Fictitious Play

with a Continuum of Anonymous Players

by Zinovi Rabinovich, Enrico Gerding, Maria Polukarov and Nick Jennings

University of Southampton
Agenda

- Background
 - Games in normal form
 - Fictitious Play (FP)
 - Auctions as typed games
- FP for typed games
- Continuum of Anonymous Players (CAPs)
- FP for CAPs
 - Linear structure of utilities
Games in normal form

Game is a tuple $< N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N}>$

- N is a set of player tags
- A_i is a set of actions available to player $i \in N$
- $u_i : \bigotimes_{i \in N} A_i \rightarrow \mathbb{R}$ is the utility function of player $i \in N$
Games in normal form

- Game is a tuple < \(N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N} >
 - \(N \) is a set of player tags
 - \(A_i \) is a set of actions available to player \(i \in N \)
 - \(u_i : \bigotimes_{i \in N} A_i \rightarrow \mathbb{R} \) is the utility function of player \(i \in N \)

- Game play
 - All players simultaneously choose \(a_i \in A_i \)
 - The actions are combined into a joint action profile \(a = (a_i)_{i \in N} \)
 - Each player receives utility \(u_i(a) \)
Games in normal form

- Game is a tuple $< N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N}>$
 - N is a set of player tags
 - A_i is a set of actions available to player $i \in N$
 - $u_i : \bigotimes_{i \in N} A_i \rightarrow \mathbb{R}$ is the utility function of player $i \in N$

- Game play
 - All players simultaneously choose $a_i \in A_i$
 - The actions are combined into a joint action profile $a = (a_i)_{i \in N}$
 - Each player receives utility $u_i(a)$

- Game’s purpose
 - Each player wishes to maximise its utility
Game’s Purpose: Maximise how?

MaxMin solution: be ready for the worst

\[a^*_i = \arg \max_{a_i} \min_{a_{-i}} u_i(a_i, a_{-i}) \]
Game’s Purpose: Maximise how?

- MaxMin solution: be ready for the worst
 \[a^*_i = \arg\max_{a_i} \min_{a_{-i}} u_i(a_i, a_{-i}) \]

- Nash equilibrium \(a^* \): no (single) player can do better
 \[\forall i \in N \quad \forall a_i \in A_i \quad u_i(a^*) \geq u_i(a_i, a^*_i) \]
Game’s Purpose: Maximise how?

- MaxMin solution: be ready for the worst
 \[a^*_i = \arg \max_{a_i} \min_{a_{-i}} u_i(a_i, a_{-i}) \]

- Nash equilibrium \(a^* \): no (single) player can do better
 \[\forall i \in N \quad \forall a_i \in A_i \quad u_i(a^*) \geq u_i(a_i, a^*_{-i}) \]

- Mixed Nash equilibrium \(\pi^* \): choose a good (rigged) dice
 Actions are selected at random \(\pi_i \in \Delta(A_i) \)
 Joint mixed profile \(\pi = (\pi_i)_{i \in N} : \pi(a) = \prod_{i \in N} \pi_i(a_i) \)
 \[\forall i \in N \quad \forall \pi_i \in \Delta(A_i) \quad E_{\pi^*}[u_i] \geq E_{(\pi_i, \pi^*_{-i})}[u_i] \]
Find Mixed Nash: Fictitious Play

- Idea – Statisticians’ Fun
 - Assume fixed (unknown) π_{-i}
 - Play the game repeatedly
 - Form (online) history estimate $\pi_{-i} = \sum_{k=1}^{t} \delta(a^t_i)$
 - Choose actions to optimise against π_{-i}
Find Mixed Nash: Fictitious Play

- Repeat until convergence
- Policy estimates at time t are $\{\pi_i^t\}_{i \in N}$
- Choose $a_i^{t+1} = \arg \max_{a_i \in A_i} u_i(a_i, \pi_{-i})$
- Update $\pi_i^{t+1} = \frac{t-1}{t} \pi_i^t + \frac{1}{t} \delta(a_i^{t+1})$
Repeat until convergence

