the cyclomatic complexity values offimictions (meaning, files with
no function, such as some header files, will have complexi§)o The McCabe cyclomatic
complexity for the kernel will be the sum of all the files’ cotepities. The same applies for the
extended complexity. In order to compare the differentiomis despite the addition of new
files, we will sometimes look at the average cyclomatic caniy of the files of the kernel.

Halstead’s software metrics are calculated per functiahiirs customary to aggregate
them for the file level. Again, for a specific kernel we will aggate the values of all its files.
In order to compare the different versions, despite thetexidof new files, we will sometimes
look at the average Halstead metrics of the files of the kernel
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Oman’s Ml is defined at the file level. Since it is a 100-poirdleanetric from 25 to 125,
we cannot aggregate the values. Instead, we will averageathe of all files in the kernel.

We calculated the different metrics for each of the kernglt) and without thearch and
driversdirectories.

Li nux/fs/stat.c

NAME LOC EMPTY COM COMST DEFI NE | NC | NC- LOCAL FUNCNUM | FS MCC EMCC HV HD HE
file 202 21 19 0 2 6 0 9 0 29 34 3975.36 153.02 76119.92
cp\_old\_stat 16 1 0 0 0 0 0 0 0 1 1 605.40 9.72 5882.50
cp\_new _stat 51 3 14 0000 0 05 5 1397.19 26.25 36676.22
sys\_stat 121 0000 0 0 0 3 3 232.79 16.25 3782.88
sys\_newstat 121 0 00 0 0 0 0 3 3 232.79 16.25 3782.88
sys\ _Istat 121 0 0 0 0 0 0 0 3 3 232.79 16.25 3782.88
sys\_newstat 121 00 0 00 0 0 3 3 232.79 16.25 3782.88
sys\ _fstat 11 1 0 0 0 0 0 0 0 3 5 326.98 14.4 471.47
sys\_newfstat 11 1 0 0 0 0 0 0 0 3 5 326.98 14.4 4708. 47
sys\ _readlink 16 1 0 0 0 0 0 0 0 5 6 387.64 23.25 9012.73

Li nux/ fs/ bl ock\ _dev. c

NAME LOCC EMPTY COM COMBT DEFI NE | NC | NC- LOCAL FUNCNUM | FS MCC EMCC HV HD HE
file 216 20 20 2 1 6 0 3 0 38 44 5149.45 171.09 472 486. 89

bl ock\ _wite 55 4 0 0 0 0 0 0 0 10 11 1698.17 61.2 103927.99

bl ock\ _read 130 10 15 2 0 0 0 0 0 27 32 3431.63 107.39 368509. 77

bl ock\ _fsync 1 0000000011 19.65 2.5 49.13
Li nux/ kernel /panic.c

NAME LOC EMPTY COM COVST DEFI NE | NC | NG- LOCAL FUNCNUM | FS MCC EMCC HV HD HE
file 356 101 03 010 3 3 271.03 10.77 2918.77
00033

1
panic 121 000000 271.03 10.77 2918.77

Fi Fu eFi EFu Probs fiLOC fi NCNB fi AMCC fi AEMCC AMcc AEMcc fi AHV fi AHD fi AHE AHV AHD AHE M

487 3170 0 19 2 165652 102069 40.34 46.43 6.17 7.10 5735.61 154.51 333163. 13 881.15 23. 74 51183. 11 106. 67
166 1611 0 15 1 84574 50461 59.87 67.68 6.13 6.93 8418. 19 206. 55 505441.72 867.42 21.28 52081. 52 109. 25
321 1559 0 4 1 81078 51608 30.27 35.48 6.21 7.28 4348.35 127.59 244072.02 895. 33 26. 27 50254. 73 103. 26

Figure 4:An example of the output file for a specific kernel.

Fig. 4 is a part of the summarization file of version 1.0. Farreaf the files in this kernel,
the data is summarized in a table. In addition to the valuaisappear in the analysis file, here
we calculate HV HD and HE which are the Halstead Volume, Diffic and Effort respectively.
The last three lines in the file include the aggregated dattdh&entire kernel. The first line is
the data for all the source files, the second includes onlycedies from thearch anddrivers
directories and the last line includes data for all files imeotdirectories.

The values are in the following order: total number of filestat number of functions,
number of empty files, number of empty functions, number obfgmatic files, total lines in
the kernel, total lines not including blanks and commenthékernel, the average McCabe
Cyclomatic Complexity in the file level, the average ExteshteCabe Cyclomatic Complexity
in the file level, the average McCabe Cyclomatic Complexitthie function level, the average
Extended McCabe Cyclomatic Complexity in the function levaverage Halstead volume
in the file level, Average Halstead difficulty in the file levélverage Halstead effort in the
file level, Average Halstead volume in the function level.efage Halstead difficulty in the
function level, Average Halstead effort in the functiondeand the Maintainability Index.

The size of the summarization file for each version range frmmdreds of KB in the
smaller versions, to around 1 MB at the beginning of the 2rteseto between 10 and 18 MB
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for the 2.6 series.

5 Results

We examine the results of our calculations in three diffeespects - looking at all the kernel’'s
directories, looking at the directories withautch anddrivers and looking only at those two
separately.

5.1 Data Used in Analysis

One of the big challenges that our experience with Klocwaiked was handling the pre-
processor commands. We believe that the correct way tonperdor analysis is as the pro-
grammer views it — the macros are planted there for the eagseefthe “ifdef” sections are
there in order to handle different definitions using simgdade and the same file structures.
Both should be measured appropriately with the differertricee— the macros should be cal-
culated with all their properties upon their definition arsdsafunction call in other cases. The
“ifdef” sections should be calculated fully and not ignofetause a programmer coding such
a file must be aware of all different possibilities of the flofatloe code.

In most cases, we were able to analyze files which had “ifde€tiens. In other cases, we
saw that when analyzing both paths of the “if” a malformedectdcreated and thus we were
not able to analyze it with our automated tools. Trying toliis manually is also a challenge
— how does one decide which path to analyze? Therefore, weeameountered such files we
removed them from the analysis. Other malformed files (vew) fwere removed as well and
are not a part of our calculations.

Empty function and files were not considered problematicaardalculated in the metrics.
They are a part of the code and might be a part of a specialdésigexample implement-
ing polymorphism or the null object oriented design or jestMing modularity and expansion
options for different versions).

Overall, less than 1.5% of the source files were not analyzedl.aAmong thearch and
drivers subdirectories between 0.3%—-3% of the files were not and)y@bereas in the other
parts of the kernel the worst case of un-analyzed files washes 0.7%. Thus the vast majority
(almost 99%) of the files of the Linux kernel were analyzed #o&ir data is aggregated in the
different metrics.

5.2 Calculated Metrics

In this section, we will display and discuss our results. Vilkalso compare them to those of
Godfrey and Tu [5] and Thomas [33], which are the two papeti thie most similarity to our
work.

As areminder, Godfrey and Tu [5] examined the growth of Limsing mainly LOC. They
examined all the source files in selected versions from betleldpment and production ver-
sions (mostly production versions) until January 2000 [#sé production version was 2.2.14
and the last development version was 2.3.39). Thomas [28y2&d different software metrics
in Linux in order to learn about quality and maintainabiliging Klocwork to examine all the
source files of the second generation production series(2.2.* and 2.4.%).
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For each of the graphs that show a different metric for akaers, the development versions
(v1.1,v1.3,v2.1,v2.3,v2.5) are in a dashed blue line, theypction versions (v1.0,v1.2,v2.0,
v2.2,v2.4) are in a solid red line and version 2.6 is in a ddgjteen line. As stated above, the
label at the end of each line indicates the major version raupand for the 2.6 series it will
indicated the third digit of the minor version.

5.2.1 Number of Files

Fig. 5 shows the growth in number of files in Linux. We see héa most of the growth
occurs in the development versions, whereas the produatisions are usually stable (except
maybe an increase at the beginning, they are constant Iatetroversions 2.0 and 2.2 these
increases are slow and small, but for version 2.4 we see agaise from its initial version until
the release of version 2.6. This behavior can be explaingtidynany software requirements
for that version and also by the delay of its release (noktieestmonth gap between 2.3 and 2.4
which indicates no releases at that time). This strangevi@hia the first years of version 2.4
will be discussed in detail below.

The 2.6 series demonstrates differences between the gevetd and production versions,
when we see that for each minor version (differentiated bythird digit — i.e. the 2.6.X view)
the number of files is constant (as in production versiong)jtigrows between the different
versions (as in development versions).

When trying to characterize the shape of the growth in theycbon versions, is it seen to
be superlinear up to version 2.5, maybe indicating that thertp is proportional to the current
size. But in 2.6 the growth seems to be linear.

Another issue that can be seen in the graph is the differdme®geenarch and drivers
and the rest of the kernel: the division of number of files asrthe kernel, as mentioned in
the background, is almost 50% for thech anddriversdirectories and 50% for the rest. We
can also clearly see that the growth for each of them is qualy similar, although there
are a few points which have different shape. For examplesiaer2.5 grows more and with
higher “jumps” each time for all other directories than #teh anddriversseparately. Another
example is 2.2 which has a jump in the beginningdooh anddriversand is pretty steady for
other directories.

