
Web Services and Planning or How to Render an
Ontology of Random Buzzwords Useful?

May 12th, 2004

Presented by Zvi Topol

Agenda

• Web Services

• Semantic Web

• OWL-S

• Composition of Web Services using HTN Planning

Web Services

What are Web Services?

• Machine friendly software components
designed to work interoperably when
deployed over heterogenous computing
environments.

• Interoperability is achieved using a set of
standards based on XML:
– WSDL (Web Services Description Language)

describes in detail the interface which the WS
exposes.

– SOAP (Simple Object Access Protocol) defines
how to interact with WS – through a message-
based communication.

– UDDI (Universal Discovery, Description and
Integration) allows the discovery of WS.

Web Services Description Language
• A WSDL document defines Web Services as collections of

concrete network endpoints. The following elements define a
Web Service (WSDL 2.0, March 2004, latest W3C Working
Draft):
– <message>s are abstract, typed definitions of the data being

communicated
• <types> encloses data type definitions that are relevant for the

exchanged messages (usually using XSD)
– < interface > is a named set of abstract <operation>s and the

abstract <input>, <output>, and <fault> messages involved
• different transmission primitives: one-way, request-response, solicit-

response, and notification.
– <binding> defines concrete message format and protocol details for

operations and messages defined by a particular <interface>
• e.g., use SOAP (<soap:header>, <soap:body>, <soap:operation>).

– <service> is a collection of related <endpoint>s
• < endpoint > defines an individual endpoint by specifying a single

address for a binding; e.g., a <soap:address>: a URL (SOAP over
HTTP) or email address (SOAP over SMTP)

SOAP
• Latest Definition: SOAP 1.2, June 2003, W3C Recommendation

• SOAP = extensible XML messaging framework
– SOAP messages flow from initial SOAP sender to ultimate SOAP receiver;
– message path, possibly through multiple SOAP intermediaries;
– different message exchange patterns are supported;
– a SOAP node can act in one or more SOAP roles
– messages can be exchanged over a variety of underlying protocols

• A SOAP message is an <Envelope> containing one or more <Header>s
and a <Body>

– Body and Headers can have specific attributes:
• encodingStyle (body),
• mustUnderstand (header).
• role (indicates recipient of header if not final destination, but intermediary),
• relay (header, if not processed)

– Body can be any XML message, particularly a SOAP <Fault>

• SOAP binding defines how to carry a SOAP message within or on top
of another (underlying) protocol; e.g., within an HTTP body, or over a
TCP stream

Universal Description, Discovery and Integration

• Latest: UDDI Version 3.0.1, OASIS TC Spec., Oct.
2003

• Describes the Web services, data structures and
behaviours of all instances of a UDDI registry

• A UDDI Registry is formed by one or more UDDI
Nodes supporting one or more Node API Sets, and
contains the following information:
– businessEntity (descriptive info of business)
– businessService (descriptive info of Web service)
– bindingTemplate (tech. description of Web service)
– tModel (‘technical fingerprint’ of the Web service)

Web Services Stack

WS Example

• Example:
– GEOIP Web Service:

http://www.webservicex.com/geoipservice.
asmx

– Has two methods:
• GetGeoIPContext

enables to look up countries by Context
• GetGeoIP

enables to look up countries by IP addresses

WS Example (continued)

WS Example (continued)

• <?xml version="1.0" encoding="utf-8" ?>
• - <GeoIP

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://www.webservicex.net">

• <IP>62.34.45.43</IP>
• <CountryCode>FR</CountryCode>
• <CountryName>France</CountryName>
• <ReturnCode>1</ReturnCode>
• <ReturnCodeDetails>Record

Found</ReturnCodeDetails>
• </GeoIP>

WS Orchestration and Choreography

• Different enterprises have implemented various Web
Services.

• How to integrate them together into a complex and
meaningful business process?

• Orchestration:
– refers to an executable business process that may interact

with both internal and external Web services.
– describes how Web services can interact at the message

level to result a long-lived, transactional process.
– With orchestration, the process is always controlled from the

perspective of one of the business parties.

WS Orchestration and Choreography (continued)

• Choreography:
– each party involved in the process describes the part they

play in the interaction.
– Choreography tracks the sequence of messages that may

involve multiple parties and multiple sources.
– It is associated with the public message exchanges that

occur between multiple Web services.

