Flexible Coscheduling

Eitan Frachtenberg
School of Computer Science and Engineering

Hebrew University of Jerusalem

December, 2001

Submitted in partial fulfillment of the requirements for the degree of
Master of Science

Supervised by Dr. Dror Feitelson



Abstract

In this thesis a novel technique is introduced for job scheduling in clusters and super-
computers with the goal of increasing the efficiency and utilization of these machines.
In particular, the problems arising from heterogeneous architecture clusters and software
load imbalances are addressed. The suggested technique is a variation on gang scheduling
and other coscheduling methods, where several parallel jobs time-share and space-share
the same machine, using varying degrees of coordination among processes.

The main idea behind this thesis is that a distributed/parallel scheduling system
can gather dynamic information on the synchronization behavior of processes, and use
this information to identify their different coscheduling needs. Using this information, a
scheduler can make better scheduling decisions, to increase the overall system utilization
and decrease the runtime of applications in a multiprogramming environment.

The contribution of this thesis is threefold: (1) addressing the problems that heteroge-
neous architectures and load imbalances pose to coscheduling systems; (2) a methodologi-
cal system of gathering job communication information and subsequent process classifica-
tion for the making of better scheduling choices; and (3) experimental results that verify
the usefulness of applying dynamic communication statistics to scheduling decisions. In
addition, this work includes the implementation of an efficient and flexible scheduler,
with the ability to use many of the scheduling algorithms found in the literature.

The main result of this thesis is the design and development of a new approach to the
identification of different process scheduling requirements and their scheduling according
to these requirements. This approach is shown to be both feasible and performance-
wise promising, and may also prove to be useful when integrated with other approaches.
Another accomplishment of this work is the development of an extensive scheduler system
that is both very efficient and flexible, and allows for testing real application behavior
on real clusters, measuring real scheduling issues.

This work was done partly at the parallel systems laboratory of the Hebrew university
in Jerusalem partly at the Modeling, Algorithms and Informatics group of the Computer

and Computational Sciences division (CCS-3) of the Los Alamos national laboratory.



Contents

1 Introduction
1.1 Problem Description . . . . . . . . ... Lo
1.2 Outline of Proposed Approach . . . . . .. ... ... ... ...
1.3 Main Results . . . . . . . ..
2 Background
2.1 Overview . . . ... e
2.2 Gang Scheduling . . . . . ... L
2.3 Implicit Coscheduling Schemes . . . . . . . ... ... ... ... ...
2.3.1 Dynamic coscheduling . . . . ... ... ... L 0oL
2.3.2 Implicit coscheduling . . . . . .. .. ... .. L 0oL
2.3.3 Buffered coscheduling . . .. ... ... 0oL
2.4 Communication Patterns Characterization . . . . . . . . .. .. ... ...
3 Flexible Coscheduling
3.1 Overview . . . ...
3.2 Process classification . . . . . .. ..o
3.3 Scheduling . . . . . . . . ..
3.4 Characterization Heuristics . . . .. .. ... ... ... .. ...
3.5 Implementation Issues . . . . . . .. ... . 0 oo
4 Experimental Framework
4.1 Overview . . . ..o L e e e
4.2 Hardware Environment . . . . . . . ... o000
4.3 Software Environment . . . . . ... .. ...
4.3.1 Design Principles . . . . . .. .. oo oo
4.3.2 Architectural Overview . . . . . . . .. . ... ...
4.3.3 The Machine Manager . . . . . . . .. ... .. ... ... ...

10
10
11
15
15
15
16
17

19
19
19
20
21
23



434 The Node Manager . . . . . . . .. .. .. ... .. ... ... 30

4.3.5 The Program Launcher . . . .. ... ... ... ... ... .. 31
4.3.6 Communication Mechanism . . . ... .. ... ... ... ..... 32
4.3.7 System Parameters . . . . . . ... ... oL 35
4.3.8 Development and Evaluation Environment . . . . . . ... ... .. 36

4.4 Scheduling Algorithms Implementation . . . . . . ... ... ... .. ... 37
4.4.1 Gang Scheduling . . . . . ... oL o 37
4.4.2 Flexible Coscheduling . . . . ... .. ... .. ... ... ... . 38
4.4.3 Local Scheduling . . . . ... ... . o 39
444 FCFS Scheduling . . . . . .. ... ... 41

4.5 Performance Assessment . . . . . .. ..o 41
4.6 Workload . . . . . . .. L e 43
4.7 FCS and GS Parameters . . . . . . . . .. .. ... 44
5 Experimental Results 45
5.1 Overview . . . . ... e e 45
5.2 BasicTests . . . . . . . e 45
521 Response Time . . . . . . .. ... L 45
5.2.2 Effect of Work Amount . . . . ... ... ... L. 47
5.2.3 Effect of Granularity and Variance . . .. ... .. ... ... ... 47
5.2.4 Effect of Multiprogramming . . . . . . .. ... .. ... ... ... 48

5.3 FCS Classification . . . . . . . .. . ... ... 50
5.4 Scheduler Comparison . . . . . . . . ... . e 51
54.1 Overview and Metrics . . . . . . ... .. oL 51
5.4.2 Batch Scheduling . . . . . ... oo 53
54.3 Local Scheduling . . . . ... ... ... 56
5.4.4 Gang Scheduling . . . ... ... oo 56
5.4.5 Implicit Coscheduling . . . . ... ... ... ... ... ... 60
5.4.6 Flexible Coscheduling . . ... ... ... ... ... ... .... 60

6 Concluding Remarks 67



List of Figures

21
2.2
2.3
2.4

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Repeated Ousterhout matrix example . . . ... ... .. ... ...... 12
Repeated Ousterhout matrix with alternate scheduling . . . . ... .. .. 13
Coscheduling with relaxed alternate scheduling . . . . . ... ... .... 14
Buffered coscheduling example. . . . . . ... ... o 0oL 17
Decision tree for FCS classification . . . . . . .. ... ... .. 0., 20
Context switch algorithm for FCS . . . . . . . . ... oL, 22
Elan library Hierarchy . . . . .. .. ... .. ... ... .. ... 34
Example screen shot from scheduler visualization tool . . . . ... .. .. 36
FCS classification heuristic. . . . . . . . . .. ... ... ... ... ..., 40
Main loop of synthetic benchmark application . . . . . .. .. ... .. .. 42
Effect of multiprogramming level . . . . . .. ... ... ... ... ... 49
FCS classification workload - Ousterhout matrix . . . ... ... ... .. 50
Arrival times for mixed workload jobs . . . . ... ... oL 52
Work amount for mixed workload jobs . . . . .. ... ... ... L. 54
Work amount and runtimes with FCFS . . . . .. ... ... ... ..... 55
Job wait times with FCFS . . . . . . . . ... .. o oL 57
Work amount and runtimes with local scheduling . . . ... ... .. ... 58
Job wait times with local scheduling . . . .. .. ... ... ... ... 59
Work amount and runtimes with gang scheduling . . . . . .. ... .. .. 61
Job wait times with gang scheduling . . . . ... ... .. .. ....... 62
Work amount and runtimes with ICS scheduling . . . .. ... ... ... 63
Job wait times with ICS scheduling . . . . . . ... .. ... ... ... .. 64
Work amount and runtimes with FCS scheduling . . . . ... ... . ... 65
Job wait times with FCS scheduling . . . .. .. ... ... ... .... 66



List of Tables

4.1 FCS and GS parameters . . . . . . . .. L oL L 44
5.1 Empty jobruntimes . . . .. .. ... oo 46
5.2 Effect of work amount . . . . . ... L Lo oL 47
5.3 Effect of granularity and variance . . . . . . ... ... ... .. 48



1 Introduction

1.1 Problem Description

Supercomputers have been used successfully during the past four decades, and super-
computing hardware m undergone immense progress during this time [70]. It is therefore
somewhat surprising that production supercomputer operating systems have advanced
relatively little during this period, especially when it comes to aspects of job scheduling.
Some of the most widely-used job schedulers are based on batch scheduling methods,
which date back to the early supercomputers [24]. While these resource management
systems and others incorporate some modern features such as load-balancing, process
migration and checkpointing [6], little attention has been given so far to advances in
job scheduling techniques outside academia. In particular, it has been shown that var-
ious methods of coscheduling (running several globally-coordinated jobs, time-sharing
the same computation resources) can be used to increase overall system performance and
utilization [17, 55]. Further variations on the coscheduling technique address some of
the drawbacks of these techniques, like the non-scalable requirement of global process
coordination. They will be discussed in the next chapter. Yet, many super-computing
centers still do not to use these techniques despite their potential benefits, due to various
reasons, including implementation difficulties and the problems these schedulers pose to
accounting.

An emerging trend in high performance computing is the use of computing clus-
ters using commercial-of-the-shelf components (COTS). In the last decade, clusters and
constellations (clusters of large SMPs) have increasingly replaced massively parallel pro-
cessing (MPP) machines, and now have a marked presence in the top 500 supercomputer
list [78]. This trend emphasizes these problems, since clusters and constellations are par-
ticularly susceptible to problems of high communication latencies and load imbalances
(resulting from any of the reasons covered above). While some studies in the past tried
to tackle the problem of load imbalances and scheduling in clusters ([7, 15, 54, 74]), to
the best of our knowledge, this is the first study that tries to apply the advantages of



coscheduling to heterogeneous environments. Furthermore, in this study the benefits of
applying dynamic communication measurements to coscheduling are tested for the first
time in a real experimental setup.

This work is an effort to tackle the inefficiencies of large-scale HPC systems that arises
from load imbalances. These imbalances can stem from two main sources: heterogeneous
architectures and application imbalances.

Heterogeneous architectures can be found mostly in computing clusters and especially
in networks of workstations (NOWs), where different nodes can have different compu-
tation capabilities, different memory hierarchy properties or even a different number of
PEs per node.

Application load imbalances occur when different parallel computation threads re-
quire different computation resources, and take varying times to complete. These can
occur either as a result of poor programming, or more typically, by a data set that creates
uneven loads on the different computation threads.

Even when using homogeneous architectures and well-balanced software, load im-
balances can occur. This can happen for instance in NOWSs, when the compute nodes
are not dedicated entirely to the parallel computation, and may be used for local users’
programs. This uneven taxing of resources again creates a situation where some of the
parallel program processes run slower than others, and a load imbalance occurs.

Load imbalances have a marked detrimental effect on many parallel programs. A
large part of the HPC software can be modeled using the bulk-synchronous parallel model
(BSP), in which a computation involves a number of supersteps, each having several par-
allel computational threads that synchronize at the end of the superstep [29, 44, 73].
A load imbalance can harm the performance of the parallel application because each
computation thread requires a different amount of time to complete, but the entire pro-
gram must wait for the slowest thread before it can synchronize. Since these computa-
tion/synchronization cycles are potentially executed many times throughout the lifetime
of the program, the cumulative effect on the application run time and the system resource

utilization can be quite high.

1.2 OQutline of Proposed Approach

This thesis proposes to alleviate the inefficiencies caused by these factors by dynamic
detection of load imbalances and flexible coscheduling that compensates for these im-
balances. Dynamic detection of load imbalances is performed by (1) monitoring the

communication behavior of applications, (2) defining metrics for their communication



performance that try to detect possible load imbalances, and (3) classification of the ap-
plications according to these metrics. On top of this, a flexible coscheduling mechanism
is implemented that uses this application classification to make scheduling decisions.
The scheduler attempts to coschedule processes that would most benefit from it, while
scheduling other processes to increase overall system utilization and throughput. An ap-
plication that suffers from load imbalances will not complete faster with this scheduler,
compared to other schedulers; in fact, it may even take longer to complete than, for
example when running in batch mode. But the proposed scheduler will not allow it to

waste too many system resources, and the overall system efficiency will be increased.

1.3 Main Results

The proposed monitoring mechanism and scheduling system, were implemented and run
on a real cluster. Versions of batch scheduling, implicit coscheduling and gang scheduling
were also implemented and compared to the proposed scheduler, both in aspects of job
runtime and wait time. In the experimental part, it is shown that the new scheduling
algorithm performs at least as well as most of the other scheduling algorithms used in
the comparison, and in some cases significantly better. Furthermore, it is demonstrated
that the scheduler testbed that was developed for the purpose of this testing is both very
efficient and flexible, and in itself consists of a possible contribution to future research

into job schedulers’ properties.

The rest of this thesis is organized as follows: Chapter 2 describes in detail the
problem we set forth to solve, as well as previous work in this field. In Chapter 3,
the proposed solution and scheduling technique is detailed. Chapter 4 describes how
we tested and compared the proposed solution, while Chapter 5 presents comparative
experimental results. Finally, we conclude and describe future research directions in
Chapter 6.



2 Background

2.1 Overview

In this thesis, the problems arising from heterogeneity are tackled by using techniques
of dynamic job scheduling and communication patterns characterization. It is therefore
worthwhile to review some of the previous work in these two fields.

Scheduling in the context of a multiprogrammed parallel system refers to the exe-
cution of threads from competing programs. Generally speaking, the PEs of a parallel
system can be shared in two basic, orthogonal ways, and combinations thereof: time slic-
ing and space slicing. In time slicing, all the PEs in the system service a global queue of
ready threads, whereas in space slicing, the PEs are statically or dynamically partitioned
to different jobs.

Scheduling using space slicing only is typical of batch scheduling systems, and can be
found in several widely-used schedulers, such as PBS [38], NQS [45] and LSF [77]. Such
systems can have one or more job queues which are assigned to partitions of the machine.
These queues can be prioritized or employ first-come-first-serve (FCFS) scheduling. One
problem with such systems is that they cause fragmentation in resource allocation, thus
reducing overall throughput and utilization. In the case that the run time of the appli-
cation (or the time allotted for its running) is known in advance, a mechanism called
backfilling can be used to improve the system’s throughput. With backfilling scheduling,
short jobs are allowed to be moved forward in the queue if they do not delay the first
(or any) other job [2, 42, 53]. Another problem with batch scheduling is that sometimes
short jobs must first wait for long jobs to finish before they are run, and in general the
response time of the system does not allow interactive work. This is a serious impedi-
ment in the software development process, which typically requires frequent short runs
and debug sessions.