The first jump in 2.5 (from 4017 to 4783 files in the core of thenked, versus a little more
than 100 in thearch anddrivers) is explained by the insertion of the sound subdirectory to
the kernel. In previous versions there was a sound diredtottye drivers, but generally the
sound project was developed separately until then anddated to Linux in version 2.5.5.
This created an increase both in the sound directory andiratdee include directory, which
was updated with header files. Although sound related fila® w&moved from the drivers
directory, the effect oarch anddriverswas not negative due to changes there (enhancements
and improvements of the ppc arch directory) and due to thetat the original sound related
files were much fewer (only 200 versus over 500). An importaste here, is that a major
increase in arch or drivers will usually also derive an iasein the other directories, due to
the addition of header files to the include directory.

The next jump is actually a combination of two effects. On@nishe drivers and arch
directories, when improvements and developments of the @t directory were made (ver-
sion 2.5.35). In the consecutive version (2.5.36) a new ¥igesn support was added (xfs),
generating an increase in the core kernel number of files.
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The growth of number of files in Linux

After that, the pattern of the increase is pretty “normaltheut major jumps and spikes.
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5.2.2 Number of Functions
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180000 25

160000 232%2
140000 -| 17 16
120000 -|
100000 -|
80000 -
60000 -
40000 -

20000 -

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Number of Functions — Other Directories
60000 |

50000 -

40000 -

30000

20000 -

10000 -

120000 - Number of Functions — Arch and Drivers Directories

100000 - Zho
80000 - P

60000 | //,V}E

40000 -

20000 -

Figure 6:
The growth of number of functions in Linux

Fig. 6 shows the growth in number of functions in Linux. OVenae see a similar picture
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to that of number of files — they are steadily increasing oveef where they are usually more
constant in the production versions. We also see the sanawioehegarding the 2.6 series.

We can see here significant differences betwareh anddriversdirectories and all others.
First, we see that in terms of sheer number of functions, ebda 2 of them are irarch and
driversand only; to ; are in all other kernel directories. Another issue is theugnovhich is
different for each of the subsystems: notice the differenoes2.2 and v2.5. In v2.2 tharch
anddriversgrow rapidly whereas they were pretty steady for all othezaories. In v2.5 on
the other hand we see big “jumps” for the rest of the kernel —ameg more development and
enhancements were added there étah anddriversare growing slowly in this time, merging
with the growth of v2.4 — the only merge in the graph). This chat the patterns we have
seen in the file number level and shows a similar picture fioefanctions point of view.

Notice that comparing with the number of files, the jump in tluenber of functions for
version 2.2 in thearch anddrivers directories is much higher (over 3000 functions added in
one version — 2.2.18, at the same time about 200 files weredaaklevell). These increases
are due to many changes and additions preformed in the wersiamproved USB support,
addition of network drivers and more. Note that 2.2 is a pobida version, but still it was
decided to add features to it.

5.2.3 Lines of Code

As mentioned above, we calculated the LOC both as total Im#s file and as lines of actual
code sans empty lines and comments (to be denoted “lines’Ll&@"). When examining the
number of lines in a file and number of lines of code (LOC), we aevery similar picture
(Fig. 7). This picture resembles also the patterns we hase gbove, for files and functions
increases. The number of lines grows with time, and the droatie is much higher for de-
velopment versions, whereas in production versions tleusually slow growth or constant
value. We also see the same behavior of version 2.6 (eachr m@ngion growth is constant,
but all together there is a linear growth rate). These resnftch those of previous literature,
Godfrey and Tu [5] measured lines of code in 2 different masindhe actual lines in the file
(using wc -I Linux command) which is the lines including karand comments, the lines with-
out comments and blanks (using an “awk” script). Their figdineveal that the percentage of
comments and blank lines in the files are almost constantatelea 28—30%. Eventually, they
used uncommented lines of code as a measure of the size dftivaie system and used this
value in the growth analysis. They found that the growth efdlistem, in its first six years,
was super linear.

When looking at the graphs for the different directories,caa easily spot the jumps we
have seen before for 2.2 and 2.5. See for example Fig. 8 whimlvssthe growth of LOC for
thearchanddriversdirectories and for all others. In relative terms, the junmdsOC in 2.5 are
larger than the jumps in files and even in function, indigatimat the added files and functions
were larger than average.

Next, we calculated these metrics of general number of lamesLOC at the file and the
function level (averaging the values over the number offfiestions accordingly). We will
show the results for the LOC value, as the general numbemneg lgraphs are qualitatively
similar, and highly correlated.

When comparing the averages per file (Fig. 9) we see the folppicture: when examin-
ing the average for all the directories, generally theresta growth between major versions,
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Figure 7:
The growth of number of lines in Linux, with and without commtgand blank lines

until about version 2.3, and then a very slight decrease tiferonteresting finding is that for
the production versions series 2.0, 2.2, 2.4 the initialwgihaos much higher than of consec-
utive development versions, and they end up having the kigh@C/file. Another issue is
that whereas the other versions have much more volatilitherLOC per File value, for these
production versions (2.0, 2.2, 2.4) we see that after a meme06th” increase (less volatile)
comes a constant value. Interestingly, most of the vahattlomes from thearch anddrivers
directories, where the files are also bigger on average aaad the range of 370-500 LOC.
Interestingly, in these directories we see a “hump” shapéchwstarted in an increase and then
turned into a decline. In the other kernel directories, andther hand, the LOC per file is
almost always in the relatively narrow range of 160-200. ®hly structure in the other di-
rectories is a drop in 1.1, and jumps in 2.2 and 2.5 (only ooggsponding to the first jump
identified previously).

Combining this information with the general LOC (Fig. 7) ath@ growth in number of
files (Fig. 5), we find the following: the LOC (and number of §jjavas increasing the whole
time, and increasing between versions, and here we find als@ase, a much more volatile
trend and a higher increase for production versions thagrsilSince in each version we add
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Figure 8:
The growth of LOC in Linux, for different directories

different number of files with different LOC values and algolate existing code and increasing
the LOC, the growth is not smooth and the changes betweendngecutive versions can be
large (and in both directions). For the production versimescan see that the growth in the
number of files was smaller than that of the LOC, meaning e&ehiiaverage, has “gained”
more LOC. In other words, looking at each of the graphs LOCrandber of files separately
reveals only a small part of the picture — we just see an iseread we can say Linux is
constantly growing, both in amount of files and in LOC, but whe= look at the averages we
see the “marginal change” per file, only when we will look & tkal data we can understand
what exactly happened. An example of the incomplete inftionas in version 2.2.16 — in
this case we see a small increase in LOC and in number of fiks, \ery large increase in the
average. The cause of this is addition of only 4 files to theresctbry with total of over 54000
LOC (the jump is especially visible when looking at the dasathe core kernel files).

Looking at the data per function (Fig. 10) we find a slightlffetient picture: initially the
LOC per function is relatively stable, and then in versia®ifis decreasing. Again we can spot
a different behavior of versions 2.0, 2.2 and 2.4 which areentonstant over time (with the
exception of 2.2 explained above) — matching the developseeme of production versions.
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naturally be an increase in the number of functions (as we baen in Fig. 6).

This result is similar to that of Thomas [33] which examinled software quality and main-
tainability metrics in Linux using a CASE tool. He used theguction version 2.0.*, 2.2.*
and 2.4.*. The tool produced two different LOC metrics: onf@ickh was the actual lines of
code and the other NCNB-LOC which is the non-comment nonllZDC. In all his measures
he used the latter metric as the lines of code. Thomas fouaggh&nomenas regarding LOC.
At the kernel level, the size of the kernel grows linearly otime, with much less volatility
than between series. On the other hand, the average lineglefic a function consistently
decreased from series to series. These two finding lead tm@usion that the number of
functions must be increasing over time.

Focusing on the core kernel directories, we see a somewiagst behavior. First, there
is a big decrease in LOC per function in version 1.1, while¢hs in increase in tharch and
driversdirectories of the same version. Then, there is a big jumgemien 2.2, which seems
to also lead to a high initial value in the 2.5 series — but thetreases gradually throughout
the series.

Another related metric is the percent of comments (more cented code is expected to
be more maintainable), which gives another perspectivedadlation between the two terms
LOC and NCNB.

Fig. 11 displays the ratio of the comments to the total noptgrnines (comments and LOC)
in files in each kernel. We see that generally, the commemigpdse around 25% (Similar to
the results of Godfrey and Tu [5]), and this percentage isenstable for production versions.
In the scope of all directories, there is a general decrgasend, to about 22%, while the
production kernels (2.0, 2.2 and 2.4) have somewhat highlees, and are more stable. These
general trends are a combination of different behaviorghfearch anddriversdirectories and
the rest. Inarch anddrivers there is a big increase in comments in version 1.1, and then
a general decreasing trend (to around 20%), where againrtigigtion version’s values are
more constant and higher. The trend in the core kernel dinestis also a big increase in 1.1,
but then it stays relatively flat, except for big jumps in 21p\Wards) and 2.5 (downwards).

5.2.4 McCabe’s Cyclomatic Complexity

First, we examined the total McCabe Cyclomatic ComplexXMCC in Fig. 12) and the Ex-
tended McCabe Cyclomatic Complexity (EMCC in Fig. 13) fdnalrsions. As can be seen by
the graphs, they are very much qualitatively similar (ofrse EMCC is higher in magnitude),
and for the rest of the analysis, we will discuss only MCC (tire commonly used metric),
as it is practically the same. The pattern of the graphs, [fatifferent divisions into directo-
ries, resembles that of the number of LOC, not surprisingtdlee correlation that was found
between the two (as discussed above).