• Main difference: choreography is more collaborative
in essence, dealing with message communication of
multiple parties, whereas orchestration “tells the
story” from the point of view of a single party.

BPEL4WS

• Business Process Execution Language
For Web Services is a flow specification
language used to compose Web
Services.

• Based on XML and created as the
merging of IBM’s WSFL and Microsoft’s
XLANG.

• Latest: version 1.1, May 2003.
• Goal: allowing long-running transactions

between Web Services.

BPEL4WS (continued)

• BPEL supports two usage scenarios:
– Implementation of executable business processes
– Description of non-executable abstract processes

(=business protocols)

• A business process specifies
– the potential execution order of operations from a collection

of Web Services
– the data shared between the Web Services
– which partners are involved and how.
– joint exception handling

• A business protocol specifies the public message
exchanges between parties. Business protocols are
not executable and do not describe the internal
details of a process flow

BPEL4WS (continued)

• In its essence, BPEL is a flow-chart like description of
an algorithm with
– Primitive activities, such as:

• <invoke> for service invocation
• <receive> handles message reception
• <reply> deals with response messages
• <assign> copy data from one place to another
• <catch> exception handling
• <throw> exception handling
• <terminate> termination of a process

– Structured activities, such as:
• <sequence>
• <switch>
• <while>
• <pick>
• <flow>

BPEL4WS (continued)

• Variables allow persistency: they
identify the specific data exchanged in a
message flow. When a business
process receives a message, the
appropriate variable is populated so that
subsequent requests can access the
data.

• Partners define and describe the
different parties interacting with the
process and their roles.

The Semantic Web

The Semantic Web

• A set of ontologies designed to give
meaningful definitions to various
resources.

• Faciltitates access and reasoning of
agents w.r.t. information residing on the
Web.

• Examples for ontologies: FOAF, RSS,
OWL-S.

The Semantic Web (continued)

The Semantic Web (continued)

Building Blocks
for Syntax of the

Web

Language for
describing resources

Formalism for defining
and sharing vocabularies

Reasoning over statements
about resources

Web of Trust

Resource Description Framework

• A framework for knowledge
representation based on XML

• Statements are made w. r. t web
resources

• Form of statements: triplets of
<Subject, Predicate, Object>

RDF - Example

OWL-S

• Web Ontology Language for Services
• Latest: version 1.0
• Three main parts

– Service Profile: for advertisement and
discovery of services

– Process Model: for the provision of a
detailed description of the service.

– Grounding: How to interact with a service
through messaging.

OWL-S

Service Profile

• Allows discovery of service through any type
of registry

• Describes which entity provides the service
• Provides functional description of the service:

– Inputs
– Outputs
– Preconditions
– Effects

• Allows description of properties of service:
– Category of a given service
– Quality rating of the service
– Any other information (response time, etc)

Service Model

• Services are modeled as processes that:
– Receive inputs and produce outputs.
– Produce a transition in the world from one state to

another (preconditions and effects)
• Outputs and Effects could be conditioned.
• The class Process collects three types of

processes:
– Atomic Processes: directly invocable
– Simple Processes: not invocable. Allow a

specialized view of Atomic Processes or simplified
representation of Composite Processes.

– Composite Processes: decomposable into other
non-composite or composite Processes.

Service Model (continued)

• Composite Process must have a composedOf
property indicating the control structure using
ControlConstruct.

• Possible ControlConstructs:
– Sequence: defines a list of processes to be done in order
– Split: process components to be executed concurrently
– Split+Join: concurrent execution + barrier synchronization
– Unordered: unordered execution, possibly concurrently.
– Choice: possible choice of processes and execution control
– If-Then-Else
– Iterate
– Repeat-Until

Service Model (continued)

Grounding

• Grounding is a mapping from an
abstract to a concrete specification of
the Service.

• Specifies how to access the service – a
concrete specification of how inputs and
outputs of an atomic process described
in an abstract manner could be realized
concretely as messages.

• WSDL is a good candidate for
grounding

OWL-S/WSDL Grounding
• An OWL-S/WSDL grounding is based on 3

correspondences between OWL-S and WSDL:
– An atomic process corresponds to a WSDL operation, e.g.

an atomic process with both inputs and outputs corresponds
to WSDL request-response operation.

– The set of inputs and set of outputs each corresponds to the
a WSDL message

– The types (OWL-S classes) of the inputs and outputs
correspond to WSDL abstract type.