In [28], the authors argue that the usage of parallel supercomputers for large problems
in batch mode only is wrong. Time slicing can solve some of the problems with batch

systems and offer similar advantages in multiprocessors to those in uniprocessor systems:

10



Increased utilization of resources when jobs with complementary requirements keep all
parts of the system busy; and more important to most users, time slicing creates the
opportunity for interactive response time. Likewise, time slicing brings the same disad-
vantages from uniprocessor systems to parallel systems. Of these, the most notable are
increased system overhead caused by the context switching between different processes,
and application performance degradation due to reduced memory cache efficiency. Like
in the uniprocessor case, multiprogramming is constrained by the amount of programs
that fit into main memory: if adding another job to a system causes the occurrence of
swapping, the resulting performance penalties dwarf any benefit from multiprogramming.
In addition, time slicing can potentially reduce dramatically the throughput of parallel
jobs with fine-grain synchronization. These jobs synchronize frequently, and thus it is
extremely important from the performance point of view that all the synchronizing peer
processes are scheduled in a coordinated manner (either globally or locally), to reach
the synchronization points together [34, 39, 40, 71]. This idea was first introduced by
Ousterhout in [55], and is referred to in the literature as coscheduling.

Various techniques were suggested to implement coscheduling, of which the most
widely used is gang scheduling (GS). The rest of this chapter offers an introduction to
gang scheduling, as well as other relevant work on coscheduling techniques and commu-
nication pattern characterization. For a complete survey of job scheduling strategies and

terminology, see [10, 24, 52].

2.2 Gang Scheduling

Gang Scheduling (GS) can be defined to be a scheduling scheme that combines these
three features: [24]

1. Threads are grouped into gangs.

2. The threads in each gang execute simultaneously on distinct PEs, using a one-to-

one mapping.

3. Time slicing is used, with all the threads in a gang being preempted and rescheduled

at the same time.

Time slicing is obtained using a coordinated multi-context-switch, which occurs at regular
intervals of time, called the timeslot quantum. The synchronization of the multi-context-
switch is typically done by a central controller, but can also be done by a distributed

clock synchronization algorithm. Typically, a GS system consists of a master daemon

11



Node A

1
3

S = N W A U2

8 9 10 Time slot

Figure 2.1: Repeated Ousterhout matrix example

(which can be distributed, or in a separate node) and node daemons that run on worker
nodes. The master daemon allocates space resources for arriving jobs, and issues multi-
context-switches.

The multi-context-switch requires that the receiving PEs save the state of the currently-
running distributed application, and context-switch to another application. This affects
the inter-processor network as well, since messages that are in transit when the multi-
context-switch occurs must be dealt with correctly. For example, in Myrinet, this may
require context-switching the NICs as well [18], while in Quadrics the NIC thread pro-
cessor can handle multiple communicating processes, and overall system throughput can
actually be increased by overlapping computation and communication of different pro-
cesses [30, 32].

Another key concept of GS is the allocation matrix or Qusterhout matrix. An Ouster-
hout matrix is a representation of resource allocation in space and time. Figure 2.1 shows
an example of a gang scheduling with a repeated Ousterhout matrix for an eight-node
uniprocessor cluster. The diagram shows the resource allocation for seven jobs during
eleven time slots, with a multiprogramming level (MPL) of four (so the four time-slots
are being repeated approximately three times). In slot 0 we see two jobs executing, using
four and two nodes respectively, while nodes 2 and 3 remain idle. In slot 2, the resource
space is fully shared between three jobs, and no nodes remain idle. From slot 4 and up
we see a repetition of the allocation pattern, except that job 2 terminates early in slot 4,
before the context-switch, and does not execute any more (see emphasized box in Figure
2.1).

12



Node A

S = N W A N2

0 1 2 3 4 5 6 7 8 9 10 Time slot

Figure 2.2: Repeated Ousterhout matrix with alternate scheduling

To reduce some of the fragmentation created with this allocation, a simple modifica-
tion can be made to gang scheduling, called alternate scheduling. With this technique,
jobs can continue running in other time slots as well, if all the required PEs for the job are
idle. Figure 2.2 shows the previous allocation matrix example with alternate scheduling.
The only jobs that are affected in this example are jobs 2, 4 and 6. Alternate scheduling
serves to reduce the fragmentation, but does not eliminate it altogether. Ousterhout
suggested to increase further the utilization of the system using a relaxed form of alter-
nate scheduling, where processes use resources that are available in time slots other than
their own, regardless of what other processes in their gang are doing. Strictly speaking,
this is no longer gang scheduling, since not all the processes in the gang necessarily run
together (this is called coscheduling). Figure 2.3 shows the same allocation matrix using
coscheduling with relaxed alternate scheduling.

If the jobs have fine-grain communication granularity, alternate scheduling is most
effective if all the processes of a job continue running, as in Figure 2.2. When coscheduling
with relaxed alternate scheduling, jobs that are not coscheduled as a gang could have
synchronization problems due to the load-imbalance (e.g. jobs 5 and 7). One of the
important notions of this thesis is that to be more effective, coscheduling should not be
done blindly, since some jobs do not benefit from it. Rather, processes should be classified
according to how well they can use fragmented resources, and allocated accordingly. This
notion is covered in depth in Chapter 3.

Gang scheduling is sometimes referred to as Fxplicit coscheduling, since the processes

that are required to be coscheduled (the gang) are explicitly known to the system from

13



Node A

3

S = N W A U2

9 10 Time slot

Figure 2.3: Coscheduling with relaxed alternate scheduling

the moment they are launched as a single job. In contrast, the schedulers we describe
in the next section use Implicit coscheduling, where the communication pattern of pro-
cesses determine which processes are coscheduled. Since GS requires that all threads in
a gang be scheduled together (typically, a gang consists of all the processes of a job),
an upper limit on the runtime of an application can be given.While coscheduling some-
times performs better than gang scheduling, it has performance implications on different
applications and workloads that cannot be known in advance.

Gang scheduling supports the abstraction of a dedicated machine for each job, which
is an underlying assumption for most parallel algorithms and theoretical results. This in
turn means that no restrictions on the programming model are imposed. For example,
busy waiting can be used for synchronization, knowing that all the processes in the job
are executing simultaneously. In addition, asynchronous messages can be sent without
the risk of buffer overflow, and user-level communication libraries can access the hardware
directly without worrying about protection mechanisms. While these advantages are also
given by simply space-sharing jobs (without time sharing), GS offers the added advantage
of interactive response times. There are several studies that compare various scheduling
policies and conclude that GS results in relatively high performance [11, 13, 17, 26, 33,
37, 49, 50, 65]. Gang scheduling has been implemented on several commercial platforms,
such as Meiko CS-2, the Compaq SC family of Alpha-based clusters, Silicon Graphics
SMPs [8], Intel Paragon [41], Cray T3E [46], and the Connection Machine CM-5 [48].

As discussed above, GS does not work well with load imbalance, since jobs can no

longer gain from fast synchronization. In fact, system utilization can actually decrease

14



if processes spend a lot of CPU time busy-waiting for their slower peers. This and other
problems are addressed by other coscheduling techniques with weaker coordination, that

are described in the next section.

2.3 Implicit Coscheduling Schemes

If all the time-sharing schedulers were to be put on a scale according to their degree
of coordination, we would have gang scheduling on one end as the strictest-coordinated
scheduling method, and local, uncoordinated scheduling on the other end of the spectrum.
Since strong coordination has both advantages and disadvantages, several techniques
were devised with varying degrees of coordination. This section covers some of the

better-known techniques.

2.3.1 Dynamic coscheduling

Dynamic, or demand-based coscheduling (DCS) was first proposed as a way to reduce
the amount of global synchronization of coscheduling, and thus decrease the system’s
overhead and improve its scalability [68, 69]. The philosophy behind DCS is demand-

based coscheduling:

@ coordination is achieved by observing the communication between processes, and

not by a master daemon,

€ Communication between processes is used to deduce which processes should be
coscheduled and to effect coscheduling. Thus, when a process receives an incoming
message it immediately receives a priority boost. This can effectively cause an
immediate local context-switch to this process, depending on fairness policy and

system load.

€ Processes are otherwise scheduled normally by each node’s local operating system.

The reason this method results in robust coscheduling is its underlying assumption: if
a process receives an incoming message, its peer(s) must be currently running on other
nodes, so the process should be prioritized for immediate execution.

2.3.2 Implicit coscheduling

Like DCS, Implicit coscheduling (ICS) makes local scheduling decisions based on mon-

itoring communication activity [3, 4]. Processes waiting for a communication action to

15



complete use a spin-block (SB) mechanism to relinquish control of the CPU, where first
the process spins (actively waits) some time for the communication to complete, and then
blocks, which consequently causes a context switch if another process is ready to run.
When a communication activity of a blocked message completes, it receives a priority
boost, much in the same way it would in DCS. The main difference is that DCS explic-
itly treats every incoming message (not just those for blocked processes) as a demand
for coscheduling, causing an immediate scheduling of the receiving process as soon as it
would be fair to do so. Also, in DCS a waiting process always spins and does not block
(it can be preempted immediately though, when another process receives an incoming
message). In [68] it is claimed that while ICS is well-suited for “bulk-synchronous” appli-
cations (those that alternate regular periods of computation and communication), DCS
is more suited for less-regular applications.

A comparative study of DCS, ICS, and other variations on implicit coscheduling tech-
niques is given in [1]. These variations include different actions for waiting processes,
as well as for those receiving messages. In some cases, the author finds that simpler
coscheduling mechanism can outperform ICS and DCS, depending on the OS abilities.
Another comparative study presents an elaborate taxonomy and comparison of implicit
coschedulers, and also suggests some new schemes based on periodic rescheduling [54].
These methods, called Periodic Boost (PB), are based on boosting the priority of com-
municating processes on a periodic basis, thus eliminating the need for an interrupt on
communication events. Another extensive simulation-based study that compares differ-
ent variations of PB to the other methods presented above can be found in [76]. In this
study, it was found that both PB and SB to result in higher machine machine utilization

than GS for most test scenarios.

2.3.3 Buffered coscheduling

Buffered coscheduling (BCS), represents a different approach to coscheduling [19, 20,
21, 22, 56]. In BCS , local scheduling decisions are based on global information of the
system’s status, essentially converting an on-line problem of coordinating jobs to an
offline problem.

In the BCS model, each timeslot has two phases: computation and communication.
During the computation phase the current job runs normally, except that all the outgo-
ing communication is buffered for later execution. If the communication is of a blocking
type, the process is preempted and another process is chosen and scheduled. The com-
munication phase is divided into three parts: first, an exchange of information occurs

between the nodes, after which every node has global knowledge of the information that

16



CPU ‘ 1 3 3 1 Key to phases:
: : : _-r- T: Total-Exchange
: : : -7 S: Scheduling
Y vy V.- Y . .
NIC ‘ TH C TH C THSH C THSH C C: Communication
0 ) ) 3 4 P Time slot

Figure 2.4: Buffered coscheduling example.

pertains to its pending incoming and outgoing communication, and possibly other infor-
mation such as load, availability and status of other nodes. During the second part of the
phase, the communication between the nodes is scheduled for optimal use of the network
without exceeding the phase’s time limit. Lastly, the messages are transmitted according
to the schedule. It should be noted that the availability of advanced network hardware
can enable a communication phase that is so fast, that several phases fit in a timeslot. In
that case, the model can change to accommodate communication phases that service the
currently running computation phase, thus reducing the need for a premature context
switch.

To use the machine effectively, the computation and communication phases are over-
lapped, so that the communication phase for computation phase N runs concurrently
with computation phase N+1. This requires that network interface card (NIC) have its
own processing capabilities, as is the case for example with the Myrinet[9] and Quadrics
[59, 58] NICs. Obviously, this only makes sense when there is demand for running more
than one job, which is the typical case for large supercomputer centers.

Figure 2.4 shows an example of buffered coscheduling on the first five timeslots of node
7 in the Ousterhout-matrix shown in Figure 2.1. Dashed arrows represent non-blocking
communication messages; regular arrows represent blocking messages. The communi-
cation phase in the NIC is divided in three parts: (T)otal exchange, (S)cheduling and
(C)ommunication. Note that outgoing blocking messages cause preemption of processes,

while incoming messages can enable the continuation of a process.

2.4 Communication Patterns Characterization

All the coscheduling techniques discussed above use some kind of information gathering
on the communication behavior of the application and use that information for making

local scheduling decisions. However, the information they gather is rather rudimentary

17



(mostly, they check for incoming messages), and does not serve to characterize appli-
cations into distinct classes of communication behavior. In [47], it is shown that gang
scheduling does not always perform optimally for all types of applications, especially
those that are I/O-bound. Furthermore, the authors conclude that messaging statistics
can provide important clues to whether applications require gang scheduling, and that a
scheduler needs to base its scheduling decisions on attributes of jobs in its workload.

The coscheduling schemes discussed here try to improve the definition of which pro-
cesses should be coscheduled. However, they do not take into account how much applica-
tions are really affected by gang scheduling, as is suggested in this study. Other studies
analyzed in detail the communication patterns of various types of scientific applications,
but in an offline manner, where logs of application communications are analyzed after
the execution is over [12, 14, 43, 44].

In [27], the authors make a first attempt to utilize dynamic information acquired from
the network to identify “activity working sets” of processes for the purpose of coscheduling
them. This study focuses mainly on identifying the sets of processes to be coscheduled,
but does not suggest a classification of processes or a refined method of scheduling pro-
cesses according to the information acquired.