These findings also match those of Thomas [33] who used tHerogtic complexity cal-
culated by the CASE tool which is the “simple” complexity —miber of predicates plus one
(MCC above). His findings show that there is a linear growtthim cyclomatic complexity,
which is more volatile between series than within the serlés also notes that since series
2.2.* and 2.4.* have larger code bases, there are more keanctihe code and thus the com-
plexity is higher.

Next, we looked at the average MCC per function, which isregeng since the original
metric is used for module complexity and the modules hereflaretions. Looking at this
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Figure 11:
Ratio of Comments in the Code, out of the sum of LOC and Comsnent

metric (Fig. 14) we find a decrease over time. The same pa#tt@srfound by Thomas [33]. In
his results the values are slightly different and also tl2es2ries values are much lower than
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Figure 12:
McCabe’s Cyclomatic Complexity for all Kernels

those of 2.0 and of 2.4, without apparent explanation. Siecanalyzed different files and used
a different tool, we expect slight changes, but the genectdie remains the same.
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Figure 13:
Extended McCabe’s Cyclomatic Complexity for all Kernels

Looking at Fig. 14 might give the impression that with time #iverage complexity of the
functions in decreasing, indicating that maybe the qualitye kernel is improving with time!
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However, one should not get too excited prematurely; we mamember that the number of
functions and number of LOC also increases with time. It mjgkt be that we have more
functions with low complexity or just more functions whichlwgive this false picture. In
order to check whether this is the case we looked at the loligion of the MCC per function
over the different versions. Fig. 15 displays the cumuéatlistribution functions of the MCC
of functions for most of the major kernels. For each kernspldiyed the data is taken from
its first version (The chosen kernels are those where we sangels in MCC per function
values between them and their preceding version. Thatiesphahy the development versions
starting version 2.1 are not shown).

The lines are qualitatively similar, and are hard to distisy at first, but notice that the
order of the lines corresponds to that of the kernels in theving way — the most inner line is
kernel v1.1, the nextis v1.2, etc., and the topmost one & ¥8. Notice also that v1.2 and v1.3
kernels almost merge and so do v2.2 and v2.4. The fact thartlee of lines corresponds with
the order of kernels in such way, immediately says the fahgwthe cumulative distribution
function of kernels over time, although qualitatively dianj is more concave. In other words,
over time we have more functions with lower MCC value.

probability

Figure 15:
Cumulative Distribution Function of McCabe’s Cyclomatior@plexity per Function for
selected kernels

Notice first, that until about MCC value of 12, the line copesding with v1.1 is much
lower, i.e. there are much less functions in 1.1 with low @HUCC value in comparison to
the later versions. This can imply that work was done in otdemprove the complexity of
the initial version code. The other versions are more siml@ach other, especially for MCC
values of 1 and under, or 12 and above. Looking at the figureaweasily see that starting with
version 1.2 around 28% of the functions have MCC value of 1 ditds increased to 30% and
over in version 2.2. The same behavior occurs with the valiZeamd less (starting at around
42% in the older versions and approaching 50% in the newsrores). The percentages of the
rest of the values are very similar and slightly going dovam;gxample, in earlier versions 70%
of the code was under MCC value of 5, and in newer versiongibse to 80%. For the range
of MCC values of over 1 and under 10, we can see that the biggesaare in versions v2.0,
v2.2 and v2.6. In other words, the changes (improvemengsingoroduction versions except
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for the initial version 2.4 for which the MCC values are sianito 2.2. This can be explained
due to the problems with the release of version 2.4, whichla@g-waited for and had many
issues and complications in development and testing (ass&ithe below).

We can also see that 90% of the code has MCC value of 10 or 18%&i(8older versions),
which, as stated above, indicates of “a simple program,ouitimuch risk” according to the
SEI. This implies that 90% of the functions in Linux are easyaintain. Also, there are very
few functions with high-risk or which are unstable accogdin this metric. Regarding MCC
of zero — in each of the kernels there is about 1% of the funotvdh MCC of the value 0.
This happens when the function is simply empty.

In other words, there are two major reasons for the decreabe iaverage: (1) the number
of functions in increasing faster than the MCC; and (2) to s@xtent, there are changes in
the “types” of functions inserted to the kernel over time (extow complexity functions are
inserted). It is hard to conclude that the complexity is Imeicy smaller (especially since the
vast majority of the functions are “not at risk”), but we migionclude and say that it is not
increasing.

It should also be mentioned that out of the boundaries of thplts there are cases of single
functions (one function each time) with very high MCC. Theantribution to the distribution
is close to zero (for example, in version 2.6.16 we have aeifugpction with MCC of 255;
in version 2.2 there is a function with 470). To study the i¢BC functions, we look at the
tails of the distributions. This is done by plotting the sual function of the MCC values per
function (i.e. for each MCC value, what is the fraction of ¢tions that has higher value than
that) in a log-log scale.

Survival Function of McCabe's Cyclomatic Complexity per Function
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Figure 16:
Log-log survival functions of McCabe’s Cyclomatic Complgxper Function for selected
kernels

Fig. 16 displays the results. First, we see that the fraafaromplex function (MCC over
20) is less than 5%, and the fraction of those with high risiC@®/lover 50) is less than 0.6%
for each of the kernels. The plots are close to being stréiiggs in the log-log axes, indicating
a power-law relationship and that the distribution has a\éail.

Looking at the 20-50 MCC range, the 4 newest kernels (2.2, 26, and 2.6.16) keep
the same order as in the CDF function above: the newer a weisiat drops off faster. In
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other words, it has lower percentage of functions with higg@®Avalues. The other 4 kernels
behave a bit differently than in the lower MCC values: vemsial has the highest percentage of
function with MCC values between 20 to 26, but then it croseesther lines, until its values
are lower than those of version 2.0, indicating that untdwtMCC value of 60, 1.1 version
has a lower percentage of function with high MCC in comparisoversions 1.2, 1.3, and 2.0.
Notice that for the value of 60 and up the other lines crossioarl.1 again, and have lower
percentage of functions with high complexity. A reasonirgpind this behavior, that version
1.1, although initial and with a larger fraction of complexttions for lower MCC values, has
a lower percentage than later versions for higher MCC valoesld be that the software at
1.1 was more simple and initial, and that later improvemednig fixes, and environment and
architecture changes added complexity to it.

For versions 1.2 and 1.3 we see that they are merging for sbthe walues and interlacing
for others, but generally are very close to one another. \Wetlsat for some values (about
26 to 42) they are “worse” than 1.1 and have the largest ptagerof complex functions, as
described above. Version 2.0 is “worse” than the rest sigebout MCC value of 42.

Starting with MCC values of 70 and higher, we see a “step” bighaf the functions, which
is due to the fact that we are actually observing individualction. This causes the plots to
cross each other, and they do not keep a certain order. ifometsl the highest MCC value
is 170, in version 2.2 it is 470, and the other versions hakgegabetween 230 and 260. We
can see that the newest version has most of the time the loalests, but we cannot conclude
much about the rest. However, since the probability of fiamst to be in such values is so low,
this is not the significant effect on the complexity of eachnkd

Looking at the tails raises more questions — what are thetifume with the high MCC
values and what happens to them over time? Analyzing the MiGIC value functions re-
vealed a few interesting observations. First, the highevdACC functions are usually from
thearch anddriversdirectories (they are such for all the top values of the eraghikernels).
Second, these functions are many tinrgsrrupt handlersor ioctl functions, which receive a
request/command as an integer, interprets it and behavesdatgly. The implementation of
this is many times using long switch statement with tens fiédint cases, or using multiple
“if” commands. This, of course, results in a high value of MGAZ also found that many of
the high value functions are the same (i.e. in the “top MCQesll) for different kernels.

Specifically, we display here two examples of high MCC valugctions, and analyze them
over time. The first (Fig. 17) is a representative examplainotfions which have high values
throughout the different kernels. In this case, itisth@ctl function in the‘linux/drivers/char/vt.c
file. In the figure, we see the following graphs: on the lefesithe two top graphs are the LOC
and MCC of this specific function, next to each of them is thedL&d MCC in the file level.
The bottom left is the MCC value of the function after its naigon (see details below) and on
the bottom right we can find the number of functions in theioatfile.

Starting with the early version of 1.1.0, the MCC value fastfunction was 100, and it
jumped to about 200 in version 1.2.0, since then it had abdlmisame value. At the same
time there were no drastic changes in the file or function (L®MCC and number of functions
changes moderately). In mid version 2.5 we see a changet, Wiessee a small change in
the function’s MCC value from about 180 to about 160, andrltte function is completely
removed from the file and the number of function in the file @ases dramatically (from less
than 20 to over 100), as a result the LOC and MCC in the file Imerkase as well. Interest-
ingly, thevt.ioctl function was not replaced by the new functions, the strecbéithe directory
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Figure 17:

Analysis of constantly high MCC value function, over time

was changed — a new filéliux/drivers/char/vtioctl.c”) was added, and the function mi-
grated there. In its new home, the MCC value stayed at the gamkof 160, and grew up to
170 (the MCC values remained as if it never moved). Noticé ttemigration occurred in a
development version, while the production versions resdhinith the old structure.
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Figure 18:
Analysis of high MCC value function, changing over time

The second example (Fig. 18) is of the highest MCC functicghé&whole dataset, which is
the sys32ioctl function in the“linux/arch/sparc64/kernel/ioctl32.cfile, with an MCC value
of 470 in release 2.2.0 (by the way, the second highest vdluersion 2.2 is 187, which is
close to the highest value of the other functions. It beldgs function with high value for
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other kernel versions as well). This case is slightly déférfrom the above. First, the file
and function were introduced to the Linux kernel only in thieldhe of version 2.1 (2.1.42 in
mid 1997). It grew both in LOC and in MCC value throughout vens 2.1 and 2.2 (reaching
an MCC value of almost 600 at the beginning of 2001). Howewethe middle of version
2.3 (2.3.47 in the beginning of 2000), the MCC value and theCLdd this function dropped
drastically to the MCC value of 6. It remained in that leveltiighout 2.4 and in most of 2.5
(until version 2.5.69 in mid 2003). In that 2.5 version, thedtion was completely removed
(and did not migrate in the kernel), and also many other fonstwere removed from the file.
It remained that way also at the beginning of version 2.6] tive file was completely removed
in version 2.6.16. The functionality of this file moved to etiplaces in the kernel, using other
files and function.