Policy estimates at time \(t \) are \(\{\pi_i^t\}_{i \in N} \)

Choose \(a_{i}^{t+1} = \arg \max_{a_i \in A_i} u_i(a_i, \pi_{-i}) \)

Update \(\pi_i^{t+1} = \frac{t-1}{t} \pi_i^t + \frac{1}{t} \delta(a_i^{t+1}) \)

Twofold convergence

In action selection to Nash \(a^* \):

\(\exists T > 0 \) and \(a^* \) s.t. \(\forall t > T \) \(a^t = a^* \)

In beliefs to mixed Nash \(\pi^* \):

\(\exists \pi^* = \lim_{t \to \infty} \pi^t \)
FP Convergence: mixed Nash

- Two players
 - In zero sum games
 - In $2 \times K$ games
- N players
 - Identical interest games
Sealed Second Price Auctions

Protocol:

- \(N \) players wish to acquire an item
- Each submits a bid \(b_i \in A_i \)
- The winner is \(i = \arg \max_{i \in N} b_i \)
- The looser pay nothing
- The winner pays \(c = \max_{j \neq i \in N} b_j \)
Sealed Second Price Auctions

Protocol:
- N players wish to acquire an item
- Each submits a bid $b_i \in A_i$
- The winner is $i = \arg \max_{i \in N} b_i$
- The looser pay nothing
- The winner pays $c = \max_{j \neq i \in N} b_j$

Questions:
- Why would players $i, j \in N$ bid $b_i \neq b_j$?
- Is there a significance to the identity of a bid?
Sealed Second Price Auctions

Protocol:
- N players wish to acquire an item
- Each submits a bid $b_i \in A_i$
- The winner is $i = \arg \max_{i \in N} b_i$
- The looser pays nothing
- The winner pays $c = \max_{j \neq i \in N} b_j$

Properties:
- Why would players $i, j \in N$ bid $b_i \neq b_j$?
- Is there a significance to the identity of a bid?
Sealed Second Price Auctions

Protocol:
- N players wish to acquire an item
- Each submits a bid $b_i \in A_i$
- The winner is $i = \arg \max_{i \in N} b_i$
- The looser pay nothing
- The winner pays $c = \max_{j \neq i \in N} b_j$

Properties:
- Players have types $\alpha_i \in T$: $u_{gen}(\alpha_i, a) \rightarrow \mathbb{R}$
- A distribution over T is given
- Is there a significance to the identity of a bid?
Sealed Second Price Auctions

Protocol:

- N players wish to acquire an item
- Each submits a bid $b_i \in A_i$
- The winner is $i = \arg \max_{i \in N} b_i$
- The looser pays nothing
- The winner pays $c = \max_{j \neq i \in N} b_j$

Properties:

- Players have types $\alpha_i \in T$: $u_{gen}(\alpha_i, a) \rightarrow \mathbb{R}$
- Utility depends on the set of anonymous bids
Typed games

Game setting $< N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N}, T, \sigma >$

- T is the space of private types
- σ is a distribution over T
- $u_i : T \times \bigotimes_{i \in N} A_i \rightarrow \mathbb{R}$
Typed games

- **Game setting** $< N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N}, T, \sigma >$
 - T is the space of private types
 - σ is a distribution over T
 - $u_i : T \times \bigotimes_{i \in N} A_i \rightarrow \mathbb{R}$

- **Game play:**
 - $\alpha_i \in T$ is sampled from σ for each player,
 - Utilities are fixed $u_i(a) = u_i(\alpha_i, a)$
 - Normal form game starts
Typed games

- Game setting \(\langle N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N}, T, \sigma \rangle \)
 - \(T \) is the space of private types
 - \(\sigma \) is a distribution over \(T \)
 - \(u_i : T \times \bigotimes_{i \in N} A_i \rightarrow \mathbb{R} \)