The observations in [47] lead the authors to believe that runtime measurements of
communication behavior can and should affect scheduling decisions. The main parameter
they suggest to measure is message count, and correlate it to the periods when processes
are coshceduled to test how much the process requires to be coscheduled with its peers.
The authors also use this parameter to suggest a rudimentary classification of processes
into three types: embarrassingly-parallel, workpile and synchronization intensive. The
first two classes describe processes that have little synchronization needs, and may or
may not, require just some load-balancing, respectively. The third type is for processes
that synchronize frequently, and these processes explicitly require coscheduling. The
authors indicate that a coscheduler should use this information to make better scheduling
decisions, and suggested the name “Flexible Coscheduling” for it. Unfortunately, this
study does not implement or test the effects of such a scheduler. Furthermore, the paper
shows that in some cases, message count alone is not enough to offer a reliable indication
of progress.

In the next chapter, a coscheduling scheme is suggested that offers a methodolog-
ical way of gathering meaningful statistical information from the communication layer
and using this information to schedule processes according to their specific coscheduling

needs.

18



3 Flexible Coscheduling

3.1 Overview

To address the problem described in Chapter 1.1 we propose a novel scheduling mech-
anism called Flexible Coscheduling (FCS). The main motivation behind FCS is the im-
provement of overall system performance in the presence of heterogeneous hardware or
software using dynamic measurement of applications’ communication patterns and clas-
sification of application to distinct types. The scheduler can thus make better local
scheduling decisions based on the class information of different processes and applica-

tions.

3.2 Process classification

FCS employs dynamic process classification and schedules processes using this class in-

formation. Processes are categorized into one of three classes:

1. CS (coscheduling): These processes require coscheduling with their peers, and are
currently successfully coscheduled. The way to measure this success is explained

in Section 3.4.

2. F (frustrated): These processes require the synchronization gains obtained with
coscheduling, but coscheduling them is unsuccessful. These are typically those
processes that suffer from system heterogeneity or load imbalance, originating for

example from uneven decomposition of the data set.

3. DC (don’t-care): These processes rarely synchronize, and can be scheduled in
almost any possible way without penalizing the system’s utilization. For example,

a job using a coarse-grained workpile model would be categorized as DC.

Note that some processes, called RE (rate-equivalent), are included in the DC category.

These processes have low synchronization requirements, but need coarse-grain load bal-

19



Granularity

DC (RE) DC

Figure 3.1: Decision tree for FCS classification

ancing, so they require the same amount of normalized CPU time, even if this does not
necessarily occur in the same time slots’. Figure 3.1 summarizes this classification.

Processes of the same job will typically, but not always, be of the same class. Some
local traffic patterns can create subgroups of processes with their own synchronization
patters. To allow for these cases, and to avoid global exchange of information, processes
are categorized on a per-process basis, instead of a per-job process.

This classification differs in two important ways from the one suggested in [47|. First,
we differentiate between the CS and F' classes, so that even processes that require gang
scheduling would not tax the system too much if heterogeneity prevents them from
having proper GS. Second, there is no separate class for RE, or embarrassingly parallel
applications. These are indistinguishable (from the scheduler’s point of view) from DC
processes, and are scheduled in the same manner. Embarrassingly parallel applications
are hard to detect, since it is hard to predict their need for load balancing. Thus, they
are designated as F' processes so that they may be given approximately the same CPU
time on all nodes, but not if they are predicated by heterogeneity (which would cause a

detrimental load imbalance for them anyway).

3.3 Scheduling

The principle behind scheduling in FCS is as follows: C'S processes should be coscheduled
and should not be preempted; F' processes should be coscheduled but can be preempted

!The detection of RE processes would require the exchange of information about processes across nodes.
This may pose some scalability and performance problems. This is outside the scope of this work
which attempts to schedule processes in a more distributed manner. Buffered coscheduling, described
in the previous section, attempts to tackle the these issues, and uses hardware features to implement
efficient global exchange of information.

20



when synchronization is not achieved; and lastly, DC processes impose no restrictions
on scheduling. Like with BCS, the node daemon in FCS receives multi-context-switch
messages from the master daemon, but also has autonomy to make local scheduling
decisions.

Figure 3.2 shows the basic algorithm of the node daemon upon receipt of a multi-
context-switch message. The basic idea is to allow the local operating system the freedom
to schedule DC processes according to its usual criteria (fairness, I/O considerations,
etc.), and also to use DC' processes as “Lego blocks” to fill in the gaps that F' processes
have because of their synchronization idiosyncrasies to gain better machine utilization.
An F process that waits for pending communication should not block immediately, but
rather spin for some time to avoid unnecessary context switch penalties.

The fact that FCS collects communication statistics for each process allows the sched-
uler to determine a competitive spinning time on a per-process basis. Two more principles
differentiate this scheduling method from DCS and ICS

1. A CS process in FCS cannot be preempted before the time slot expires even if
an incoming message arrives for another process (processes classified as C'S have

“proven” that it is not worthwhile to deschedule them in their time slot).

2. The local scheduler’s freedom to choose among processes in the DC time slots and
F gaps is affected by the communication characterization of processes, which could

lead to less-blocking processes and higher utilization of resources.

3.4 Characterization Heuristics

FCS uses dynamic characterization of processes based on their communication behavior,
to continually adapt processes’ classification and associated parameters over time. The

local scheduler monitors six variables for every process:

1. Ceg - The message count (in and out) for the process while it is being coscheduled
(i.e. scheduled as either C'S or F).

2. Cpc - The message count (in and out) for the process while it is scheduled as DC.

3. Tes - The total amount of time spent waiting for communication attempts to

complete while being coscheduled.

4. Tpc - The total amount of time spent waiting for communication attempts to
complete while scheduled as DC.

21



procedure context_switch (current_process, next_process)
begin
if current_process == next_process then return
switch (on type of next_process)
if CS then
run next_process for its entire time slot
if DC then
let local 0S scheduler schedule among all DC' processes
for entire time slot, and if there are no DC(C processes
waiting to run, allow local scheduler to choose from F
processes first and then from CS processes
if F then
loop for entire time slot
1) run next_process until it blocks for communication
2) Do until communication unblocks for next_process:
let local 0S scheduler schedule among all
DC processes for entire time slot, and if there
are no D(C processes waiting to run, allow local
scheduler to choose from F and then CS processes
else if next slot is empty then
if current process is DC or F, continue process
else suspend current CS process and run DC in next slot
end

Figure 3.2: Context switch algorithm for FCS

22



5. Wes = %gi% - The average wait time for a message while being coscheduled.

6. Wpe = g—g% - The average wait time for a message while scheduled as DC

These variables refer only to synchronous communication operations, and only while the
process is scheduled (time spent suspended is not counted). Asynchronous operations
are not counted or monitored (waiting for an asynchronous operation to terminate, using
for example MPI_Wait(), counts as a synchronous operation). Applications that have
little synchronization needs do not require to be coscheduled. Therefore, processes that
rarely communicate synchronously are automatically classified as DC'.

Initially, when a process is launched, it is tagged as C'S, and is scheduled as such for
a fixed number of time slots, while updating the Cog and Teg variables. This allows for
short jobs, which account for a significant amount of many production workloads [16, 51]
to enjoy the benefits of gang scheduling and thus terminate early. Then, the process is
tagged as DC for another fixed number of time slots while updating the Cp¢c and Tpe
variables. After this initial period, the variables are updated during the entire lifetime

of the process, and the process scheduling class is determined using these principles:

® If the process rarely communicates (both Ccg and Cpe are lower than a given
threshold DClpyresh, compared to the total accumulated run time of the job), the
process is either DC or RE and is classified as DC};

€ Otherwise, If the process always has relatively long periods of waiting for commu-

nication to complete (compared to a threshold Fyyesh), it is of type F?;

€ Otherwise, If the process communicates significantly better while being coscheduled
than not (as determined by the ratio vagg and a threshold M AXwy ), the process

. Wes
is of type CS;

€ Otherwise, the process is of type DC.

The thresholds to determine what “low” and “high” ratio and count values are tun-able

parameters.

3.5 Implementation Issues

It is worth noting the following implementation issues:

2These are F' processes rather than DC, since they communicate relatively frequently, albeit not very
efficiently. If they were designated as DC and not coscheduled, they would probably suffer even
larger delays in communication.

23



. DC and F processes are allowed to use alternate scheduling, and continue into the
next time slot if it is not allocated to any other process. The reasons for this is
that DC processes do not need coscheduling and F' processes can sometimes benefit
from the extra CPU time, and if not, they will not hurt the system much since DC

processes can fill the gaps they create.

. One possible optimization would allow for processes with effective, fine-grain com-
munication (that is, their average count of synchronous communication operations
in a timeslice exceeds a threshold CSipresn), to never switch from the initial C'S
state to the initial DC' state. This makes sense since such processes do not really
belong to the F or DC classes.

. For implementation purposes, it is safe to assume that the average wait time while
being coscheduled does not exceed the the average wait time while not coscheduled
(i.e., Wpe > Wes), so that it is enough to check Weg for determining whether

the average wait is longer than a threshold (and thus classify the process as F).

. As described in Section 3.3, F' processes spin (“busy-wait”) for some time before
blocking and possibly yielding the processor. The amount of spin time should be
large enough to allow “normal” communications to complete with little overhead,
and small enough to detect stalled communication adequately (stalled communi-
cation is typically caused by a load imbalance in an F' process). One advantage of
collecting communication statistics about process is that the spin time can be both
adaptive and individual per process. In the current implementation, the spin time
was chosen to be spin = min(2 x M AXpon—biocks M AXspin), where M AX ;o0 biock
is the maximum time that a non-blocking communication took in the lifetime of

the process, and M AX,,;, is an absolute upper bound on the spin time.

. Frequent re-classification of processes should be avoided, since it incurs extra over-
head and reduces the reliability of the process statistics. Therefore any process
should spend some minimum amount of time MINgme in any given class be-
fore being evaluated for re-classification. Furthermore, a higher amount of time
M I N;pit—ctime should be spent on the two initial C'S and DC periods, to allow the
process some time for initialization. Note that in both cases, CPU time in class is

measured, as opposed to wall-clock time.

. While running in DC slots, or when using DC processes to fill idle fragments, we
retain the option to run F and C'S processes when all DC' processes are blocked for

communication or I/O. One way of implementing such a mechanism is detecting

24



that all DC processes are blocked and launching F' or CS processes. This detection
may be potentially difficult to implement, since a watchdog process must monitor
the status of the DC processes. Another implementation option is to allow all
processes to run, in three descending priority classes for DC, F', and C'S processes.
If the priorities are set properly, F' processes will almost never run in these slots,
unless all DC processes are blocked, and C'S processes will almost never, unless all
DC and F processes are blocked. Either one of these mechanism can also be used
to “fill in” idle periods on CS and F' timeslots, if the coscheduled process is blocked
for a long I/O operation.

7. Another subtle issue regarding DC' processes occurs when running on SMP nodes.
It is possible that some PEs in the node will be running a coscheduled process (F
or C'S) while one or more PEs are running in DC mode. Since more than one DC
process may be running, it is possible that the local UNIX scheduler will assign
some of these DC processes to PEs that are running a coscheduled process, for load
balancing. This predicament has an adverse effect on the coscheduled processes and
should be avoided if possible. One way to avoid it is using processor affinity, where
processes are “locked” to certain PEs, so that DC processes only run in PEs that
are are not running coscheduled processes (but can be load balanced within their
assigned PEs). This feature is operating-system dependent, and is supported for
example in Linux 2.4 and Tru64. Processor affinity also hold sometimes the added

advantage of a process maintaining its cache state for a longer period.

8. To determine process granularity, which is required to distinguish the DC' class,
the actual running time of a process must be measured, so that periods when the
process is descheduled or blocked are not counted. Linux and other operating

systems offer system calls that facilitate this measurement?.

9. It may be beneficial to let the scheduler to reset process classes from time to time,
and allow them to go again through the initial classification process. The purpose
of this resetting is to allow long-running processes to start gathering fresh statistics
and possibly acquire a different classification, thus adapting to changing process
behavior of correcting a previous, incorrect classification. A process is thus set back
to the INIT CS class if it has spent more than M AX ime CPU time in one class.

3For more information, see Linux man pages on times(), rusage() and clock().

25



4 Experimental Framework

4.1 Overview

This chapter describes in detail the hardware, software and run time environments that
were used to test FCS and compare it to other scheduling algorithms. Both the hardware
and software environments are among the fastest currently available in the market, and
offer performance that compares favorably with modern systems.

On the hardware side, a 64-PEs cluster was using, with a Quadrics interconnection
network. This network offers high-bandwidth, low latency point-to-point communica-
tion, along with extremely fast collective operations. Section 4.2 describes in detail the
hardware environment.

The scheduler system that was developed for these tests is currently the only system
that can run MPI programs over the Quadrics network, aside from Quadrics’ own RMS,
but offers better response time and scalability than RMS [32]. Furthermore, its flexible
design allows for a simple implementation of most of the scheduling algorithms in the
literature, and several of those were implemented to enable comparison with FCS. The
scheduling system is described in Section 4.3 while Section 4.4 covers implementation
details of the scheduling algorithms that were used in the comparison. A more detailed
description of the scheduler software can be found in [31].

A special benchmark was developed for this work, that allows extensive comparison of
scheduler behavior under different types of applications and workloads. This benchmark
is described in Section 4.5. A realistic model of a production-environment workload was
used, and is described in Section 4.6.

It is important to note that this simulation contains real life measurements and not a
simulated hardware environment. The scheduler’s efficiency is measured on a relatively
fast cluster using MPI applications. Thus, all the overheads and effects associated with
scheduling, process management, network contention, etc., are measured and accounted

for.

26



4.2 Hardware Environment

The hardware used for experimentation was the 'crescendo’ cluster at LANL/CCS-3.
This cluster consists of 32 compute nodes (Dell 1550), one management node (Dell 2550)
and Quadrics inter-processor network switch [63, 79] (using 32 of the 128 ports). Each
compute node is composed of the following:

Two 1.13 GHz Pentium-III

1 GB ECC RAM

18 GB hard-disk

Two independent 66 MHz / 64-bit PCI buses

A Quadrics QM-400 Elan3 NIC [61, 62, 79] for data network

An Ethernet-100 network adapter for management network

® 6 6 O O o o

Red Hat Linux 7.1 with Quadrics kernel modifications and user-level libraries [60]

and the processor affinity patch [80].