The drop from MCC value of around 600 to the value of 6 in ver&d, was due to a major
change in the file. At that time, the number of functions infilkeeand the LOC grew. A new
method of handling the request was inserted, and insteasiod the switch statement, a new
structwith a handler was introduced. Now, instead of using tensaé&” statements, a table
with all the different cases was used. This caused the MCkual decrease so much.

The case of theys32ioctl function is an example of a function which had a very high
MCC value (a very complex function, way off the SEI chart)ttheopped to a very low value
(that corresponds with “a simple program”). The same dra@puoed in another maintainability
measure — LOC, and, by definition of the other measures, m tlo®. This is a real case of
perfective maintenance, in which the readability, the grenance, and the maintainability of
the file was immensely improved. Notice that this change wedun a development version,
while the production versions remained with the old funatio

To conclude, we learnt that the high MCC values are usualbtad toarch anddrivers
directories, and to functions with longwitch sections. Cases of high MCC are usually of
functions that have high MCC values throughout the diffefemrnels. However, sometimes
these functions are rewritten and improved. In such cabeskdérnel’s complexity is really
improving with time.

We also saw that while there are changes in structure andidast maintainability in
development versions, the production versions they emfeoge remain with the old struc-
ture/functions. This gives an assurance to our assumgptianperfective and preventative
maintenance usually happens only in development versions.

5.2.5 Halstead's Software Metrics

As stated above, there are some cases when Halstead’s $/=rinot be calculated (specif-
ically, if the vocabularyn equals 0, then Halstead Volum& ") can not be calculated, and if
n9, the number of operands in the function, equals 0, then ekdidDifficulty (H D) can not be
calculated). These cases generally occur when the funistiempty or when it includes only
operators (for example, when the function is only return furection call, etc). In these cases
instead of the undefined value &fV and H D (due to attempt to calculatg,0 or to divide
by zero), we treated the function as if its volume and diffigare O; when we aggregate the
volume and difficulty we ignored this specific function andemhwe calculated averages, we
used it. In the all directories level, the amount of such sasaround 0.9% out of all functions
whereH D could not be calculated and around 1.5% out of all functiohern&H V" could not
be calculated.
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Halstead Volume — All Directories
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Figure 19:
Halstead Volume for each Kernel

Again, the pattern when looking at the kernel level is a gngvone. All the different
graphs {V in Fig. 19, HD in Fig. 20, andH F in Fig. 21) show almost exactly the same
pattern which resembles the one we have seen so far for alt ptatrics, including the jumps
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Halstead Difficulty — All Directories
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Figure 20:
Halstead Difficulty for each Kernel

and the stable periods. These results resemble those ofdhi@38] who measured Halstead’s
Volume and Halstead’s Effort (using the CASE tool) and foansimilar trend — an overall
increasing trend, with much more variability between thiéedent series than within-series.
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Figure 21:
Halstead Effort for each Kernel

He also noticed that the values of the volume and effort arehnoloser between 2.0.* and
2.2.* than to the 2.4.* series. His explanation to this isnibenber of extern inline functions,
which was reduced from around 60% in 2.0.* 2.2.* series to #0%4.*. Since Thomas uses a
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Category| Avg. HV | Avg. HD | Avg. HE
All 2.4.25 627.15 19.37| 39224.57
xfs 2.4.25| 1063.94 30.65| 107102.2
other 2.4.25 590.18 18.41| 33478.82
All 2.4.24 592.43 18.45| 34252.18

Table 2: Halstead Metrics for core Kernel directories in v2.4.25; ddl functions, only xfs
functions, and all other functions. For comparison, valedail functions of v2.4.24 are in-
cluded.

CASE tool that performs preprocessing of the code beforutating the metrics, the effect of
the code in the extern inline functions appears in the fonstirom which they are called rather
than the extern inline function itself and thus affects ¢apgrts of the code. Nevertheless, we
also see that 2.0.* and 2.2.* are closer to each other thatt 2

Do these results imply that the software is becoming moreraoce complex? Again,
looking only at these figures we can not tell, since we can lnoireate the growth in code and
in files just looking at them. Furthermore, the shape of tloevtjn resembles that of the growth
of files (and of LOC). This is not surprising, since we expeatdtead metrics to grow with the
growth in the LOC, by their definitions.

When looking at the values per function (all three metriaséib directories in Fig. 22)
we see that generally, the average values per function areai®ng. Again, we see the same
phenomena that for the production versions the changes ifderrand they are much more
stable than those of the development versions. We also aeavtiile the general trend is a
decrease, versions 1.2, 2.0, 2.2 and 2.4 are actually siogeand then stable. Notice that each
one of them behaves that way, but when compared to each titbgeneral trend is downward.

When we look further into this data by dividing into the driéat directory groupsHV in
Fig. 23, HD in Fig. 24 andH E in Fig. 25), we see that in thach anddrivers directories,
the values for 2.0 and 2.2 are increasing (whereas they aistasd in the core kernel group)
and pretty stable for 2.4 (but increasing with a very shampgun the core kernel). Notice
that generally, although each version is stable/not dscrgabetween the versions the trend
is a decreasing one. However, for 2.4 in the core kernel weastiferent pattern — for all
Halstead metricsH{V, HD and HV) the trend of version 2.4 is increasing. Specifically, the
large “jump” happens in 2.4.25 (which was released with3® .&nd has close Halstead metrics
values). Notice also that there are two jumps in 2.5 too.

When investigating the changes and differences betweeBfahd 24.25 we found that
a new file systemxfswas added to 2.4.25 (this file system was introduced firstsaB@.and
was a part of the 2.6 initial production version). A deepegestigation of thefsfiles revealed
the following: at total 170 new source files were added toZB.4and just a bit below that
to 2.5.36). These files include a total of 1786 functions. \Alewdated the average Halstead
metrics values three times: only for these new functions,afbother function in the core
kernel, and for the two function groups altogether. Theltesue shown in Table 2, including
a comparison to the values of the previous version. It shtxasthexfs functions raise the
average of all Halstead Metrics and they are the reason &bitdp jump. Moreover, when
comparing to previous versions we see that without this gbatmere would be a decrease for
all average Halstead metrics values.
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Avg. Halstead's Volume per func - All Directories
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Figure 22:
Average Halstead Metrics per Function, for all directories

As mentioned above, these results can also explain the dgamp in v2.5 (the release of
v2.5.36).
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Figure 23:
Average Halstead Volume per Function, for different diogigts groups

The fact that we see that the average Halstead metrics petidaorare decreasing, fits the
picture we have seen earlier: there are less LOC on averafigno#ion, thus metrics correlated
(or related) to LOC will be affected in the same way; we exp&erage MCC to decrease over

time, and also Halstead metrics.

5.2.6 Oman’s Maintainability Index

As described above, Oman’s Maintainability Inde {) is a linear combination of different

metrics. As a reminder, th&/ [ is:

MI =171 -52In(AvgHV) — 0.23AvgMCC — 16.2 In(Avg LOC') + 50 sin(4/2.46perC' M)

We have seen that per function (“module”i/), the average values of Halstead Volume,
McCabe’s Cyclomatic Complexity and Lines of Code are desirep We have also seen that
the perCM value (which, as identified by Thomas [33], is theraf comments in the file) is

generally decreasing with time.
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Figure 24
Average Halstead Difficulty per Function, for differenteitories groups

Since AvgHV, AvgM CC and AvgLOC' are all decreasing, and they are negative here,
they will cause theV/ I value to increase with time. The only positive componenhedne
of perCM. Since,/2.46perC’ M ranges from 0 to approximately, the additional contribution
of this aggregate is between 0 and 50. As we saw, perCM is agoge with time, thus its
contribution to theM I will be in the opposite direction as the rest, i.e. the additio M [
will be smaller with time. However, since the changes in pér&and very small, and much
smaller than the changes in the other components, thig effkbe negligible. We expect/
to increase with time (indicating better maintainabiljitghd so it does, as can be seen in Fig.
26.

Thomas [33] also found that th&// was increasing in all series, again with much less
variability within series than between series. He was fiosspgsed by that finding, since all
other metrics increased, he expected the maintainahilitietreasing, as th&// value runs
in opposite direction than the other metrics. However, esitie M/ ] uses averages, which,
as shown here, decrease with time, thig increased over time (and not decreased, as first
expected by Thomas).
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Figure 25:
Average Halstead Effort per Function, for different digrats groups

Another interesting point is that since the quality valuesthe core kernel directories
versus those of therchanddriverswere always better (i.e. less LOC, lower values for Halstead
Volume, McCabe Cyclomatic Complexity and slightly more coanted), we also see that the
M for these directories is higher — meaning it is “better quyali

5.2.7 Correlation Between Metrics

The literature is full of arguments about software metried their relative merits. In partic-
ular, it has been claimed that MCC is correlated with LOC amgstdoes not provide new
information, and Ml is by definition related to both MCC andlstead’s metrics.