- Game play:
 - \(\alpha_i \in T \) is sampled from \(\sigma \) for each player,
 - Utilities are fixed \(u_i(a) = u_i(\alpha_i, a) \)
 - Normal form game starts

- Solution concept:
 - Policy is conditioned on type \(\pi_i : T \rightarrow \Delta(A_i) \)
 - Equilibrium is now in expectation over \(T \) as well
 \[E_{\pi^*, \sigma}[u_i] \geq E_{(\pi_i, \pi^*_i), \sigma}[u_i] \]
Auctions vs. Typed games

- Auctions are typed games
Auctions vs. Typed games

- Auctions are typed games, but also commonly:
 - Anonymous
 - A_i is discrete and finite
 - Money is finite and discrete
 - T is continuous
 - Evaluations may be in fractions of a pence
Auctions vs. Typed games

- Auctions are typed games, but also commonly:
 - Anonymous
 - \(A_i \) is discrete and finite
 - Money is finite and discrete
 - \(T \) is continuous
 - Evaluations may be in fractions of a pence
- Recall how play starts:
 - \(\alpha_i \in T \) is sampled from \(\sigma \) for each player,
 - Utilities are fixed \(u_i(a) = u_i(\alpha_i, a) \)
Auctions vs. Typed games

- Auctions are typed games, but also commonly:
 - Anonymous
 - \(A_i \) is discrete and finite
 - Money is finite and discrete
 - \(T \) is continuous
 - Evaluations may be in fractions of a pence

- Recall how play starts:
 - \(\alpha_i \in T \) is sampled from \(\sigma \) for each player,
 - Utilities are fixed \(u_i(a) = u_i(\alpha_i, a) \)

- Type and player tag are a name for an utility function
Auctions and CAPs

- Continuum of Anonymous Players (CAPs) captures a vast range of auction problems
 - First and second price auctions
 - Multiple simultaneous or sequential
Auctions and CAPs

- Continuum of Anonymous Players (CAPs) captures a vast range of auction problems
 - First and second price auctions
 - Multiple simultaneous or sequential
- Algorithm to compute an equilibrium in CAPs is a generic solution
 - Previous algorithms have narrow specialisation
Auctions and CAPs

- Continuum of Anonymous Players (CAPs) captures a vast range of auction problems
 - First and second price auctions
 - Multiple simultaneous or sequential

- Algorithm to compute an equilibrium in CAPs is a generic solution
 - Previous algorithms have narrow specialisation

- Fictitious Play algorithm for CAPs
CAPs

Anonymous games
- Given a set of actions \(\{a_i\}_{i \in I} \) taken by the opponents
- A player's utility depends on the composition of the set, but not on the identity of opponents

Continuum of players
- The set of players in the game is infinite, the cardinality of the set is \(\aleph \)
- A finite set of players is randomly selected from a cardinality \(\aleph \) set.
Example: Private Value Auctions

- An item is auctioned to n players
- Each player has a private value for the item
 - The value is not known to opponents
 - Value obtained by sampling from a common distribution
 - E.g. uniform over a $[0, 1]$ range.
Example: Private Value Auctions

- An item is auctioned to \(n \) players
- Utility from winning
 - Depends on bids composition, not bidders identity
- Probability of winning
 - Engendered by probability distributions of opponent bids
 - Not specific choices of bidders
CAPs (cont)

- A is a compact metric space
- \mathcal{M} is the space of probability distributions over A
- \mathcal{U} is the space of continuous functions $u : A \times \mathcal{M} \rightarrow \mathbb{R}$
 - This is the set of possible players
 - For auctions this is utility given private value
 - Winning by placing a bid $b \in A$
 - Against opponent bids distributed by $\omega b \in \mathcal{M}$

- Anonymous game with continuum of players is then characterised by a distribution μ over the space \mathcal{U}.
 - For auctions this corresponds to the distribution of private values
Cournot-Nash Equilibrium (CNE)