The Quadrics interconnection-network (ICN) is one of highest-performing interconnects
currently available, and can offer a sustained MPI data bandwidth of more than 300
MB/s, and synchronization latencies lower than 7.5usec, even for 1024 nodes [59, 57].
It is currently being used in Pittsburgh Supercomputing Center at the machine ranking
number 2 in the top 500 list, and will be used in the ASCI 30-teraops machine, to be
deployed at LANL. It was used in the experiments both as the underlying device layer
of the MPI library linked to the test applications, and as the internal communication
layer of the scheduler for its own information exchange. More details on the advantages

of using the Quadrics ICN are outlines in Subsection 4.3.6 below.

4.3 Software Environment

To verify the FCS scheduler and test how it performs in comparison to other schedulers,
a complete scheduling testbed system was designed and implemented. This section de-
scribes the main points of the design and implementation of this testbed. Additional
low level implementation details and a detailed background of the Quadrics software

environment can be found in [31].

27



4.3.1 Design Principles

1.

Flexibility: An important feature for the testbed is to support as many modern
and future scheduling algorithms as possible, so that it can be used as a valuable
research tool. With this in mind, the testbed currently supports GS, SB (ICS),
FCS, FCFS and local scheduling, but is also designed so that other scheduling
methods, including those described in Section 1, can be readily added to the sys-
tem. In fact, one of the imminent future research directions at LANL includes the

implementation of BCS and other schedulers, for in-depth study of their properties.

Performance: To make the experimental results both valid and comparable to
current state-of-tart systems, the design should strive for best scheduler and appli-
cation performance. From the software point of view, this requirement translates to
a lightweight, efficient scheduler, with fast user-level internal communication and
a relatively low-overhead implementation. From the hardware point of view, an
environment where test applications can perform well compared to other systems

is required.

. Scalability: The scheduler testbed should be as scalable with the machine size as

possible, both to allow testing on larger machines, and to obtain good scheduling
algorithms. This implies some design constraints such as having the testbed con-
trol daemons work as asynchronously as possible, and using broadcast/multicast

mechanisms for any global coordination messages

. Simplicity: The testbed should not be over-complicated, so that maintenance

and augmentation of new scheduling algorithms will incur little overhead. This
in turn means that some nice-to-have features such as those described below are
not included in the design goals. This also means that parallel applications should
not be changed to accommodate the system, or at most be linked again with an

instrumenting version of MPI.

. Portability: The testbed should be designed so that porting it to other hardware

platforms, ICNs or even operating systems will be relatively simple, to allow for
extended testing and enhancing. To this end, the system should intervene as little
as possible with the operating system. Furthermore, the most hardware-dependent
module of the testbed, the underlying communication layer, should be encapsulated
in a small, isolated module (the final version actually included two implementations
of this layer, one that works over the Quadrics ICN, and another that works over

any implementation of MPI, and is used mainly for debugging purposes).

28



Since the testbed’s main purpose is for scheduling research and not a production system,

the following issues were not included in the design goals:

1. security: The system takes no special precautions to avoid rogue requests and does
not check for access control rights. However, since it is run by the user in user-
mode, using her own user-id and group-id, the scope of potential security violations

is limited to that of any application the user might run.

2. reliability: No special attempt was made to make the system fault tolerant or
have graceful degradation in case of software/hardware errors. However, the com-
munication layer is designed to be reliable, and the scheduler includes various sanity

checks to allow many kinds of errors to be trapped.

3. manageability: The testbed system has no cluster or job management tools except
for a basic set of scripts, and does not provide most of the features in modern cluster

management systems (CMS) [6].

4. Ease-of-Use: The testbed has a relatively simple command-line, scripts, and files

interfaces, and offers no GUI or other high-level tools.

4.3.2 Architectural Overview

The testbed system consists of a single wrapper application running in many copies,
where each copy of the program assumes one of three possible roles according to its
node location and sequence number. These three types of programs consist of a machine
management (MM) process, node management processes (NM) and program-launcher
processes (PL), and they communicate among themselves with a well-defined protocol
(See 4.3.6). In general, the MM is in charge of the initial allocation of resources to pro-
grams and the coordination of the NMs; the NMs are responsible for local scheduling on
each node and communicate with the MM and the PLs; the PL’s only function is to fork()
and execute new applications, and report back when these terminate. The functions of
each process are detailed in Subsections 4.3.3-4.3.5. Subsection 4.3.6 describes both the
details of the internal communication mechanism between the scheduler modules, and
the augmentations to the user-level communication library that the test application use.
Finally, subsection 4.3.7 Covers the system parameters that control the behavior of the
testbed system.

29



4.3.3 The Machine Manager

The machine manager has two roles: the dispatching of new jobs, initial allocation of
resources to them, and the coordination of node managers through heartbeat messages.
The workload of jobs is fed into the MM using a workload file, with a simple format that

describes, in each line, the following parameters:

1. Time to run the application (in some predefined units).
2. Number of PEs the application requires.

3. Command-line of application to run, including parameters for the application

The MM reads this file, which is sorted by application start time (Item 1), one line at
a time, and sleep()s until the time the application should be launched or a heartbeat
message should be sent. It would then wake up to perform the communication, and
possibly to read the next line of the workload file, before going back to sleep. It can
also be awaken by a message from one of the NMs, e.g. announcing the termination of a
process.

For initial allocation of resources, we use a library called rm dynbt (Resource Man-
agement using DYNamic Buddy Trees), developed by Uri Lublin and Dan Tsafrir for the
ParPar cluster scheduling system [18, 25, 81]. This resource management library em-
ploys the buddy-tree allocation algorithm [23]. Its modular design allows it to be easily
plugged into different schedulers and use various allocation schemes. A wrapper layer
was written to access its functions, and also includes the functions to allow the library
the updating of its internal data structures due to status change of nodes or jobs. This is
done by propagating the appropriate messages (e.g. process termination) from the NM
to the MM, which then calls the wrapper module’s appropriate callback function.

The MM occasionally exchanges messages with the node managers in a well-defined
asynchronous communication protocol. These messages include broadcast information
from the MM to the NMs (e.g. new jobs or heartbeat message), and incoming messages
from the NMs (e.g. process termination notification). See Section 4.3.6 for a complete

description of the protocol.

4.3.4 The Node Manager

Node managers are responsible for the initial launching and scheduling of processes on
each node. For simple gang-scheduling, the role of the NM is limited to executing com-

mands issued by the MM: launching and preempting jobs. With some of the the other

30



scheduling schemes, where local scheduling decisions are made based on locally-collected
information, the NMs are in charge of the information collection and the local scheduling
decisions.

The NMs hold a copy, through messages from the MM, of the Ousterhout-matrix
information pertaining to their node. This allows them to know which processes to run on
a context-switch, as well as to make better-informed local-scheduling decisions. For some
of the scheduling schemes, the NM also requires information about communication among
the processes. Information regarding in-node processes are gathered by augmenting one
of the layers of the MPI library (the ADI layer) so that it informs the NM of relevant
communication events. A small library using BSD message queues was implemented for
this purpose.

Each node in the cluster runs exactly one copy of the NM, regardless of the number of
PE’s the node has. (In debug mode, several PEs or even several nodes can be simulated
on any smaller number of nodes, including one). This NM assigns and preempts processes
to all the PEs in this node. This policy can offer a performance benefit when making
local scheduling decisions in SMPs, since the NM has more degrees of freedom for making

such decisions.

4.3.5 The Program Launcher

The program launcher has a very simple role: execute a command from the NM to launch
a program. Upon receiving a new job to run, the PL fork()s a new process, sets up pipes
so that the standard input, output and error streams of the new process are redirected to
Quadrics’ RMS (and in turn, to the management node), and exec()s the new job. Each
PL is associated with the node NM with which it communicates using a well-defined
communication protocol. The number of PLs in each node is determined by the number
of PEs and the MPL we choose when initializing the system. One copy of the PL is
required for each PE and for each timeslot in the system. A new program can be run
only if the PL assigned to its PE and timeslot (or any PL in local scheduling) is currently
available.

An available PL simply waits for an event from the NM, giving it the details of a
program to run (command-line, etc.), and then fork()s, and exec()s the program. The PL
itself blocks with a waitpid() call. When the user process terminates, the PL wakes up
and notifies the NM of the process termination and becomes available for a new program
again.

It should be noted that in an ideal implementation, the PL is actually redundant with

the NM and not really required as an independent process. However, the system was

31



designed this way since it allows running application processes with Quadrics capabilities
without modifying the Quadrics Resource Management System (RMS). This limitation
arises from the fact that currently, only RMS can assign a Quadrics capability (access
to the Elan NIC), to processes, so an implicit role of the PLs is actually to reserve this

capability for the application process.

4.3.6 Communication Mechanism

For the correct operation of the scheduler, an efficient communication mechanism is
required to connect the various modules. This section describes the communication
protocol that is used between the modules, and some of the implementation details of
the communication layer. In particular, the implementation over the Quadrics network
and libraries is described.

There are two important issues when considering the communication aspects of the
testbed. The first is the internal system communication layer, that connects the MM,
NMs, and PLs. The second is the set of adjustments that is required to make the
application communication layer cooperate with the scheduler subsystem for some of the
scheduling algorithms (For example, BCS, FCS, DCS and a few other require information

about synchronous communication operations of the applications).

Internal protocol

The first issue is resolved by defining a lean communication layer API and a communi-
cation protocol to connect the scheduler modules. This layer can later be implemented
over any underlying hardware, and has currently two implementations in our system:
one over Quadrics for maximum performance and one over MPI for flexibility and ease
of debug. The API defines primitives for sending and receiving messages from one pro-
cess to another, and broadcasting messages from the MM to the NMs. All messages are
assumed to be sent asynchronously, and the layer supports polling of the communication
channel for incoming messages. The communication protocol allows for the following

types of messages (with an appropriate, context-sensitive payload):

1. Heartbeat (multi-context-switch) with the new timeslot number. This is broadcast
from the MM to NMs.

2. Process-ID information, from NM to PLs at initialization.

3. New job-launch, with timeslot and allocated PEs information, broadcast from MM
to NMs and from NM to PLs.

32



4. Process-ID of a newly-launched process, from PL to NM.
5. Failure notification if launching of process failed, from PL to NM.
6. Process termination message, from PL to NM.

7. Process termination message, from NM to MM (contains more information than

previous message)

8. Shutdown message when all work is completed, broadcast from MM to NMs and
from NMs to PLs.

The processes are designed to be as state-less as possible, and receive the incoming
message at asynchronous fashion and in almost any order. However, they do perform
sanity checks on the source and content of every message, to trap for erroneous message
(for example, message from NM to NM are invalid, or a message to launch a new job
on a previously allocated PE/timeslot). Furthermore, the protocol is designed so that
the MM only talks to the NMs, and the PLs only talks to the NMs. This allows for
having two different implementations of the communication layer, depending if it is with
the MM or the PLs. In fact, one version was implemented where all the communication
between the NM and the PLs on its node is done via shared memory instead of Quadrics.
This allows enhances the performance for NM «+»PL communication and simplifies the
handing down of Quadrics capabilities to the real executing applications (since they are
not being used by the PLs).

Implementation details for the Quadrics internal communication layer

The network interface of the Quadrics network (Elan) can be programmed using several
programming libraries [61], as outlined in Figure 4.1. These libraries trade off speed
with machine independence and programmability. Starting from the bottom, Elan3lib
provides the lowest-level, user-space programming interface to the Elan3. At this level,
processes in a parallel job can communicate with each other through an abstraction of
distributed virtual shared memory. Each process in a parallel job is allocated a virtual
process id (VPID) and can map a portion of its address space into the Elan. These address
spaces, taken in combination, constitute a distributed virtual shared memory. Remote
memory (i.e., memory on another processing node) can be addressed by a combination
of a VPID and a virtual address. Since the Elan has its own MMU, a process can select
which part of its address space should be visible across the network, determine specific

access rights (e.g., write- or read-only) and select the set of potential communication

33



User Applications

shmem mpi
elanlib : . t port .
user space elan3lib
L;;n;; ;ﬁ;(;(;; 77777 system calls elan kernel comms

Figure 4.1: Elan library Hierarchy

partners. Communication at Elanlib level is vary fast, with a base latency of only 2usec
and asymptotic bandwidth in excess of 320 MB/sec.

Another interesting feature of the Quadrics network is the native support for collective
communication. The switches in the network can support a tree-based multicast that
is combined with the execution of multiple active messages on the destinations network
interfaces. For example, a source node can inject a multicast packet into the network, and
this packet is forwarded in a tree-like manner to multiple destinations. The packet open a
tree of circuits and on these circuits multiple transactions can be executed synchronously.
A typical transaction is to check the status of variable on all destinations, merge the
results of all these nodes using a combining tree and perform other transactions, based on
the results of the previous transaction. These mechanisms allow the fast implementation
of collective communication patterns.

The communication library implemented for this scheduler leverages both mecha-
nisms, the remote DMA and the multicast, to provide fast communication and syn-
chronization between all the processes. More specifically, the heartbeat (multi-context-
switch) is implemented with a hardware multicast, which can be delivered in few mi-
croseconds, with good scalability, even in the presence of background traffic. The com-
munication between the NMs and the MM uses remote DMAs

Application communication layer

These processes communicate with each other through helper threads that run on the

Quadrics NIC. This way, the communication incurs almost no penalty to the compute

34



processes, and can benefit from Quadrics’ network advantages, like fast collectives and
communication that requires no intervention from the main CPUs.

For the communication of the test applications, we use MPI [35, 36, 67| as the un-
derlying communication layer. MPI was chosen due to its widespread use in parallel
applications and the availability of a high-performance implementation of MPI over the
Quadrics ICN. It is important that the PL close all the open Quadrics handlers it has
before executing the user program, so that they become available to the application pro-
cess. Further, Some changes are required to the underlying Elan3! level, to trick the
application into seeing a world of MPI processes that consists only of its peer processes,
and not all the NMs, PLs, and other running applications. This in turn requires that
information about the program? be available to the Elan3 layer. This is done by the NM
posting this information (as a mapping from job virtual IDs to Elan virtual IDs) in a
shared-memory region in main memory. MPI Init() was enhanced so that whenever a
new program is launched and calls it, it will read that mapping from the shared-memory
area, and set it up as an Elan group. From that point forward, all other processes are

transparent to the application, and all MPI calls work normally.