From our observations of these metrics as they change ierelift versions of the Linux
kernel, we can say that they are indeed often correlateddb ether. However, there are
specific instances where the metrics behave differently.

When comparing the LOC per function and the MCC per functasrafl directories, (using
Fig. 10 and Fig. 14) for example, we see some differencesnts noticeable is in the behavior
of release 2.2, especially in mid 2000. In LOC we see a hugejuvhich causes the value of

51



Oman’s Maintainabilty Index — All Directories
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Figure 26:
Oman’s Maintainability Index for each Kernel, divided byetitories

LOC for version 2.2 to be even higher of the value for versidh although the general trend
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is decreasing. However, when we look at MCC values, we da@®&tanything special about
the behavior of version 2.2 it is smoothly changing as thedref the general graph (same
for the jump in LOC for version 2.4 in mid 2003). Another exdem this graph is in version
1.3 which has a large increase at the end of those releaseatiarsnof LOC, and a general
decrease (with a very tiny increase) in MCC.

5.3 Maintenance Activities

We will now analyze the results with respect to maintenarat&viies, in order to try and
characterize the maintenance process in Linux.

5.3.1 Development and Production Versions

As noted above, we expect development versions of the Lieuxdt to reflect perfective main-
tenance, whereas production versions reflect correctiweterance. This is based on the def-
initions of these two types of branches of the code, whichnaaéntained in parallel to each
other. However, it seems that in practice this distincti@swot always followed.

The most extreme example of “mixing” the roles of the versioncurs at the beginning of
v2.4. The last version of v2.3 was released on May 24th, 200@. first version of v2.4 was
only released on January 5th, 2001. and the first version.6fardly on November 23rd, 2001.
Thus there is a gap of soni8 monthdbetween successive development versions. However,
it seems that the initial part of v2.4 served for developn{enat least reflected development
activity that was being done without officially being reledsn a development version), as all
our graphs indicate that v2.5 branched out of v2.4. The neimgigap between v2.3 and v2.4
seems to have been filled at least partially by v2.2. Speltifia.2 exhibits strong growth in
this period, especially in tharch anddriversdirectories, which matches the difference in size
between the end of v2.3 and the beginning of v2.4.

5.3.2 Intervals Between Releases

First, it is interesting to see the Linux releases pattemnil(mersion 2.6), as reflected in the
graphs above: it seems that after a number of releases of groeluction version, a new
development version is released, which originates in thadyoction version. After the devel-
opment version is done (i.e. no more release in that maj@iomy, a new production version
is released. During the development and releases of the raglugtion version, there are still
releases of the previous production version, probably deoto support users who didn’t up-
grade to the new production version (2.0 had continuousiseke until the end of version 2.2,
and version 2.4 is still updated, with new releases of vergi6).

We also examined the intervals of time between successligases (in days) within the
same major version. Fig. 27 displays the raw data in the ugpgrhs and the statistics -
medians, 5th, 25th, 75th and 95th percentiles of the inkerfeat each version, in the lower
graph. The “N” under each of the bars in the figure indicatesittmber of releases the statistics
were calculated for, notice that this number is the numbeelgases in the specific version
minus one (since the first release in each version is coustéthae 0”). Looking at the upper
graph, we see an interesting picture — the developmentores$iave very low values, and so
do the 2.6 versions, while the production versions have nhiginer values. The timeline adds
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another value — we notice that an ending of developmentmeiisialmost simultaneous with
the beginning of a production version (i.e. at each end ofldime, a blue line starts). However,
we do see a significant gap between 2.3 and 2.4 and betweend256G According to 2.4 logs
and different Linux forums, the first was a result of the vansinot being ready” for release
(according to the agenda of Linus Torvalds, to release ohlgnwersions are stable) and due to
complications with development and testing and many newirements for the 2.4 production
versions. The second gap is a result of the structural chiarthe Linux release scheme.
Looking at the first 10 versions (v1.1 to initial part of v2if)the lower figure, we im-
mediately notice the following: the bodies of the distribatof the development versions are
usually lower than those of the production versions. Moeggawe variance and the high values
are usually much higher in production versions than in dgualent versions (notice that ver-
sions 2.0, 2.2, and 2.4, the 95th percentile values exceehof the graph and are their true
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values appear on the labels above their box). In other wevdssee that while development
versions are released quite often (all medians and 75tleptles are lower than 10 days) the
production version are released much less frequently. fidgigpens more in the more recent
versions (v2.2 and on), where the median values are closentonth and the 75th percentile
is two month and more.

When we look at the minor versions of 2.6 (2.6.11 and on) weaseembination of the
above. On one hand the distributions are generally muchrltivea in most production ver-
sions, but on the other hand they are higher than in the dewedat versions. This indicates
the success of the 2.6 scheme, which combines new funatipnath faster releases: each of
the 3-digit versions includes additional functionalityhite the releases within them arg**
digit releases”, i.e. bug fixed and security patches.

This observation leads to the next point of view on releasesddooking at intervals be-
tween major “production releases” (meaning 1.2, 2.0, 22,26, 2.6.1, 2.6.2, ..., 2.6.25).
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Figure 28:
Intervals Between Production Releases, in days

Here (Fig. 28) we see that while the wait for the first productrersion took almost a year,
and the next major versions were waited for much longer thah(a year, two years, and the
“record” of almost 3 years for 2.6), the 2.6 minor versions eleased in a quite measured
ratio of around 2.5 month. One should not forget that the Ipagods of time between the
major production versions were not times without releaties;e were many releases during
that time, but their main purpose was bug fixes and securitghpa and (usually) not adding
more functionality.

To conclude, releases of development versions are veryidrégand are on a daily to
weekly basis. Production versions releases, howevereasdrequent and usually on a weekly
to monthly basis. The wait between major production versiamas a year and more, and
was not decided in advance, but dependent on progress aadirfess” of the versions. With
version 2.6 (which symbolizes the structural change in teéd releases), we find a much
faster and more stable release rate. However, this too sednesgrowing slowly, from about
one month for the first 7 versions to 2.5-3 months now.
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5.3.3 Corrective Maintenance

As indicated previously, we will analyze corrective mairdace as reflected in successive ver-
sions of production kernels, since we assume that suceessigions in the production kernel
are usually corrective, due to the structure of the relemskesux.

As we have seen in the results, for each of the different ogetalculated — number of
files, number of functions, LOC, MCC, Halstead’s metrics &man maintainability index,
usually the values of these metrics for the production vasare essentially constant. This is
reflected in v1.2, v2.0, v2.2, v2.4 and in each of the minosiegrs of v2.6. In v2.6, the lines
of the minor versions, which are created by the releasesroécove maintenance efforts (i.e.
the dots created by" digit changes), are parallel and rarely change within theeseninor
version.

However, the metric values in production kernels do chandge/o cases. One is the large
“lumps” seen in versions 2.2 and 2.4. These are explainedhagges in functionality, where
significant new functionality was propagated into a proaurctversion, but without calling
this a new major version. The main examples are the improv& Support and additional
drivers that were added to 2.2.18 kernel, and the introdoaf thexfsfile system to the 2.4.25
kernel. Thus the assumption that production versions sepiteonly corrective maintenance is
not always correct.

The other metric change observed in production versionsaisthe average size metrics,
such as LOC per file and LOC per function, tend to grow inialhd only then become con-
stant. The average complexity metrics such as McCabe argidddlalso tend to grow initially.
This may indicate that corrective maintenance tends to adéd eand complexity to the exist-
ing structure, without restructuring and refactoring. Heer, it may also be just another case
of creeping functionality updates. Resolving this will veg a detailed analysis of the actual
modifications done to the initial part of production verson

One can thus tentatively conclude that corrective maimesaoes not have a strong effect
on the different kinds of metrics. If at all, the changes arlel rand usually the values of the
metrics are constant.

We can also state that corrective maintenance is much legadnt that others, as the re-
leases of production versions are much less frequent and seee planned.

5.3.4 Perfective Maintenance

As indicated previously, we will analyze perfective maivdace as reflected in successive ver-
sions of development kernels, since according to the strectf the Linux versions, the main
motivation for successive versions in the developmentedens to improve and add function-
ality.

As indicated above, the different metrics for successivsivas in development kernels are
usually more volatile and more changing than for produckemels. The detailed behavior
observed depends on both the metric being studied, and otih@rh@ne considers the whole
kernel or average values per file or per function.

On one hand, it seems like less work is being done to “maihtaecode in development
kernels; for example, the ratio of comments is lower for dgwament versions than for produc-
tion versions (i.e. they can be considered less readableh©other hand, when comparing
the other metrics we see a different picture: looking atezitiCC or the Halstead metrics per
function, it seems that the values for production kernedshegher. As a consequence, the Ml
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is lower for the production kernels (i.e. less maintaingbla other words, we find here that
development kernels are less complex and more maintaitizdoethe production kernels. Of
course, if we compare at the general kernel level, the matult seem the reversed, since there
are more files and more LOC in the development kernel.

