
SYSCALLS

Feel the magic, hear the roar



The story so far

 What we can do now:
 Kernel configuration

 Kernel compilation

 Kernel booting

 Kernel Hacking

 Kernel Patching

 Kernel profiling

 Kernel Debugging

 What else could we do to squeeze some more 
awesomeness out of our kernel?



System calls!!!



So… Who can tell me what a system 
call is?

 You!

 Yeah, you!

 The blonde kid smirking in the back

 Yeah

 The one behind the kid with the glasses

 What can you tell us about system calls?



Srsly though

 A system call (we’ll just go ahead and call them 
“syscalls” from here on out) is the way a user-level 
program asks the OS to do something for it.

 This can be very useful as the OS may have access 
to resources unavailable to the user

 Linux has over 300 different system calls



Big picture

 The user level program, which operates on the lowest 
privilege level, requires a service (I/O, IPC, etc)

 It requests the service from the OS via a system call

 If allowed, the system obtains a higher privilege level, 
the processor jumps to a new address and starts 
executing the code there.

 After this finishes running, the original privilege level is 
returned to and control is relinquished back to the 
userspace process



Remind me again why I need to go 
through this hell?

 System calls provide another level of abstraction 
between the user and the hardware.

 There are two main reasons this is very good

 Any ideas?



Complexity

 It spares the

programmer the need

to deal with the

complexity a syscall

must address



Security

 The computer has a chance

to evaluate a request

before it reaches the HW

and potentially messes

something up



Then and now

 Once upon a time (kernel 2.5 and below), to 
generate syscalls Linux used the “int 0x80” 
assembly instruction. The syscall number was 
placed in the EAX register and then interrupt 0x80 
was executed

 Today, CISC architectures (like x86) use one of two 
“fast” control transfer mechanisms (one developed 
by AMD and the other by Intel) by which much of 
the interrupt overhead can be avoided.



A closer look

 After the system call is generated (whether by the 
“int” instruction or some new Intel/AMD 
technology) the processor jumps to a set of 
assembly instructions called a “syscall handler”

 The syscall hander saves the kernel context (Kernel 
mode register contents), calls the system call 
service routine and then returns the kernel context 
before returning to user mode.



So what do I need to get my system 
callin’ on?

 We shall go over the following steps during this 
lecture:

 Registering your new system call

 Integrating its make file in the main Make hierarchy

 Coding your syscall

 Calling your syscall from a user space driver



All paths lead to Rome

 There is more than one way to implement a syscall 
(the implementation could be made in an existing 
file, for example)

 We have put together the most generic one we 
could think of

 Feel free to improve on our technique



(1) Write your syscall

 Chose a directory within the kernel source (we 
have chosen the kernel’s root directory in our 
example)

 Create a new directory where you shall store your 
syscall’s implementation and Makefile

 Write your syscall’s source (what you want it to do)



The system call implementation

The asmlinkage modifier tells the method to look 
for its arguments on the kernel stack



(1) Write your syscall (part 2)

 Now write up a make file for your system call

 Also, make sure that the kernel root Makefile 
triggers your system call Makefile so that you don’t 
have to take care of it separately



The Makefile

This flag ensures that your 
system call code is 
compiled with the main 
Makefile call



The root directory Makefile

Add the new 
directory that 
contains your 
system call



(2) Register your syscall

 We now need to register the syscall. This is done 
over several files so rack ‘em up:

 /arch/x86/kernel/syscall_table_32.S

 include/linux/syscalls.h

 /arch/x86/include/asm/unistd_32.h



System call registration I

Write your syscall name on 
the last line

These numbers keep track of 
what number each syscall has



System call registration II

Declare your system call here



System call registration III

We also register our system call here (the 
number we write on the right is our syscall’s 
number)

Our syscall’s number



System call registration IV

We also need to update this number to 
(last syscall number) +1



The userspace .h file

Here we define the userspace 
envelope for our system call

Note that we define our 
system call here



The userspace driver

We include our userspace envelope 
in our driver file