4.3.7 System Parameters

A set of environment variables determines the operational parameters and behavior of

the testbed system. These variables control the following;:

€ The machine configuration, whether real or simulated (number of nodes, number
of PEs per node).

@ Scheduling algorithm to use.

4 The multiprogramming level (MPL) - the number of timeslots in the Ousterhout
matrix, for the algorithms that use it. No more than MPL processes can be assigned

to a given PE at any time.
€ Timeslice for each timeslot, in microsecond resolution.

@ Debug level - a set of binary flags controlling which aspects of the system should

be instrumented, debugged, or verified with further sanity checks.

!The Elan3lib is the lowest-level library that allows access to the Elan NIC thread processor.
2Specifically, information on the program’s timeslot, or row, in the Qusterhout-matrix

35



parvis.tk

3600 3800 4000 4200 4400 4600 4800 5000 0 5200 0 5400 0 SO0 5800 0 GOOO

N =
StarttimelS?G?43?15 (sec) End|9?6843?15 (sec) ResolutionllDD

Recalculate |

Figure 4.2: Example screen shot from scheduler visualization tool

4.3.8 Development and Evaluation Environment

The development and testing environment includes a set of preporcessing and postpro-

cessing scripts that handle the following tasks:

€ Format the output of the workload model to a workload file adapted for the syn-
thetic benchmark

® Verify consistency among the program parameters and environment variables (for
example, check that the MPL is set to 1 before running an FCFS batch).

¢ Launch the MMs, NMs and PLs at their corresponding nodes via RMS [64|or
mpirun [67].

@ Process the output log file of the scheduler and calculate the performance metrics.

Another set of Perl and TCL/TK scripts was used to analyze scheduler log files and
display the scheduling decisions over time in a visual manner, similarly to Figures 2.1-

2.3. Figure shows an example screen shot from these tools.

36



4.4 Scheduling Algorithms Implementation

This section describes the implementation details of each of the scheduling algorithms

that were implemented in the current version of the testbed.

4.4.1 Gang Scheduling

The description of the implementation of gang scheduling in the testbed system can serve
as a basis to describe other scheduling algorithms as well. In fact, the system is designed
so that there are very little structural differences for the various implementations. Most
notably, these include a different implementation of the context switch and are mostly
confined to the NMs.

In the gang scheduling implementation, the MM has the responsibility over scheduling
decisions (total global coordination), and the NMs have therefore very little autonomy.
Their role is limited to that of carrying out communication between the MM and the
PLs. The following describes the order of events when the MM decides to launch a new

job (after its start time is has arrived and resources were successfully allocated to it):

1. The MM broadcasts a job-launch message to all the NMs with the details of the

new job and its allocated resources.

2. Each NM verifies the request, and checks if the new job runs on some or all of its
node PEs.

3. If it does, the NM forwards the request to the appropriate PLs (each PL is respon-

sible for one PE and one timeslot, so the job’s PLs are well-defined).

4. The PLs receive the request and try to fork() and launch the program. Note that
for performance reasons, it is best that a copy of the program and its data files be
kept in a local hard-disk, rather than accessing it through NFS. The same applies
for the output files of the program.

5. If successful, the PL returns the PID of the new process to the NM, and waits for
it to terminate using the waitpid() system call. If the program could not be run,

the PL returns a failure message to the NM.

6. The NM stores the PID for future reference. It also suspends the newly-run process
if its allocated timeslot is not the currently active timeslot (so that it does not

interfere with the currently-running job).

37



Later on, when the user process terminates, the following sequence of events occurs:

1. The PL awakes and sends a termination message to the NM with the process ID.

2. The NM matches the PID with its tables, and sends the MM information about

the process.

3. The MM deallocates the process resources in rm _dynbt, and checks to see if it can

use them for a new job.

On every timeslice expiration, the MM broadcasts a heartbeat message to the NMs, with
the new timeslot number. Each NM checks to see if is required to switch to another
process in the next timeslot (for each PE), and if so, suspends the currently running
process and resumes the next process (using SIGSTOP and SIGCONT signals). Note
that processes will continue running beyond their timeslot if no other process is supposed
to run on the next timeslot (In other words, they will employ a relaxed kind alternate
scheduling, see 2.2). This may not be overly useful for fine-grain, synchronization-bound

jobs, but could be beneficial to compute-bound processes.

4.4.2 Flexible Coscheduling

The FCS algorithm can be divided into three logical parts: communication monitoring
(instrumentation), process classification and scheduling. We can therefore focus on these

parts independently.

Communication monitoring

Instrumentation of the application communication is achieved through a monitoring li-
brary (libmonitor.a), that is used both to record communication events and to retrieve the
information. The first part is achieved by simple modifications to the MPI library that
take effect when running under FCS, so that whenever an application calls a synchronous
MPI function, the modified MPI library function registers the event. Furthermore, these
calls are also modified so that they perform a spin-block mechanism, instead of the default
blocking. The amount of time to spin is read from a global variable from libmonitor.a,
and can be adaptive, as described in Section 3.5. The spin-block mechanism is also used
in the implementation of ICS.

The monitoring information is stored in an event queue, at a well- known shared
memory region, so that the queue can be emptied by the NM at fixed intervals or when

requested by the monitoring library. This request will occur when the queue is nearly

38



full, and whenever the spinning time of the communication call is expired, and it starts
blocking. This is done by the means of a UNIX signal, and enables the NM to react

immediately to a blocking communication call and reschedule processes as needed.

Process classification

One of the key issues in FCS is the classification heuristics, that tries to determine which
scheduling requirements are best for each process, based on its communication behavior.
Thus, on periodic intervals and whenever a process performs a blocking MPI call (and
a signal from the monitoring library is received), the process class is reevaluated. The
classification heuristics uses most of the optimizations described in 3.5, and contains
several parameters that were tuned by trial-and-error to find relatively good characteri-
zation precision. Figure 4.3shows the re-classification heuristics. Note that if the process
actually changes class, some immediate scheduling decisions may have to be taken (for
example, if a process changes from DC to C'S or F, the rest of the DC processes (if any)

must be suspended for the rest of the timeslot.

Process scheduling

Like in GS, process scheduling is the responsibility of both the MM and the NM, and
executed mainly by the NM’s context-switch function. However, in contrast to GS, the
NM has a relatively large autonomy for making scheduling decisions, and may deviate
from the Ousterhout matrix allocation when it deems it beneficial to do so. The imple-
mentation of the context switch function follows the algorithm described in Section 3.3

and Figure 3.2. Two implementation details are worth noting.

1. When performing a context-switch for a reason other than a regular heartbeat
(i.e. because a process terminated), DC processes are scheduled till the end of the

timeslot.

2. When switching from an F' process to a different process, care must be taken that
the process may have been blocked for communication, and therefore DC processes

might be running and should possibly be suspended.

4.4.3 Local Scheduling

Local scheduling is the least-coordinated and easiest to implement scheduling mecha-
nism for an NOW or a cluster. In local scheduling, parallel jobs are launched from

one management node, but all scheduling decisions are made locally by every compute

39



procedure reclassify_process (proc)
begin

ctime = total CPU time of proc in current class
events = total no. of blocking comm. events in current class

// Don’t reclassify too early:
if ctime < MIN;uit— ctime then return // For initial C'S or DC
if ctime < MIN.jme then return // For other classes

// Reset process class if too old:
if ctime > MAX 4me then reset class and return

// If at initial CS, switch to initial DC':
if proc.class == initial CS then
proc.class = initial DC and return

// Find class according to process statistics:
if dime - DCyyesn then proc.class = DC

events

else if Wegg > Fipresh, then proc.class = F
. 1%% _
else if 3P< > MAXVVVVZSQ then proc.class = CS

else proc.class = DC

end

Figure 4.3: FCS classification heuristic

40



node, typically using their default OS scheduler. Since jobs are not coordinated across
machines, this scheduling mechanism is expected to provide the worst performance for
parallel jobs, especially if they synchronize frequently. Of all the algorithms described
above, local scheduling is the easiest to implement, since it requires no coordination at
all. It is provided in the testbed as a baseline for comparison with other schedulers.

In the testbed implementation, job launching is done in the same manner as it is done
for GS and all other algorithms: When the job’s arrival time is reached, the MM sends
the job to the NMs, which in turn send the job to the PLs for actual launching. The
same goes for the job termination process: the PL reports the termination of a process
to the NM, which forwards it to the MM for resource management accounting. The MM
takes care of not allocating more than MPL processes per PE at a time, just as it does
for every other scheduling algorithm.

There are two important differences between local scheduling and gang scheduling.
In local scheduling, heartbeat messages are not sent by the MM, and the NM considers
such a message an erroneous condition. Furthermore, the NM never suspends a process,
so in theory, every PE could have up to MPL processes waiting for it to run them, and it
is the responsibility of the local UNIX scheduler to assign processes to processors using
the usual UNIX schedule() kernel function [72]. In Linux, there is only one run-queue
for all the processes, and while the scheduler tries to schedule processes to processors in
a consistent manner, it is quite possible in practice that processes would have different

assignments of CPUs and CPU time on every run cycle.

4.4.4 FCFS Scheduling

The implementation of FCFS (batch) scheduling is easily obtained by limiting the MPL
of the system to 1. Thus, no more than one process is allocated to a PE by the rm_ dynbt
module, and jobs wait in the MM queue, sorted by their arrival time. Whenever a resource
becomes available (e.g. by termination of a process), the MM retries to allocated the

first jobs in the queue.

4.5 Performance Assessment

The benchmarking of the different scheduling algorithm is based on a versatile synthetic
application that allows the exposing of various scheduler aspects [29, 47, 54, 76]. The
synthetic application is essentially a job comprising of processes that loop that performs
some computation, some I/O, and then some exchanges synchronous message with peer

processes, as illustrated in Figure 4.4 . A constant buffer size of 4KB was used for the

41



for i := 1 to iterations_num do
compute (basic_work + variance (basic_work, variance factor))
do_I0 (block_amount)
exchange_communication (pattern)

end

Figure 4.4: Main loop of synthetic benchmark application

communication exchanges and a buffer 1KB for disk I/O [76]. Using these constants, the
average times for exchanging one message (1},s¢) and writing one disk I/O synchronously
to the disk (T7¢) were measured, and found to be approximately 10 pusec and 17.5 msec
respectively.

The following non-constant parameters also control the behavior of the application:

1. N, or the number of processes in the job. This is determined in the workload file

in a per-job basis.

2. W, or total amount of time to be run, in seconds. This is given in the application

command line, and is determined by the workload.

3. G, or granularity, expressed as a ratio of the timeslice. For example, a ratio of 0.1

represents an application that exchanges communication 10 times in one timeslice.

4. The communication pattern, (pattern in Figure 4.4), which can be either nearest-
neighbor (NN) or all-to-all (AA). These two cases represent extreme cases of com-
munication. Another “communication pattern” is provided for testing, where no
messages are actually sent. The communication pattern and the number of pro-
cesses in the job N determine together the amount of message exchanges per iter-

ation, C.

5. B, or the amount of 1KB blocks to write to the disk in each iteration (block_ amount
in Figure 4.4). This parameter controls how dominant the I/O factor is in the

application (and can also be set to zero, to disable I/0).

6. w or the basic amount of work per iteration (basic_ work in , in seconds of computa-
tion. This is determined by estimating the amount of time the communication and
computation will take per iteration (by evaluating the expression C-Ty,59+B-T0),

and subtracting it from the granularity in seconds (expressed as G - timeslice). Di-

42



viding W by w, we can derive the number of iterations, (iterations_num in Figure
4.4).

7. V, or the variance factor, expressed as a ratio of B, or percentage. Thus, a basic
work unit of w = 1 second and a variance factor of V' = 20% would mean that
in each loop, the application would do something between 0.8 and 1.2 seconds
of computation. The actual value is determined in a uniform-random manner
every iteration, where each process has its own separate pseudo-random number
generator (PRNG) seed. This is in fact one of the most important parameters of the
experiments, since it controls the amount of of load imbalance the application has.
The higher the variance, the higher the probability that when a process exchanges

a message, a matching send or receive was not posted yet.

46 Workload

For the purpose of creating a workload that would be realistic and representative of real
production workloads, a model introduced in [51] was used, that in turn is based on run
logs from several supercomputing sites. Using this model, a workload file defining arrival-
and run-times of jobs can be created for any number of jobs and nodes, which has similar
mathematical and statistical properties the workloads extracted from these log files. For
these experiments a workload file for 32 PEs was created (so that two experiments can be
run in parallel in two separate partitions of the cluster), with a 512 jobs, and an average
load of 0.753, representing approximately one week of real jobs. All the run-times and
arrival times in the workload were “compressed” by a constant factor (100), that is large
enough so that experiments run fast enough to make an extensive comparison practical,
and short enough so that run-times are still several orders of magnitude above the system
latencies. Thus, running the entire 512-job workload typically takes approximately 1.5—3
hours, depending on the algorithm and parameters being used. Every job chooses its
granularity in a uniform random manner from one of three values: fine (10% of the
timeslice), medium (50% of the timeslice) and coarse (250% of the timeslice). Likewise,
each jobs selects in a uniform random manner one of three values for variance (taken from
[76]): no variance (0%), low variance (10%) and high variance (75%). The communication
pattern is also chosen randomly, with the following probabilities: No communication:
10%; Nearest-Neighbor : 45%; and All-to-All: 45%. A low probability is assigned to

3This is not the load measured from the experiments. Rather, this is a pre-run estimation of the ratio
of CPU-time request divided by total available CPU-time. Actual load depends naturally on the
efficiency of the scheduling mechanism and the behavior of the applications.