It should be noted that the above pertains not only to a sisigggshot of production and
development kernels at a given time, but also to how the osathiange with time. Specifically,
for production kernels the metrics initially tend to worsehit and then they stay constant; for
development kernels, on the other hand, they tend to imprdwe interpretations of these
dynamics are possible: either the code in developmentoresss indeed being improved, or
else there are simply many small files and functions are badluigd at a higher rate than the
complexity grows, so the averages shift in the desirabkction.

Initially, this result is surprising, since we would expéeé production kernels — which
are less frequent and have to be considered and tested muetbefore each release — to be
more maintainable and less complex. On the other hand, teegixe testing and verifications
might lead to fixes that cause additional complexity. In otherds, files and functions that are
added to the production kernels after their initial releasg be more complex since they solve
critical bugs and security issues.

Another explanation that is related to perfective mainteeais the following: it is easy
to notice on the graphs (for example Fig. 14 and Fig. 22) thiahfost metrics each produc-
tion version and the next first development version (i.edpobdion version numbek.0 and
development version numbeéf + 1.0) have the same initial metric value. However, while
the production version metric value tends to be constantr{ar changes were preformed),
there is work in the development branch in order to improeedhde and to perform perfec-
tive maintenance activities, which include not only befierformance of the code, but also
improving the code itself. Doing this, the metric value imoving in the successive develop-
ment versions, while for production versions where critimay fixes are released, there is less
importance for activities of perfecting the code.

We have seen specific examples (in the analysis of high MQ@vahctions) for perfective
maintenance in development version, which improved the cothplexity and structure, while
the production versions remained unchanged.

5.3.5 Adaptive Maintenance

As indicated previously, we will analyze adaptive mainta®as reflected in tharch and
driversdirectories (especially in the development kernels),esthey best reflect the adaptation
to changes in the environment — the addition of new architestand new devices that need
to be supported.

As we have seen above, taech anddriversdirectories usually have the same trends as the
rest of the kernel, although many times with higher magmt(fdr example, for all the kernel
the number of LOC is growing, but the numbersdoch anddriversdirectories are higher than
the core kernel). Another issue we have seen above is thatagewent versions usually have
a high volatility between successive versions.

We have also noticed that although the core kernel andattie and drivers directories
do not always have the same “amount” of change (for examele. @C and number of files
changesinv2.5 are more noticeable in the core kernel, \abémnes2.2 they are more noticeable
in the arch anddrivers directories), there is an effect afch anddriverson the core kernel.
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This effect is due to thencludedirectory which is usually updated with new header files once
a major change or update amch anddriverstakes place.

We also saw that some metrics change in different directiamsn comparingarch and
driversto the core kernel. One case is the ratio of comments in filesveasaw above, this
value grows with time for the core kernel, but decreasesrah anddrivers. Not only that,
but to begin with, the ratio of comments for these direcwiselower. This might indicate the
adding of more code than comments, which might indicate aadiagion of maintainability,
due to declining readability of the code.

The other, and perhaps more significant difference (althaougan be claimed to follow
from the first), is that for all the different complexity ancamtainability metrics (MCC, Hal-
stead Metrics, and Oman’s MI) we found that theses metricaufth and drivers are worse
than for the rest of the kernel (higher for MCC and Halsteadride and lower for Ml). In
other words, the complexity and maintainability of thesecdhories is worse than the core ker-
nel. Saying this, we must not forget that all of these metiescorrelated with and related to
LOC, and as tharch anddriversare larger in LOC and in number of files and functions, we
would expect them to be “worse”. However, since we have seanin many of these cases
the “worseness” holds also when we compare the metrics @eaifitl per function, we can
conclude that the complexity and maintainabilityaoth anddriversisn’t as good as that of the
core kernel. If so, we can say that adaptive maintenancefl@sted by thearch anddrivers
directories, leads to lower maintainability and higher ptewity values, and is more volatile
than other types of maintenance.

5.3.6 Preventative maintenance

As indicated previously, we will analyze preventative mi@mance as reflected in isolated
events in which many files are partitioned, removed, or moved

We examined the code changes between successive develorsons (we decided also
to add version 2.4 to our analysis, since as we have seen abeeeved, at least in the first
years, for development); we tried to quantify them by logikat the number of files which were
changed (i.e. added, deleted, grew, or shrunk) in Fig. 23f@dame for directories in Fig. 30.
The green solid lines are the values for the developmenioreysind the red dashed lines are
those of version 2.4. The “deleted” group are files/diraetthat were removed, and “added”
is the difference between the versions plus the number of digdeted (this way we count all
the files that were added to this version). The names “grew™ahrunk” refer to the size of
the files/directories (and not the number of files in dirdetmrfor example).

In both figures, on the left column we see the actual numbeles/diirectories per each
metric, and on the right column we see the percentage. Theaoson for each is continuous,
i.e. we compared minor versions within the same major varaiod also did a cross-version
comparison for the first release of a major version and tleasel of the previous major version
that was the base of this release. The first release of vetsiowas compared to the only
release of 1.0. Version 1.3.0 was compared to version 1.2d@ion 2.1.0 was compared
to 2.0.21. Version 2.3.0 was compared to version 2.2.8 ansiore2.5.0 was compared to
2.4.15. The last two comparisons revealed that the inidedions of 2.3 and 2.5 are completely
identical to the production versions they origin in (i.d.\alues in the graphs for the initial
versions of 2.3 and 2.5 are zero). This complies with our figdiabove and our observations
regarding the release patterns. As we have seen, thesepeezit versions have exactly the

58



1200 1, ‘ ‘ Files Added ‘ ‘ 15, ‘ Files Added, out of total files

VL1 ivi3 | fv2a V2.3 iv2.41v25

percentage

94 95 96 97 98 99 00 01 02 03 94 95 96 97 98 99 00 01 02 03

450 Files Deleted 3. Files Deleted, out of total files
400 1 ! ! ! ! ! 11 ! ! ! ! !
3501 ;vil vi3 v21 1v2.3 1v2.41v2.5 %2'5 1vil jvi3 v2l 1v2.3 1v2.41v2.5 .
3001 1 | | 1 1 g 21 1 | | 1 1
250 4 Sc! ! ! ! |
& 200 g5 | | | Lo |
150 4 : : : | : ‘ 5 111 : : : | : |
1001 : : : b i %5,:‘ H :‘ J : ‘ : ‘ \
58 ; rrreeberboiy bbbt bt Ly il H “w‘ wl M.” 0 ‘ H\IJ‘L ‘\|\\ Mmh Il \U H M\m“ I el .LJM\ “\Hmﬂ‘t um‘ ‘
94 95 96 97 98 99 00 01 02 03 94 95 96 97 98 99 00 01 02 03
3000 Files Grew 35 - Files Grew, out of total files
25009 ivil vi3  iv2l V2.3 V2.4 V2.5 %20 ] v2.1 v2.3 iv2.4 V2.5
20004 ! | | | | | 25 : | ! |
4] 220
815

94 95 96 97 98 99 00 01 02 03 94 95 96 97 98 99 00 01 02 03

Files Shrunk 18 - Files Shrunk, out of total files
2000 | ! ! ! Lo 161 ‘ ‘ .
tviloojvi3 w2l 1v2.3 1v2.41v25 &1 1v2.41v25
1500 1 | | | ‘ Lo ISt o
1] e 1
2 g
= 1000 8
[
o

[SINENCY-XSINEN
P

| | 1 | Lo
' ' | ' ‘ :
IR I 1 o
: : 1 : L i
Nk PO AR NN TN TS mHl mww L

94 95 96 97 98 99 00 01 02 03

Figure 29:
Files added, deleted, grew or shrunk among developmeribwers

same values as the production versions for the differenticsetVersions 1.3 and 2.1 were
not identical to the production versions they originatemirfy which were slightly modified.

Version 2.4.0 was compared with the last 2.3 version (2-:pr@9), as it emerged from that
version. The last comparison in each graph is between thgdasion in 2.5 (2.5.75) and the
firstin 2.6 (2.6.0). The spaces between the bars are timbswitlevelopment versions.

When looking at the two figures, we see immediately (and niggr@ingly) that they are
similar. Looking at the left column, especially for “grewha “shrunk” data, we see that
the numberof files/directories changed grows with time. This is alseetfor “deleted” and
“added”.

When looking at the right column of the figures, the picturarges slightly; we see that for
the most case (except for a few “spikes” — for example thewaieh indicates the change
between 2.3 and 2.4, which is expected, given the informatimve regarding those releases),
the percentage of changes in the files and in the directaiesnstant or maybe even slightly
decreasing. We see a downwards trend especially in thergagee of directories growing,
which might be explained by the stabilization of the versi@md releases. With time, we
expect the directories to have fewer changes in them, atilea&ze and LOC. The trend of
changes indicates that the rate of change is pretty consédween consecutive development
versions.

For version 2.4 we see that the growth in number of files andctbries matches the
changes that we have seen above, both in growth of files andiralsumber of functions
and LOC. We also see that many files were edited at this tim2002 and in 2003 there were
3 releases each. In those there are relatively large chamgession 2.4, especially within the
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Figure 30:
Directories added, deleted, grew or shrunk among developwegsions

files themselves (much more than deletions/additions)y Thight be related to the changes
in 2.5 at that time. Also, since versions are so rare at thi@gewe expect that each change
would be larger than usual.