• To construct such a grounding one should identify the
messages and operations by which an atomic
process could be accessed and then specify the
correspondences.

• OWL-S WSDLGROUNDING (subclass of Grounding)
allows to create references to the apporpriate WSDL
specifications.

Resource Ontology

• Processes require resources, hence the
need for an ontology for resources.

• A resource ontology for OWL-S is under
development.

• Primary interest of this ontology is
resource tokens – instances of resource
types that could be consumed,
replenished, locked and released.

Composition Through Planning

A Classical Example

• Say I want to plan a trip to Costa Rica.
• When I am in San Jose, I would like to

stay only in hotels of 4 stars or better, at
the center.

• I have other contraints regarding flights,
restaurants, cocktails, etc...

• Wouldn‘t it be great to feed my
constraints and get a clear, ordered trip-
plan? (based on automatic composition
of Web Services)

HTN Planning

• Hierarchical Task Network Planning is
based on hierarchical decoposition

• Initial plan describing the problem, is
viewed as a very high level description
of the goal

• Plans are refined applying task
decompositions, reducing a high-level
task to a partially ordered set of
subtasks

• The process continues until only
primitive tasks remain in the plan

Motivation for using HTN Planning in WSC

• HTN encourages modularity which is a
natural match for Web Service
composition.

• HTN planning scales well to large
numbers of methods and operators.

• Some HTN planners support
sophisticated condition reasoning such
as evaluation and integration of
information-supplying Web Services

SHOP2 Planner

• A domain-independent HTN
planning system

• Plans for tasks in the same order
that they will be executed:
– Current state of the world could be

known at each step of planning.
– Call for external information sources

could be easily integrated.
• Knowledge about a domain consists of

Operators, Methods and a KB.

SHOP2 Domain Knowledge

• Operators are similar to STRIPS: of the form
of (h(v), Pre, Del, Add) where
– h(v) is a primitive task, v input list
– Pre – preconditions
– Del – delete list
– Add – add list

• Methods describe how to decompose a
compound task into partially ordered
subtasks. Of the form: ((h(v), Pre1, T1, Pre2,
T2, ...) where
– h(v) is a compound task, v input list
– Prei is a precondition
– Ti is a partially ordered set of subtasks.

Planning Problem

• A triple <S, T, D> where S is the initial state of
the world, T is a task list and D is a domain
knowledge is said to be a planning problem
for SHOP2.

• SHOP2, given input <S, T, D> will return a
plan P, which is a sequence of grounded
operators, achieving T from S in D

SHOP2 Planning Procedure

Translating OWL-S to SHOP2

• Two main assumptions: given a collection of
OWL-S process models K={K1, …, Kn}
– Atomic processes in K are either only

information-providing (outputs without
effects) or only world-altering (effects
without outputs) – we would like to gather
information from information-providing Web
Services without changing the world.

– There is no composite process in K with
Split or Split + Join, as SHOP2 doesn’t
support concurrency.

Translating OWL-S to SHOP2 (continued)

• Translation is quite straight-forward:
– Each atomic process with effects is encoded as a

SHOP2 operator simulating the effects of the
world-altering WS.

– Each atomic process with output is encoded as a
SHOP2 operator whose precondition include a call
to the information-providing WS and effects are
the WS’s output.

– Each simple or composite process is encoded
using one or more SHOP2 methods.

• Full details in the paper.

System Architecture

But….

• SHOP2 theorem prover makes closed-world
assumption vs. open-world assumption of
Semantic Web.

• Questions of expressiveness: OWL DL vs.
SHOP2 axioms.

• Scalability questions w.r.t. the amount of data
in the Semantic Web

• Current mapping of information-gathering
processes to operators is not very elegant,
this could be circumvented with some cost.

Bibliography

• http://www.w3.org/TR/wsdl20
• http://www.uddi.org
• http://www.w3.org/TR/soap
• http://www-

106.ibm.com/developerworks/library/ws-bpel/
• Web Services Orchestration and

Choreography, Chris Pelz. IEEE Computer,
October 2003

• http://www.daml.org/services/owl-s/1.0/
• HTN planning for Web Service Composition

Using SHOP2 , Evren Sirin, Bijan Parsia, Dan
Wu, James Hendler, and Dana Nau.
Submitted to Journal of Web Semantics.