43



‘ Parameter ‘ Value ‘ Description
T 200usec | Timeslice: Interval between heartbeats, length of timeslot
MPL 4 Multiprogramming level
Nodes 16 Number of SMP nodes
MAX Wpo 2.0 Maximum value of VV[[/,—gg for a process to be considered DC
Fthres; ; % Threshold for average Weg, above which a job is considered F
DClipresh 1% T | Threshold for coarse granularity, above which process remains DC
CSihresh % Threshold for fine granularity, below which a process remains C'S
MAX time 500 x T' | Maximum CPU time for process in same class before resetting
MIN time 2% T | Minimum CPU time for process in a class before reclassification
MIN;nit— ctime 5% T | Minimum CPU time for process in the initial C'S and DC classes

Table 4.1: FCS and GS parameters

the no-communication case, since it is assumed that most parallel applications require

synchronous communication, hence the need for all the coscheduling techniques that were

developed to tackle this need.

4.7 FCS and GS Parameters

Table 4.1 shows the values for all the various GS and FCS parameters used in the ex-

periments. All the tunable FCS parameters were selected using extensive sets of tests

to determine which values might produce reasonable and stable results for the given

hardware and software platform.

44




5 Experimental Results

5.1 Overview

This chapter describes the experiments the were performed with the scheduler system,
and the results that were obtained. In Section 5.2, several simple tests are used to demon-
strate the basic abilities and performance properties of the scheduler system. Section 5.3
contains a special test scenario to examine the workings of the FCS classification heuris-
tics, while in Section 5.4 the performance of FCS is compared to several other scheduling
algorithms: ICS, GS, FCFS and local scheduling.

5.2 Basic Tests

The purpose of this section is to offer some insight into the basic performance aspects
of the scheduler system, before divulging into the benchmark results. We explore some
of the overheads associated with launching simple jobs of different types in the system.
Note that some of this these tests involve small quantities in their input parameters or
output measurements. Since the experiments were run on a real machine, with UNIX
daemons in the background occasionally interrupting the computation, and minute dif-
ferences in hardware, the results occasionally fluctuate. These fluctuations are in orders
of magnitude of fractions of a percent, and do not affect much the longer experiments,
but may affect some of the shorter ones. Unless otherwise mentioned, all these tests were
run with batch (FCFS) scheduling.

5.2.1 Response Time

Perhaps the simplest of cases is running a single job that does not compute, communicate
or perform any I/O, to measure the incurred overhead of launching a job. This overhead
can be regarded as the basic response time of the system, since it would be added to the

runtime of any job, regardless of its size. The overhead stems from the cost to process a

45



‘ i ‘ G ‘ B ‘ N ‘ W ‘ Torrival ‘ Tstart ‘ Tend ‘ Runtime ‘

1(-101] 1 |0.0001 2 2.19 | 3.61 1.42
2| -101]32]0.0001 10 10.17 | 11.59 1.42
3 |- 1064 0.0001 20 20.13 | 21.55 1.42

Table 5.1: Empty job runtimes

job, send its information to the NMs and from there to the PLs, execute the job, wait for
the job to terminate on all nodes, and pass the information to the MM. Furthermore, we
may expect a delay of up-to a full timeslice after the job’s arrival time before starting it,
and up-to a full timeslice after its termination before the MM receives the notification.
The reason for this is that the MM only checks for jobs’ arrival times and messages from
the NM at every timeslice interval. Table 5.1 shows the runtimes when running a set
of single-job , zero-work tests. All jobs are batch scheduled (FCFS), do not perform
any communication or I/O, with a negligible amount of work (parameters G, B and W,
respectively) and vary only in their amount of processes (N). The times Tyrrival; Tstarts
and Te,q denote the designated arrival time, actual launching time and actual time of
removal from the system in seconds respectively, measured by the MM. Runtime is simply
Tend — Tstart- All times are given in seconds. The rest of the run-time parameters are
used with their default values, detailed in Sections 4.5-4.7. From this table we can see
that the average overhead associated with launching a job is approximately 1.4 sec or

less. This overhead can broken down to the following elements:

€ Time gap from the arrival time until the MM actually allocates resources to it: up

to one timeslice (the MM sleeps between timeslices).

@ For the same reason, up-to one more timeslice accounts for the time between the
NM notification until the MM noticing it.

€ The time it takes the NM to notify the PLs, the PLs to execute the empty program,

and report back to the NM: approximately one timeslice.

@ The other 0.8 seconds are nearly constant, and are divided between the processing
of the job in the MM, local context-switches in a node (all nodes run one PL
per PE, in addition to an NM, and an MM in node 0). Communication latencies
between the MM and the NMs account for a few hundreds of microseconds and can

be considered negligible.

46



‘ i ‘ G ‘ B ‘ N ‘ w ‘ Torrival ‘ Tstart ‘ Tend ‘ Runtime ‘

11-1]0]32 1 1 1.20 3.67 2.464
2(-10132] 10 3 3.09 14.59 11.498
31 -101(32) 100 15 15.06 | 116.51 | 101.456
4 |- 1032|1000 120 120.13 | 1121.59 | 1001.458

Table 5.2: Effect of work amount

Another interesting feature arising from Table 5.1 is that there is no noticeable difference
in overhead between running a single-process job, a 32-process job or a 64-process job.
This implies good scalability of the scheduler and demonstrates the importance of efficient
communication collectives (in this case, from the MM to the NMs) for the implementation
of a scalable scheduler. For example, Quadrics’ gang-scheduler (RMS) uses TCP /IP over
ethernet to communicate between its versions of the machine-management daemon and
the node-management daemons, and employs a somewhat inefficient resource allocation
mechanism [32]. The result is that launching a job of 32 processes can several seconds
(typically 5-15).

5.2.2 Effect of Work Amount

In this test, the effect of various amounts of work on the runtime is analyzed. Table 5.2
shows the runtimes for jobs of work amounts from 1 to 1000 seconds. We observe no
significant increase in the amount of overhead associated with running longer jobs. The
deviations in the overhead from the average 1.42 seconds can probably be attributed to
a minute increase of overhead or small fluctuations in the experiment. This implies that

the scheduler system does not have adverse effect on longer jobs that run alone.

5.2.3 Effect of Granularity and Variance

To test the effect of communication granularity and variance on the runtime of single
jobs, five tests were run with different granularity and variance values, corresponding
to the values of 'coarse’, 'medium’ and ’fine’ granularity and ’low’ and ’high’ variance,
respectively. All the tests were run separately, so all have an arrival time of 1. The
communication pattern that was used in all the experiments is all-to-all, which represents
a worst-case scenario from the communication load point of view.

Table 5.3 Shows the results of these tests. Tests 1-3 show the effect of refining the
granularity. We can notice a small increase in the runtime of jobs as the granularity

grows finer, which is associated with the increased amount of communication: Partly

47



‘ # ‘ G ‘ Vv ‘ B ‘ N ‘ W ‘ Torrival ‘ Tstart ‘ Tend ‘ Runtime ‘
1125 0 013210 1 1.14 | 12.64 | 11.499
2105 0 0132110 1 1.16 | 12.67 11.503
3 10.1 0 01]32] 10 1 1.14 | 12.76 11.623
4 101 01 01]32] 10 1 1.15 | 15.79 14.644
510107 ]0]32|10 1 1.18 | 17.10 | 15.923

Table 5.3: Effect of granularity and variance

because of the small overhead that is associated with each communication operation,
and partly because the higher number of communication operations increases the chance
of delayed communications, which can occur for example when one process is descheduled
by the local UNIX scheduler, in favor of one of its daemons. However, the increase is
not very large, representing approximately 1% of added overhead when increasing the
communication amount by a factor of 25.

The next two tests use the fine granularity and test the effect of introducing vari-
ance to the communication (fine granularity was used, again to represent a worst-case
scenario). The increase in runtime is quite noticeable, demonstrating the detrimental
effect of variance and heterogeneity on applications. Since the amount of computation
per iteration as well as the number if iterations is fixed in tests 3-5, we can see that even
the introduction of a relatively small variance (10%, test 4) increases the amount of time
spent in communication by about 34%, and the number grows to about 50% when using

a variance of 75%.

5.2.4 Effect of Multiprogramming

One of the basic properties of a multiprogramming scheduler is the cost of context-
switching between jobs/processes. The higher the cost, the more time is wasted on
overhead, especially with higher multiprogramming levels. In this test, several copies
of the same program were run together (each with a work amount of 100, with All-to-
All communication and fine granularity), and the cumulative effect on their runtime is
observed. Figure 5.1 shows the average runtime of jobs running together with MPL values
ranging from 1 to 8. This job does not use a lot of memory, and therefore does not expose
problems arising from processor cache flushing, but these should not be noticeable with
this timeslice (the single-processor, normal UNIX timeslice is much shorter). It can be
seen that the curve is completely linear, meaning that no significant overhead is caused

by the additional context-switches, at least for these values of timeslice. In contrast,

48



Seconds

900

800

700

600

500

400

300

200

100 -

! I
Average job runtime —+—

MPL

Figure 5.1: Effect of multiprogramming level

49




PE

0 1 2 3 Time slot

Figure 5.2: FCS classification workload - Ousterhout matrix

RMS exhibits noticeable performance problems for timeslice values even as large as 10
seconds [32]. Normalizing the average runtimes shown in the graph by the MPL yields

negligible differences between the different run times.

5.3 FCS Classification

The purpose of this experiment is to understand and verify the classification heuristics of
FCS for different types of jobs and processes. To this end, a special workload of six jobs
was constructed for 4 PEs, and was allocated to a 2-node partition using the Ousterhout
matrix shown in Figure 5.2. All jobs have a work amount of 100, and a communication
pattern of all-to-all (if any). The following is the description of the different properties
of each job:

1. A 2-PE job with medium granularity and no variance.
2. A 2-PE job with fine granularity and no variance.

3. A 3-PE job with fine granularity, and one process significantly slower than the other
two (performs 50% more computation work per iteration, simulating a slower or

loaded machine).

4. A single PE job (with no communication).

50



5.

6.

A 4-PE job with medium grain communication and 75% variance for the first two

processes.

A 4-PE job with low grain communication and 10% variance for all processes.

All the jobs had the same start time and were launched together, and detailed log files

were collected and analysed. The following is a description of the resulting classification:

1.

This job went through the initial C'S and DC periods, before the scheduler decided
to switch both processes to C'S, never changing their class again.

. This job communicates relatively very well, so it was never changed from the initial

CS class.

. With this job, one process (the slower one) was eventually classified as C'S, while

the other two processes were classified as F'. This confirms expectations, since the
slower process benefits from coscheduling (the other two are always waiting for
it), while the faster processes cannot communicate effectively with it (long average

blocking wait time).

. This process started with the initial CS class, and since it does not communicate,

it was not re-evaluated until the time came for a periodic re-evaluation of all jobs.

It was then classified as DC since it had a zero synchronous communication count.

. All this job’s processes were classified as F', due to their long wait time for blocking

calls.

. The processes of this job were eventually all tagged as DC': the low granularity

and low variance created a situation were there was no big difference between the

time it takes to complete communications in DC' and C'S modes.

This classifications seem reasonable, and suggest that the scheduler might be able to use

this information to make better scheduling decisions.

5.4 Scheduler Comparison

5.4.1 Qverview and Metrics

In this section, we compare the performance of FCS and four other scheduling algorithms:
ICS, GS, FCFS and local scheduling. The workload that was used is described in Section

4.6. Figure 5.3 shows the arrival time per job in seconds. Note that this workload is

51



Seconds

6000

5000

4000

3000

2000

1000

|
Arrival time

+
Hs

100 200 300
Job number

Figure 5.3: Arrival times for mixed workload jobs

52

400



light enough so that none of the scheduling algorithms reaches saturation. An interesting
research venue in the future might compare the saturation point of different scheduling
algorithms. For each run, an elaborate log file was created, and then analysed using Perl

scripts to produce the following metrics:

1. The arrival, start, and end time of each job, as well as the amount of work it should

perform (in seconds).

2. The average wait time of each job (i.e. the difference between its start time and

arrival time).

3. The average response time, i.e. the difference between the actual end time of each

job, and its arrival time.

4. The average slowdown, which is defined as the ratio between the actual runtime of

the job and its given amount of work.

These metrics are measured separately for two groups of jobs: ’short’ jobs, and ’long’
jobs, defined arbitrarily as those with less than one minute of work (short jobs) and the
other jobs. (using one real-world minute, divided by the ’compression ratio’ of 100). This
divides the entire workload into two roughly equal-size groups, one representing more-
interactive jobs, where wait time is the important metric, and the other representing
longer computation jobs, where runtime is the more important metric. Figure 5.4 shows
the amount of given work per job in the workload, and how it relates to the short-job
threshold. Overall, this workload contains 236 short jobs with an average work amount
of 0.203 seconds(or real 20.3 seconds), and 276 jobs with an average work amount of

68.737 seconds (or ~ 114 minutes of real time).

5.4.2 Batch Scheduling

FCFS scheduling is a good test case as a baseline for other multiprogramming schedulers,
since jobs receive a dedicated partition with it, and thus we can expect no better runtimes
(per job) than with batch scheduling. Indeed, if we look at the average runtimes we see
an optimistic picture: the average runtime of short jobs is 1.57 seconds, while that of long
jobs is 70.536 seconds. The small difference from the work amount (1.367 seconds for
short jobs and 1.8 seconds for large jobs) is explained by the system overheads described
in Section 5.2. Figure 5.5 shows the runtimes of the jobs in FCF'S, superimposed on the

work amount. For the largest jobs, the difference can be significant if the communication

53



Seconds

600

500

400

300

200

100

+
+
+
+ i N
+
+ +
+
+ +
+ 4+ tr + +
++ s !
o+t +
+ +
+ + 7 T4
+ ++++ ++ + + i +

Job number

Figure 5.4: Work amount for mixed workload jobs

54

|
Work amount

Short job threshold

+
+
+
+
+ * N
+
+ 4+ + T
+ + +
+




Seconds

700

600

500

400

300

200

100

|
Work amount +

% FCFS runtime X
+
X
+
* +
) %
X X i X
+ * X +
X 4 X
+
X X X ~ % + X
+ X
X ¥ x o+ X * X X ¥ +K
X + X
+ X + 4
¥ x x S £+ oxxx ¥ Oy i
¥ X X x R RF K x X + ¥ x4 x +
+ % * o, F - X+><** F
T ok S X *
+ X AT % * k4 XEC
*

300
Job number

100

Figure 5.5: Work amount and runtimes with FCFS

55



granularity is fine and with high variance, as explained in Section 5.2.3. However, the
overall effect of these cases is relatively small.