There are a few extreme values on the graphs, which we ougbptain:

In version 2.5 we see a large amount of files deleted, arouvémiber of 2002. We do not
see many files added, or a noticeable causal effect on direstt that time. The reason
for this is that in that version (2.5.45) there was a replas@of the Linux configuration
system. Therefore the old configuration fil€oafig.helpandConfig.ir) were deleted in
many directories and were replaced by a singenfigfile.

In version 2.5 we see a relatively large amount of directodieleted, around March of 2002,
at the same time we see also a large amount of directoriesladities is due to changes
in the structure in tharch anddriversdirectories at that time and also the changes we
have seen above in version 2.5.5 (the addition of “sounddisabtory to the kernel). We
also see growth in the size of the directories corresponditigthese changes.

In version 2.5 we see a relatively large amount of direcsoslerunk, around mid 2002, at
the same time we see also a large amount of files shrunk, thesponds to that. In
the matching version there was a decrease in size of manyJilésh belong to many
different directories. Another huge amount of directosbsunk is at about the end of
2002. Again, there is a corresponding increase in the numbéles shrunk at that
time, although not very significant. This could be explaibgdhe changes being spread
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among a very large amount of different directories. By thg,W&% of the shrinking
directories are imrch anddriversdirectories.

The initial releases of the two production versions, 2.428dhave large changes in compar-
ison to the development versions they originated in. Thisoissurprising. First, since
they are production version, we expect them to be differiesuh tdevelopment versions,
which are less tested and might contain more functionasgcond, both of these ver-
sions were released after a long wait of around 6 month dféstiévelopment version. At
this time, a lot of work was done and we do not expect the negiaerto stay very sim-
ilar to the development ones, especially when both verdiadsnany new requirements
and functionalities in them.

As we have seen above, in cases where there are changestruttiers of the code, there
are changes in the metrics value which reflect them. This reeasy to see in production ker-
nels where such changes are less frequent. Inferring teisradition on development kernels,
we can assume that the high volatility identified in all thiéféedlent metrics has to do with the
high volume of change in development kernels. We could ndtdiglear relation between the
large changes spotted in the graphs and preventative mamnte.

Another observation is that v1.1 is special — there seem tedpecially significant im-
provement in the code in that version: the fraction of comimgnew, and all the complexity
metrics (McCabe and all of Halstead’s metrics) decreasediderably. One may therefore
conjecture that this version saw much preventative maamte®s, being the first version after
2% years of development from the initial announcement in Aud@91 to the first release in
March 1994. However, verifying this conjecture will requidetailed scrutiny of the code to
assess the reasons for the improvement in the metric values.

5.4 Lehman’s Laws

We will now analyze the results with respect to Lehman’s Lawsrder to try and see whether
they are supported by our Linux data. Most of our analysis @firhan’s laws stems from
previous literature regarding verification of these laws, [13].

Table 3 summarizes Linux’s support of Lehman’s laws, adogrtb our analysis below.

5.4.1 Continuing Change

According to this law, a program that is used must be conlipwzaapted else it becomes
progressively less satisfactory. The intention here waptdion to the environment. Usually,
it is hard to distinguish between adaptation to environnagrtt general growth (as reflected
in the Contentious Growth law), however, due to the uniquecsire of Linux, we have an
ability to separate them: we can examine the continuing Gédaw with respect to tharch
anddriversdirectories which have to do with the changes in the enviremm

As we have seen before, the values of LOC, files, and funcétbgsow in these directories.
This growth can be identified as changes and adaptation terthieonment. In fact, when
looking at change logs, Linux forums, and explanations ati@icontent of different versions,
one of the things that returns in each versions is new dravgiisadaptation to new architectures.
Moreover, as we have seen above,dneh anddriversdirectories hold over 60% of the Linux
LOC at all times. We can conclude that we see support in LiouxHis law.
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No | Name Support| comment

1 | Continuing Change v Growth of arch and drivers directories
was seen throughout the results and |re-
flects continuing adaptation.
2 | Increasing Complexity Y No final conclusion on Linux complex
unless Prevented ity. However, there are indications that
average complexity is actually decreas-
ing, which may either support or contra-
dict the law.
3 | Self Regulation ? Possibly supported by steady overgll
growth rates, but more information re-
garding feedback mechanism is required
in order to establish this.

4 | Conservation of Orgar / Rate of releases has been relatively stable
nizational Stability (In- since 1997. The 2.6 method of timed re-
variant Work Rate) leases also creates an invariant amount of

releases per time unit.

5 | Conservation of Famil; X Long-lived production versions reflect
iarity this law — successive minor releases

have little functionality changes. But
there are big changes between successive
production versions.
6 | Continuing Growth v/ Growth in functionality is obvious|
Growth of LOC, files and function wa
seen throughout the results. Here, the
growth is super-linear up to version 2.5
and then it is closer to linear.
7 | Declining Quality ? Anecdotal contradiction (increasing use-
fullness) and anecdotal support (due|to
adaptation to the operational envirgn-
ment)

8 | Feedback System ? Anecdotal support

[72)

Table 3:
Support for Lehman’s Laws in Linux

5.4.2 Increasing Complexity

According to this law, as a program is evolved its complexiigreases unless work is done
to maintain or reduce it. This is very hard to prove or dispsaas it allows both trends: if
complexity increases it fits the law, and if it is reduced theaybe work was done to reduce it.
As we have seen in Linux, the complexity of the system is iasireg at the full kernel level
(as LOC, files, and functions are increasing) and deceasittieasingle function level (and
hencelM [ is improving with time). We did see, when we looked at the CDME&C values
per function in the different versions, that this distribuatis improving somewhat with time,
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since more lower complexity functions are used. In paricuwhen comparing v1.1 to recent
versions there is much improvement over time, so maybe wesagrthat there was work to
reduce the complexity of the kernel. However, it is possthbg a large part of this apparent
improvement is due to the increasing number of functionshéee also seen above that it can
be implied that perfective maintenance is decreasing theptexity.

The bottom line is that we were not able to conclude whetherstiftware is really be-
coming better. On the other hand, either conclusion may lieteasupport or to refute the
law, bacause the law allows either increasing complexitgduced complexity (depending on
whether steps to reduce complexity are taken).

5.4.3 Self Regulation

According to this law, the program evolution process is seffulating with close to normal
distribution of measures of product and process attribubed13] they identified ripples in
the graph of size (measured in modules) as a function ofgelearial number as indicating
this phenomenon. The ripple is repeated pattern of dewvistitom the averate growth rate,
alternating between periods of faster growth and correabiothe trend by periods of slower
growth. They claim that this ripple indicates the existaota feedback system which checks
and balances the system in order to drive it to its goals.

The ripples in the growth of LOC as well as the number of filed #u@ number of functions
might suggest self regulation, as does the generally sngyothith of these metrics. However,
in order to support the law, identification of the underlymgchanism is required (as in [14]).

5.4.4 Conservation of Organizational Stability (Invariant Work Rate)

According to this law, the average effective global acyivédte on an evolving system is invari-
ant over the product life time. This measurement is probtemsince we are trying to look at
“work” on the project. As mentioned before, data about mamf@r number of developers is
hard to get in closed-source, and much harder in open-spuogects. We will try to examine
this law looking at code changes in files and directories dswl @ the amount of versions per
time unit.

We have seen before, that over time, on average the rate nfeha code for files and
directories is constant. This evidence supports this law.

In Fig. 31 we can see the number of releases per month, foee#ldpment versions (v1.1,
v1.3, v2.1, v2.3, v2.5)in purple and for the beginning ofsien 2.4 (which has development
version characteristics) in lavender. We only examine #hestbpment versions since produc-
tion versions are more sparse (Linus’'s method of releasnigwhen a version is stable and
ready, and less frequently). Each stub represents a yeheaam bar represents a month. The
vertical lines with the version label represent the begigraf that new major release. Months
in which no version were released are months were no deveopwersion at all was released
(only production versions were released, and the work cetalyl stopped on the last develop-
ment version). Since mid 1997, the rates seem stable andarech3—6 releases per month.
We can see also that altough it has many features of develtpmesions, version 2.4 was re-
leased less frequently than the development versions.|lliJ$hare was one release per month,
and the maximum is three. By the way, once 2.5 was releasddjrait 2.6 was released, there
were only 7 releases of 2.4 (in a period of over 2 years).
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Figure 31:
Number of Releases per Month for Development Versions only

As mentioned above, starting with version 2.6 the versioagianed to be released once
every 2.5-3 months. Again, development versions are reteascording to need. The method
of timed release supports this law.

5.4.5 Conservation of Familiarity

According to this law, during the active life of an evolvingogram, the content of succes-
sive releases is statistically invariant. This is relevaintourse when looking at successive
production versions, which are those that are operatiomte@leased to users.

Lehman et al. [14] suggests looking at the incremental drewtand if it is constant or
declining in average, it indicates familiarity. Moreovtrgy suggest a threshold (the average
increment), for which if two or more consecutive points eed®it, the next points should be
close to zero or negative. The kernel releases are suchmtlatcessive releases of the same
major production version (or minor version in 2.6) the chesgre very small (most of the time
zero, but sometimes increasing/decreasing) One can tlyuthabLinux growth follows the
trends described in [14] and thus supports the law.

However, the changes between successive major versiosgaiécant. In fact, they are
so significant that users may opt to continue using an oulatd- previous release. This is
witnessed by continued support for production versiong lafier the next one is released,
and by the extension of the recent 2.6.16 version. Thus we bath support for the law
(as witnessed by the longevity of production versions) amttradiction of the law (because
successive production versions with significant changesavertheless released).

5.4.6 Continuing Growth

According to this law, functional content of a program mustdontinually increased to main-
tain user satisfaction over its lifetime. The functionabidditions can be seen in differences
between successive versions of development kernel raleases major versions (minor in 2.6)
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of production kernel releases. Obviously there are sigmtfi¢dunctional enhancements and
additions to the Linux kernel all this time.

In addition, size measures are also growing. In fact, theygaowing in a super-linear rate
up to version 2.5 and in a linear rate in version 2.6. Thismddes the results of Godfrey and
Tu [5] who identified Linux growth as super linear. Previousdses on Lehman’s Laws show
close to linear long term growth with a superimposed rippf@].[ Perhaps the results we are
seeing in v2.6 can support such findings.

5.4.7 Declining Quality

According to this law, programs will be perceived as of d&aky quality unless rigorously
maintained and adapted to a changing operational envirahmEhis case is similar to the
“Increasing Complexity” law, in the sense that it is verydh&w prove or disprove, as it allows
both trends (if quality declines, the law is supported, a@ntis not, it might be due to the
maintenance and adaptation efforts). Moreover, it is hardeasure “quality”.

While it is hard to obtain precise quantified metrics for thisiux has been in growing use
for 14 years, and there are no indications that its adoptatmis abating. It is widely used on
large-scale servers, clusters, and supercomputers. Hyibataken as anecdotal evidence that
its quality is not declining, but rather that its usefulnesscreasing.

We have also seen that there are functional changes overtich¢hose may indicate of
adapting to the operational environment, which, accordm¢he law, might result in non-
declining quality. These changes might explain the ina@asisefulness.

5.4.8 Feedback System

The issue of feedback was mentioned already as an elemeam sktf regulation law. More
generally, Linux is the archetypical open-source systemwhich continued development is
guided by feedback from the user community [23]. Specifidence for feedback is the switch
to the v2.6 release scheme, in response to user discomfibrithne long delays in releasing
enhanced production versions. However, this is hard totifyand express as a law.

6 Conclusions and Future Work

6.1 Conclusions

The Linux kernel is one of the most successful open-sourttevae projects in the world.
Over the last 15 years it has grown and improved continupimghpducing more features and
enhancements, as well as better reliability and experience

In this study, we have calculated different metrics for tifeetent releases of Linux, and
analyzed them in order to better understand the mainter@ncess in Linux.

Due to the structure of Linux, and the releases paradigmnalyzed our results in several
different dissections — we compared between the developarghthe production versions
and version 2.6, and also distinguished betweemtbleanddriversdirectories and the “core”
kernel.

Looking at the different size metrics, we found, as expectiedt Linux is growing. In
fact, until version 2.5 it was growing in a super-linear rdiat starting with version 2.6 the
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growth is closer to linear. When looking at the LOC metricsfp@ction (i.e. averaging it over
functions) we find that it is decreasing. This is due to thevginan number of functions, which
has a higher rate than that of LOC (i.e. the new functions aalsr on average).

We also found that the growth of the size metrics in the pradowersions is much more
smooth than in the development versions, and the metricalysiabilize at a constant level
after a while.

For MCC and Halstead metrics, we found that when aggregtterg over the entire Kernel
we see a growth (i.e. it becomes more complex, or more harétotain), but when we analyze
them at the function level (averaging over the number of fions) we see a different picture.
In that case, the general trend is a decreasing one, whevaltes for production kernels are
usually higher than of consecutive development kernelsa(nmg they are “more complex”),
and the values for development kernels are more volatilee rEasons for this can be real
improvements and perfective maintenance in the developkeenel, or just addition of more
files/function in those kernels, or maybe just correctingdpiction versions without caring
about the complexity at that time.

As a result of the findings above, Oman’s maintainabilityexdvas generally increasing
(i.e. the Linux kernel seems to become more maintainabie)il&ly to the described above,
for the production versions we found a slight decrease ab#uynning and then a constant
value of Maintainability Index.

Specific cases where the production versions or the deveopversions did not follow the
general trend were analyzed and explained in detail. These usually instances of adding a
large module that was developed elsewhere into the kernel.

As for the distinction between therch anddrivers directories and the “core” kernel, we
found thatarch anddrivers usually (but not always) displayed the same trends as the™co
kernel, but with higher (or “worse”) values. For examplegréh are more LOC, files, func-
tions, and the complexity and maintainability indexes inliplwer quality software for those
directories. The same behavior holds when looking at thetion level.

Generally, we have seen correlation between the differesttics, with a few exceptions,
but they all showed the same picture.

The Linux releases paradigm had two phases: before 2.6 artthgtwith 2.6. Before 2.6
there were two branches — development and production. Tddption kernels were released
less often and usually corresponded to corrective maintanavhile the development versions
were released quite often, and had perfective, preveatatid adaptive maintenance as well.
Starting with 2.6, the production mino3’¢-digit) versions are released in an almost constant
rate (every 2.5-3 month), with all types of maintenanceudet!, and corrective maintenance
versions are released when required (4% aligit release).

We tried to characterize the different maintenance astwiaccording to our results. We
found that, unlike our presumption, production versionastmes include more than just cor-
rective maintenance. However, if we try to analyze only tbheective maintenance, where
small and specific changes were inserted into the code, wihaer hardly effects the differ-
ent metrics, and usually keeps them constant.

As for perfective maintenance, since it seems that devetoprersions improve their com-
plexity/maintainability over time and for production verss it is at first worsens and then stays
constant, we might conclude that it improves the code. Thesan be said about preventative
maintenance. A special case of this is version 1.1, whichiingdoved significantly over time,
perhaps since there was much effort on preventative andgimeé maintenance.
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For adaptive maintenance, as reflected byatoh anddriversdirectories, it seems that it
leads to lower maintainability and higher complexity vauand is more volatile than other
types of maintenance.

We have also tried to identify whether some of Lehman’s Lawseflected in the evolution
of Linux. We found support for Continuing Change, Invariddork Rate and Continuing
Growth. For Increasing complexity and Conservation of Famiy we found both supporting
and contradicting evidence. For self regulation, we weilteabte to conclude, but did not find
evidence that is contradicting. Declining Quality and Hesxk System laws were not in the
scope of our study, but we found both anecdotal contradiciiod anecdotal support for the
first and ancdotal support for the latter.

6.2 Future Work

Many of the observations above were verified by the code, #teics, different Linux forums,
etc. However, for some of them, we suggested different egplans without giving a final
conclusion. A further investigation of the code and the gedogs is required in order to
resolve those issues and give sufficient explanations tphle@aomena. One of those issues
is, of course, whether the code is becoming less complexthands the role of corrective
maintenance in affecting software metrics. More work aralysis could be done for version
2.6, in order to better understand the effect of the mergtreofwo branches — production and
development. More analysis could also be done in order ibée rest of Lehman’s Laws in
Linux.

This study can also be extended by providing additionalicgtsuch as the indirect metrics
developed by Yu [36] and more size metrics such the time s@ant the number of people
involved, and how many developers participate in each ty@etvity. These might allow us
to characterize further the different maintenance acwit

Another suggestion is to replicate the study for other dpegyasystem kernels and for
other large software, and to compare the trends and thetafizadi results of each, in order
to try to understand whether our results are unique to Limmgould be extended to other
operating systems or maybe even to any large software. htnigo be relevant to perform
this comparison for open and closed source software in aodenderstand the differences in
the development. The problem, of course, is to obtain skeitddta for such a study.

Further analysis could be done to try and predict the growthdafferent metrics, compar-
ing it with our results. This can allow software engineerd project managers to understand
the different product stages and allocation of time, effand workers to each of them.

Appendix: Analysis of the effect of having no definitions wha
pre-compiling Linux

The different pre-compiler commands that might be effettedormer macro definitions are:
#ifdef, #ifndef,#else#if defined, #if /defined, and#elif. As mentioned before, when we
choose to perform analysis that requires per-processitigput compilation we are in the “else”
scope. This means that code that is surroundegiiyef and#endif or#ifdef and#else will
not be analyzed. The same goes for code that is#if defined scope oftelif defined. Code in
#ifndef scope orif !defined or#else which matchegifdef or #if defined will be analyzed.
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In order to assess what is the loss of choosing to perfornysisalithout compilation, we
examined the amount of code surrounded by any typgibfand #endif. This is an upper
bound of the amount of code that is not analyzed, since we tlaiisbnguish between the
different types of #if"s.

We checked the amount of code not analyzed by choosing thisaahdor all files in the
kernel, for .c files and for .h files. We notice here that ab@%2f the lines out of all the lines
in the code are affected in the early version and about 20#eitater ones. About 20% of the
lines of the .c files are effected in the earlier versions wuali0% in the late ones. In .h files
we see a phenomenon in which about 80% of the code is affe¢tad.is due to the method
of putting the entire code of an .h file infaifndef scope. In these cases, the analysis will be
performed on the .h files since it isféfndef scope.

When we examined the “core” kernel, i.e. without #reh anddrivers subdirectories, we
see similar results. Here about 20%-30% of the lines outl thallines in the code are affected
in the early version and about 30%-40% in the later ones. Abel0% of the lines of the .c
files are effected in the earlier versions, then about 20%sarue 2001 about 10% are affected.
In .h files we see 80%-90% of the code affected.

In other words, the upper bound of the code not examined isig@3¥me versions to 10%
in most versions.
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