The picture is entirely different when we look at average wait times (and response
times). Since no two jobs can occupy the same PE, most jobs have to wait until all
previous jobs have completed, and for moderate and heavily loaded workloads, these
times can easily accumulate so that late-arriving jobs might wait for very long periods
before being allocated to a partition, especially if their PE requirement is high (a process
with a low requirement for PEs needs to wait less time on average until that number
of PEs becomes available). This can be readily seen in Figure 5.6, which shows how
the wait time increases over time and even passes 3500 seconds (97 hours of real time).
The average wait time for short jobs is 2233 seconds - far more than is acceptable for

interactive jobs.

5.4.3 Local Scheduling

Local scheduling represents the other extreme in scheduling coordination, with no coor-
dinated scheduling at all. We might therefore expect the runtime performance of jobs,
especially communicating jobs, to be rather poor. On the other hand, the average wait
time for jobs should be much lower than that of FCFS, because multiprogramming allows
the allocation of jobs to non-dedicated processes. Still, since an MPL of 4 is enforced,
and since jobs take relatively long to terminate, in some events it can take a significant
amount of time until resources become available for allocation. These expectations are
confirmed in Figures 5.7 and 5.8. It can be readily seen that runtimes are much longer in
local scheduling, especially for long jobs (averaging 215 seconds, more than three times
the amount of work). Wait times are relatively low for most cases, but on periods when
the system is particularly loaded it can rise dramatically, and increase the average wait

times (84.1 and 156.9 seconds for short and long jobs, respectively).

5.4.4 Gang Scheduling

Gang scheduling was shown in previous studies to perform better than FCFES in terms
of wait time, and better than local scheduling in terms application runtime performance.
Indeed, the average runtime of short and long jobs for gang scheduling are 1.782 and
191.972 seconds respectively. Average wait times for short and long jobs are 52.40 and
99.26 seconds respectively, much better than FCFS scheduling, but also significantly
better than local scheduling, probably due to the fact that jobs terminate relatively

quickly (since they have no synchronization difficulties from mis-scheduling), and free

56



Seconds

4000

3500

3000

2500

2000

1500

1000

500

Figure 5.6: Job wait times with FCFS

57

Wait time +
=
W
+ M%W
+
n e
gl *W% &
- M- W
¥ ﬁw i B
Fid i " *
-
e
e
d»;
#ﬂ»
m
.
4
+
<H,
it
i ——, 1 1 1 I
100 200 300 400 5
Job number



Seconds

1800 T T |

I
Work amount  +
Local scheduling runtime X
1600
X
1400
1200
X
1000
X
X X X X
X X
800 | XX x
X X <
X < X
X X
» X % X
600 [ X + oy
X
X X X
x XX x X < &
x XX XX < XX X
400 | “ x + L X X X
+ X X e <
X XX . . X o X+ * X >
X X * X
+ ++ . X X Ty & % X N 2% % » e
200 - R . + X
Xt 4, hEE X w * “ i x TR
AR o T bt + 2F F op++ ot TS0 ¢ Lo
L AE T e ey R R R e fix +* ﬂ%jﬁ T
VR L e TR TP S0 P - VI I+ i G-
0
0 100 200 300 400 5
Job number

Figure 5.7: Work amount and runtimes with local scheduling

58



Seconds

4000

3500

3000

2500

2000

1500

1000

500

| | | |
Wait time +

#
+
++
+
+ 4 +
+
+ +
* +
n +
+
+
+
Co- o, ++
+ o + +

100 200 300 400 5
Job number

Figure 5.8: Job wait times with local scheduling

59



resources promptly. Figures 5.9 and 5.10 show the runtimes and wait times of jobs with

gang scheduling, respectively.

5.4.5 Implicit Coscheduling

In several studies ICS was shown to be one of the best coschedulers for application
performance (see Chapter 2). Since ICS deschedules processes that block on synchronous
communication (after an initial spin time), it also offers a basic method to tackle load
imbalances, assuming it has enough processes to fill in the gaps. Figures 5.11 and 5.12
show once more the runtimes and wait times of the workload jobs while running under
ICS. It can be seen that a significant amount of the jobs has a near-zero wait time,
although surprisingly, some jobs have relatively high wait times even when compared to
GS. On the average, the performance is relatively good, with average runtimes of 1.776
seconds and 182.59 seconds for short and long jobs respectively, and average wait times
of 67.07 and 115.91 seconds.

5.4.6 Flexible Coscheduling

It should be interesting to see whether FCS can cope with this mixed workload better than
ICS and GS. Figure 5.13 shows the runtimes for jobs under FCS, and seems somewhat
similar to that of ICS, with some of the slower jobs running better in FCS than GS or
ICS (there should be little difference for short jobs, since they are initially coscheduled
anyway). Indeed, the average runtime for long jobs under FCS is 181.03 seconds, not
much lower than ICS, but still somewhat better due to the reduction of runtime in
for long jobs. For short jobs the average runtime is actually slightly higher than ICS,
(1.778 seconds), which could be either attributed to the switch some of these jobs do
to the initial DC state (and thus possibly hamper the job’s need for synchronization),
or to fluctuations in the experiments. The situation with the average wait time is also
positive, as is shown in Figure 5.14. The average wait times for short and long jobs are
65.21 and 112.26 seconds respectively. Overall, FCS performs better than most of the
tested algorithms in terms of both job runtime and wait time, although the differences
with ICS are not large. This could be either because ICS is as well adapted to this kind

of workload as FCS is, and may change under heavier workloads.

60



Seconds

1600

1400

1200

1000

800

600

400

200

I
Work amount
Gang scheduling runtime

B X
X
X
X X ~
X X X
X X % X
X
X
- X X X
X o X X X + XX
X
“ x X X Xy X«
X X
X X X ¢ XX
- % X N o + + % X X
e L ¢ X +¢ v
+ XXX % X + X
o %t
X X+ X 4+ X X X
- j— X x +* + + X s
X +
<4 ot T F e xS * a4t >i++++
L MR AR O A A +ii oo
Koo R TRt L UL AN NS
100 200 300 400
Job number

Figure 5.9: Work amount and runtimes with gang scheduling

61

+
X



Seconds

2000 T F T | I o

4 Wait time  +
1800
1600
++

1400 N N

1200 +

1000 +

800

600

+
+
+

400 "

200 B + +

0 100 200 300 400 5
Job number

Figure 5.10: Job wait times with gang scheduling

62



Seconds

1400

1200

1000

800

600

400

200

X X
X
X
> X
X
% XX X + X
X % .
X X >
X X
X ; <
X
X » X
X X A
. X XoxX X
X % > >
X ><><
X X
+ K
J%r X ><><+>< +

g _ + +
t
#
100 200 300
Job number

Figure 5.11: Work amount and runtimes with ICS scheduling

63

|
Work amount +
ICS scheduling runtime X




Seconds

3000

2500

2000

1500

1000

500

4 Wait time
++
+
+++ + +
+
+ Lt
+
+ L+
+
i
+ +
T +
+ 4 ++ H
T n o
+ + H+
WAy + o 7 + i
100 200 300 400
Job number

Figure 5.12: Job wait times with ICS scheduling

64



Seconds

1200

1000

800

600

400

200

Figure 5.13: Work amount and runtimes with FCS scheduling

65

|
Work amount
FCS scheduling runtime

X
X X
~ X
“ X
X
X
X
X X
X X
X
X XX X + % XX
. X X X
X X
X X X X
X
X X X X
X
X
+ X X ~
X % . X(X > X X
X X< x X
T X X x . X
X ><>< %
+ X X X 4 X X
X X X
+ XX * X %
+ n X ><><+>< + > X
+ + < + X
+ L X + + + . F
S + * + o+ e Pt x4
Xy RV S N +F £ + X
I o+ +§X+ ¥+ + e et
* + 4+ X Fy tX x i T 4 o o
+ o ok B+ + i
100 200 300 400
Job number

+
X




Seconds

2000

1800

1600

1400

1200

1000

800

600

400

200

T T T T

e T Wait time
N
+ + +
i +
+
+
+
+ +
+
+
+ T
Tt T+ +
++ +
+ +
+ + +
+ 4 H+
H ++
100 200 300 400
Job number

Figure 5.14: Job wait times with FCS scheduling

66



6 Concluding Remarks

This thesis addressed the issue of load imbalances in parallel programming, and ways
to tackle them. A new method was suggested to collect dynamic information on the
communication behavior of the applications, and use this information to classify pro-
cesses according to their coscheduling needs. A novel scheduling algorithm then uses this
information to make intelligent scheduling decisions that increase the utilization of the
system, while not harming tightly-coupled jobs. We have seen that this new classifica-
tion method can classify correctly various types of processes. Furthermore, the scheduler
compares favorably with all four other scheduling algorithms, when running a workload
with a mix of jobs of various jobs.

Possibly as important, this thesis contributes an implementation of an advanced
platform for the evaluation of scheduling algorithms, that runs real MPI applications on
real, high-performance clusters. The scheduler testbed was shown to be very efficient in
terms of overhead and scalability (both in number of nodes and multiprogramming level),
especially when comparing it to the commercial RMS scheduler. This testbed should be

the basis for many fruitful future studies into various aspects of jobs scheduling.

Future Work

While this work is a complete study of a versatile scheduling system and a new scheduling
algorithm, there are still many interesting venues for research that can be based on
it, and will be covered in future studies. Of those, the most important is probably a
continuing study of the properties of FCS in particular and how dynamic communication
monitoring can assist in making intelligent scheduling decisions in general. To this end,
further work on FCS could compare different workloads and job mixes, to find for example
the saturation point of each scheduling algorithm, and better-define the cases were FCS
performs best (or worst). Another extension to the FCS algorithm can include the
detection of RE processes using exchange of information between the NMs.

Another interesting venue would be to add more scheduling algorithms to the system,

67



and compare them against those already implemented. In particular, BCS can a very
interesting candidate, since it offers a different approach for tackling synchronization
problems.

Another important issue that is outside the scope of this work but can easily enhance
it is the effect of I/O jobs on each scheduler. This is a somewhat complex subject, due
to the many aspects of I/O that must be identified and modeled.

Once a good understanding of the basic properties of FCS and other scheduling algo-
rithms under various conditions is obtained using synthetic benchmarks, real applications
can be tested. This can include application from production sites, such as LANL, and
benchmark application suites such as SPLASH [66], SPLASH-2 [75, 82] and NAS NPB-
2 [5, 83]. Also, an heterogeneous cluster can be assembled to test whether hardware

heterogeneity is different from software heterogeneity.

68



Acknowledgments

First and foremost, I am indebted to my adviser Dr. Dror Feitelson and supervisor Dr.
Fabrizio Petrini. Without their guidance, critique and inspiration, this work could never
have succeeded.

Several people have assisted in the many complex technical aspects of this work:
Salvador Coll, Juan Fernandez Peinador and the Quadrics team made the implementation
of the Quadrics communication layer possible. I owe many thanks to my colleagues from
the parallel systems laboratory at Hebrew university for their help with this work. Among
them, Yoav Etsion and Dan Tsafrir guided me through the mazes of ParPar; Uri Lublin
assisted with his workload model; and especially Tomer Klainer, who helped enormously
in numerous aspects, ranging from programming issues to system administration.

To Prof. Darren Kerbyson I owe many thanks for reviewing this work and helping
to bring to work to light. In addition, Duncan Roweth of Quadrics helped in gaining
understanding of the RMS scheduler and properties. Andrea Arcangeli of Suse assisted
with the the processor affinity patch, and provided an excellent tutorial on the Linux
kernel.

Last but not least, my family deserve the warmest thanks for their infinite patience,

support, and faith. Without it, this work may never have been completed.

69



Glossary

AA
API
BCS
BSP
CMS
COTS
CPU
DCS
ECC
FCS
FCFS
FCFS-BF
GS
GUI
HPC
ICN
ICS
1/0
LANL
LSF
MM
MPL
MPP
NIC
NN
NM

All-to-All (communication pattern)
Application Programmer’s Interface
Buffered Coscheduling
Bulk-Synchronous Parallel

Cluster Management System
Commercial-of-the-shelf

Central Processing Unit

Dynamic Coscheduling

Error Correcting Code

Flexible CoScheduling
First-Come-First-Serve
First-Come-First-Serve with backfilling
Gang Scheduling

Graphical User Interface
High-Performance Computing
Interconnection Network

Implicit Coscheduling
Input/Output

Los Alamos National Laboratory
Load Sharing Facility

Machine Manager (daemon)
Multi-Programming Level
Massively Parallel Processing
Network Interface Card
Nearest-Neighbour (communication pattern)

Node Manager (daemon)

70



NOW
NQS
0OS
PB
PBS
PE
PID
PRNG
RAM
RMS
SB
SMP
PL
VPID

Network of Workstations
Network Queueing System
Operating System

Periodic Boost

Portable Batch System
Processing Element

Process Identifier
Pseudo-Random Number Generator
Random Access Memorys
Resource Management System
Spin-block

Symmetrical Multi Processing
Program Launcher (daemon)
Virtual Process ID

71



Bibliography

[1]

2]

[3]

[4]

5]

6]

[7]

Cosimo Anglano. A Comparative Evaluation of Implicit Coscheduling Strategies for
Networks of Workstations. In Proceedings of the Ninth International Symposium on
High Performance Distributed Computing (HPDC 2000), Pittsburgh, PA, August
2000.

Olaf Arndt, Bernd Freisleben, Thilo Kielmann, and Frank Thilo. A comparative
study of online scheduling algorithms for networks of workstations. Cluster Com-
puting, 3(2):95-112, Sep 2000.

Andrea C. Arpaci-Dusseau, David Culler, and Alan M. Mainwaring. Scheduling
with Implicit Information in Distributed Systems. In Proceedings of the 1998 ACM
Sigmetrics International Conference on Measurement and Modeling of Computer
Systems, Madison, WI, June 1998.

Remzi Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Amin Vahdat, Lok T. Liu,
Thomas E. Anderson, and David A. Patterson. The Interaction of Parallel and
Sequential Workloads on a Network of Workstations. In Proceedings of the 1995
ACM Sigmetrics International Conference on Measurement and Modeling of Com-
puter Systems, pages 267-278, Ottawa, Canada, May 1995.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63-73, Fall 1991.

Mark A. Baker, Geoffrey C. Fox, and Hon W. Yau. Cluster computing review, npac

technical report, sccs-748, syracuse university, november 1995.

Amnon Barak and Oren La’adan. The MOSIX Multicomputer Operating System
for High Performance Cluster Computing. Journal of Future Generation Computer
Systems, 13(4-5):361-372, March 1998.

72



18]

9]

[12]

[13]

[16]

James M. Barton and Nawaf Bitar. A scalable multi-discipline, multiple-processor
scheduling framework for IRIX. In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages 45-69. Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawick,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29-36, January 1995.

Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on Software Engineer-
ing, 14(2):141-154, February 1988.

Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and page migration for multiprocessor compute servers. In Proceedings
of the Sizth International Conference on Architectural Support for Programming

Languages and Operating Systems, number 6, pages 12-24, Nov 1994.

Sucheta Chodnekar, Viji Srinivasan, Aniruddha S. Vaidya, Anand Sivasubramaniam,
and Chita R. Das. Towards a communication characterization methodology for
parallel applications. In Proceedings of the Third International Symposium on High
Performance Computer Architecture, pages 310-319, San Antonio, TX, February
1997.

Mark Crovella, Prakash Das, Czarek Dubnicki, Thomas LeBlanc, and Evangelos
Markatos. Multiprogramming on multiprocessors. In Proceedings of the Third IEEE

Symposium on Parallel and Distributed Processing, number 3, pages 590-597, De-
cember 1991.

Robert Cypher, Alex Ho, Smaragda Konstantinidou, and Paul Messina. A quan-
titative study of parallel scientific applications with explicit communication. The
Journal of Supercomputing, 10(1):5-24, 1996.

Fred Douglis and John K. Ousterhout. Transparent Process Migration: Design
Alternatives and the Sprite Implementation. Software - Practice and Ezperience,
21(8):757-785, 1991.

Allen B. Downey. A Parallel Workload Model and its Implications for Processor
Allocation. In Proceedings of the 6th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC 97), Portland, OR, August 1997.

73



[17]

[18]

[22]

[24]

Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for
Fine-Grain Synchronization. Journal of Parallel and Distributed Computing, 16(4),
1992.

Yoav Etsion and Dror G. Feitelson. User-Level Communication in a System with
Gang Scheduling. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium 2001, IPDPS2001, San Francisco, CA, April 2001.

Fabrizio Petrini and Wu-chun Feng. Buffered Coscheduling: A New Methodology for
Multitasking Parallel Jobs on Distributed Systems. In Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium 2000, IPDPS2000, volume 16,
Cancun, MX, May 2000.

Fabrizio Petrini and Wu-chun Feng. Improved Resource Utilization with Buffered

Coscheduling. Journal of Parallel Algorithms and Applications, 2000.

Fabrizio Petrini and Wu-chun Feng. Scheduling with Global Information in Dis-
tributed Systems. In Proceedings of the The 20th International Conference on Dis-
tributed Computing Systems, Taipei, Taiwan, Republic of China, April 2000.

Fabrizio Petrini and Wu-chun Feng. Time-Sharing Parallel Jobs in the Presence of
Multiple Resource Requirements. In 6th Workshop on Job Scheduling Strategies for
Parallel Processing, Cancun, MX, May 2000.

Dror G. Feitelson. Packing Schemes for Gang Scheduling. In Dror G. Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing — Proceed-
ings of the IPPS’96 Workshop, volume 1162, pages 89-110. Springer, 1996.

Dror G. Feitelson. Job scheduling in multiprogrammed parallel systems. technical
report, ibm t. j. watson research center, 1997. rc 19970 - second revision. Technical
report, Yorktown Heights, NY, 1997.

Dror G. Feitelson, Anat Batat, Gabriel Benhanokh, David Er-El, Yoav Etsion, Avi
Kavas, Tomer Klainer, Uri Lublin, and Marc Volovic. The ParPar System: a Soft-
ware MPP. In Rajkumar Buyya, editor, High Performance Cluster Computing,
volume 1: Architectures and systems, pages 754-770. Prentice-Hall, 1999.

Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsiveness with
Gang Scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer

Science, pages 238-261. Springer-Verlag, 1997.

74



[27]

[28]

[29]

[35]

Dror G. Feitelson and Larry Rudolph. Coscheduling Based on Run-Time Identi-
fication of Activity Working Sets. International Journal of Parallel Programming,
23(2):136-160, April 1995.

Dror G. Feitelson and Larry Rudolph. Parallel Job Scheduling: Issues and Ap-
proaches. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies

for Parallel Processing, volume 949 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

Dror G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job
scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 1495 of Lecture Notes in Computer Science,

pages 1-24. Springer-Verlag, 1998.

Eitan Frachtenberg and Fabrizio Petrini. Overlapping of Computation and Com-
munication in the Quadrics Network. Technical Report LAUR 01-4695, Los Alamos
National Laboratory, August 2001.

Eitan Frachtenberg and Fabrizio Petrini. Scheduler Testbed System Design. Tech-
nical Report LAUR 01-4694, Los Alamos National Laboratory, August 2001.

Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll, and Wu chun Feng. Gang
Scheduling with Lightweight User-Level Communication. In 2001 International Con-
ference on Parallel Processing (ICPP2001), Workshop on Scheduling and Resource
Management for Cluster Computing, Valencia, Spain, September 2001.

H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette. An evaluation
of parallel job scheduling for ASCI Blue-Pacific. In Proceedings of Supercomputing
(5C99), Nov 1999.

Hubertus Franke, Pratap Pattnaik, and Larry Rudolph. Gang Scheduling for Highly
Efficient Distributed Multiprocessor Syetems. In 6th Symposium on the Frontiers
of Massively Parallel Computation (FRONTIERS ’96), pages 1-9, Annapolis, MD,
October 1996.

Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
William Saphir, Tony Skjellum, and Marc Snir. MPI-2: Extending the Message
Passing Interface. In Second International Furo-Par Conference, Volume I, number
1123 in LNCS, pages 128-135, Lyon, France, August 1996.

75



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI - The Complete Reference, volume
2, The MPI Extensions. The MIT Press, 1998.

Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating
system scheduling policies and synchronization methods on the performance of par-
allel applications. In Proceedings of the 1991 ACM SIGMETRICS Conference, pages
120-132, May 1991.

R. L. Henderson. Job scheduling under the portable batch system. Lecture Notes in
Computer Science, 949:279-294, 1995.

A. Hori, Y. Ishikawa, H. Konaka, M. Maeda, and T. Tomokiyo. A scalable time-
sharing scheduling for partionable distributed memory parallel machines, January
1995.

A. Hori, H. Tezuka, Y. Ishikawa, and N. Soda. Implementation of gang-scheduling
on workstation cluster. Lecture Notes in Computer Science, 1162:126-139, 1996.

Intel Supercomputer Systems Division. Paragon User’s Guide, Jun 1994.

James Patton Jones and Bill Nitzberg. Scheduling for parallel supercomputing:
A historical perspective of achievable utilization. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 1-16.
Springer-Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

S. Karlson and M. Brorsson. A comparative characterization of communication
patterns in applications using mpi and shared memory on an ibm sp2. In Proceedings
of the Workshop on Communication, Architecture, and Applications for Network-
Based Parallel Computing (CANPC), Las Vegas, NV, February 1998.

JunSeong Kim and David J. Lilja. Characterization of communication patterns
in message-passing parallel scientific application programs. In Proceedings of the
Workshop on Communication, Architecture, and Applications for Network-Based
Parallel Computing (CANPC), pages 202-216, Las Vegas, NV, February 1998.

William T. C. Kramer and James M. Craw. Effective use of cray supercomputers.
In Proceedings of the Supercomputing 89, pages 721-731, New York, NY, 1989. ACM
Press.

76



[46]

[47]

[50]

[51]

[52]

[53]

Richard N. Lagerstrom and Stephen K. Gipp. PScheD: Political scheduling on
the CRAY T3E. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 117-138. Springer Verlag, 1997. Lect. Notes
Comput. Sci. vol. 1291.

Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph.
Implications of I/O for Gang Scheduled Workloads. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 1291 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,
J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,
S.-W. Yang, and R. Zak. The network architecture of the Connection Machine
CM-5. Number 4, pages 272-285, Jun 1992.

Scott T. Leutenegger and Mary K. Vernon. The performance of multiprogrammed
multiprocessor scheduling policies. pages 226-236, May 1990.

Shau-Ping Lo and Virgil D. Gligor. A comparative analysis of multiprocessor
scheduling algorithms. Number 7, pages 356-363, Sep 1987.

Uri Lublin. A workload model for parallel computer systems, 1999. Master’s thesis,
Hebrew University, 1999. (In Hebrew).

Jon Mauney, Dharma P. Agrawal, Y. Choe, Edwin A. Harcourt, S. Kim, and W. J.
Staats. Computational models and resource allocation for supercomputers. In Pro-
ceedings of the IEEE, volume 77, pages 1859-1874, December 1989.

Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEFE
Transactions on Parallel and Distributed Systems, 12(6):529-543, June 2001.

Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. A
Closer Look At Coscheduling Approaches for a Network of Workstations. In Eleventh
ACM Symposium on Parallel Algorithms and Architectures, SPAA’99, Saint-Malo,
France, June 1999.

J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proceedings of
Third International Conference on Distributed Computing Systems, pages 22-30,
1982.

7



[56]

[57]

[59]

[60]

[61]
[62]
[63]
[64]

[65]

Fabrizio Petrini, Federico Bassetti, and Alex Gerbessiotis. A New Approach to Par-
allel Program Development and Scheduling of Parallel Jobs on Distributed Systems.
In International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), volume I, pages 546-552, Las Vegas, NV, July 1999.

Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachten-
berg. Quadrics Network (QsNet): High-Performance Clustering Technology. In Hot
Interconnects 9, Stanford University, Palo Alto, CA, August 2001.

Fabrizio petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Hardware-
Based and Software-Based Collective Communication on the Quadrics Network.
In Proceedings of the IEEE International Symposium on Network Computing and
Applications, Cambridge, MA, October 2001.

Fabrizio Petrini, Adolfy Hoisie, Wu chun Feng, and Richard Graham. Performance
Evaluation of the Quadrics Interconnection Network. In Workshop on Communica-
tion Architecture for Clusters (CAC ’01), San Francisco, CA, April 2001.

Quadrics Supercomputers World Ltd. Elan Kernel Communication Manual, Decem-
ber 1999.

Quadrics Supercomputers World Ltd. Elan Programming Manual, January 1999.
Quadrics Supercomputers World Ltd. Elan Reference Manual, January 1999.
Quadrics Supercomputers World Ltd. FElite Reference Manual, November 1999.
Quadrics Supercomputers World Ltd. RMS User Manual, April 2000.

Mark K. Seager and James M. Stichnoth. Simulating the scheduling of parallel
supercomputer applications. Technical Report UCRL-102059, Lawrence Livermore
National Laboratory, Sep 1989.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Architecture News, 20(1):5-44.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI - The Complete Reference, volume 1, The MPI Core. The MIT Press, 1998.

Patrick Sobalvarro, Scott Pakin, William E. Weihl, and Andrew A. Chien. Dynamic
Coscheduling on Workstation Clusters. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture
Notes in Computer Science, pages 231-256. Springer-Verlag, 1998.

78



[69]

[70]

[71]

[72]

[73]

[74]

[76]

[77]

[78]
[79]
[80]

[81]

Patrick Sobalvarro and William E. Weihl. Demand-Based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors. In Proceedings of the 9th International
Parallel Processing Symposium, IPPS’95, Santa Barbara, CA, April 1995.

L. Kent Steiner. Evolution of supercomputers. In ACM annual conference on The
range of computing : mid-80’s perspective, pages 112-116, Denver, CO, October
1985. Assoc. for Computing Machinery, ACM PressNew York, NY, USA.

P. Steiner. Extending multiprogramming to a dmpp. Future Generation Comput.
Syst., 8(1-3):93-109, July 1992.

Jeffrey H. Straathof, Ashok K. Thareja, and Ashok K. Agrawala. UNIX Scheduling
for Large Systems. In Proceedings of the USENIX Winter Conference, pages 111—
139, Denver, CO, 1986.

Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of
the ACM, 33(8):103-111, August 1990.

Jon B. Weissman and Xin Zhao. Scheduling Parallel Applications in Distributed
Networks. Cluster Computing, 1(1):109-118, 1998.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, , and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer

Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

Yanyong Zhang, Anand Sivasubramanian, José Moreira, and Hubertus Franke. Im-
pact of workload and system parameters on next generation cluster scheduling mech-
anisms. [EFEE Transactions on Parallel and Distributed Systems, 12(9):967-985,
September 2001.

Songnian Zhou. LSF: load sharing in large-scale heterogeneous distributed systems.
In Proceedings of the Workshop on Cluster Computing, Tallahassee, FL, 1992.

http://www.top500.org.
http://www.quadrics.com.
ftp://ftp.us.kernel.org/pub/linux /kernel /people /rml/cpu-affinity /v2.4/.

http://www.cs.huji.ac.il/labs/parallel /parpar.shtml.

79



[82] http://www-flash.stanford.edu/apps/SPLASH/.

[83] http://www.nas.nasa.gov/Software/NPB/.

80