- A distribution \(\tau \) over \(\mathcal{U} \times A \) so that
 - \(\mathcal{U} = \mu \)
 - \(\tau \{ (u, a) \mid u(a, \tau_A) \geq u(A, \tau_A) \} = 1 \)

- If there is indeed a continuum of players
 - Single player action choice will not modify \(\tau_A \)
 - Any modification away from the CNE can only reduce utility
Cournot-Nash Equilibrium (CNE)

- A distribution τ over $\mathcal{U} \times A$ so that
 - $\tau \mathcal{U} = \mu$
 - $\tau\{(u, a) | u(a, \tau_A) \geq u(A, \tau_A)\} = 1$

- For auctions the continuum of players is virtual
 - Player faces unknown values of opponents
 - Player’s response is computed with respect to continuum of private values
 - Distribution over the range of values
Existence of CNE

- **Theorem** (Mas-Colell, 84):
 If μ is atomless and A is discrete and finite, then there exists a pure CNE.

- Pure CNE is characterised by a function $h : \mathcal{U} \rightarrow A$
 - Inherently symmetric: players with the same type choose the same action
Fictitious Play

- Iterative process of adaptation
 - Given a history of opponents play
 - Compute a frequency of action for each player
 - Compute and apply best response to that frequency

- Properties:
 - If best response converges, then to a pure Nash
 - If frequency estimate converges, then to a mixed Nash equilibrium
Fictitious Play

- Iterative process of adaptation
 - Given a history of opponents play
 - Compute a frequency of action for each player
 - Compute and apply best response to that frequency

- Properties:
 - For anonymous continuum games the procedure becomes symmetric
 - If frequency converges, a pure CNE can be obtained from it
FP in CAPs

- Frequency of actions (for all types)
 - A distribution τ over $\mathcal{U} \times A$

- FP computes best response
 - A function $h : \mathcal{U} \rightarrow A$
 - Inherent $\tau_h(u, a) = \mu(h^{-1}(a) \cap u)$

- Updating frequency estimate
 - $\tau = \alpha \ast \tau + (1 - \alpha) \ast \tau_h$
FP in CAPs

- Best response computation depends only on τ_A, the marginal distribution
- The algorithm can be simplified
 - Frequency of actions τ_A
 - Compute best response $h : \mathcal{U} \rightarrow A$
 - Compute $\tau_{h,A}(a) = \mu(h^{-1}(a))$
 - Update $\tau_A = \alpha \star \tau_A + (1 - \alpha) \star \tau_{h,A}$
- τ_A can be transformed into a complete equilibrium
FP in CAPs

- Best response computation depends only on τ_A, the marginal distribution.
- The algorithm can be simplified:
 - Frequency of actions τ_A
 - Compute best response $h : \mathcal{U} \rightarrow A$
 - Compute $\tau_{h,A}(a) = \mu(h^{-1}(a))$
 - Update $\tau_A = \alpha \ast \tau_A + (1 - \alpha) \ast \tau_{h,A}$
- τ_A can be transformed into a complete equilibrium.
If U is linear, single dimensional (e.g. in auctions)

One can associate a function

$$u_{gen} : T \times A \times M \rightarrow R \text{ linear in type } T$$

Given a fixed τ_A, utility of an action $a \in A$ becomes linear in type

Best response is:

$$h(\lambda \in T) = \arg \max_{a \in A} u_{gen}(\lambda, a, \tau_A)$$
Best Response Computation

Best response is: \(h(\lambda \in T') = \arg \max_{a \in A} u_{gen}(\lambda, a, \tau_A) \)
Best Response Computation

Best response is: \(h(\lambda \in T') = \arg \max_{a \in A} u_{gen}(\lambda, a, \tau_A) \)

- Set of distinct intervals \(I \)
- For any \(\alpha \in I, \text{if } \lambda_1, \lambda_2 \in \alpha \subset T \text{ then } h(\lambda_1) = h(\lambda_2) \)
- For any \(\alpha_1 \neq \alpha_2 \in I, \text{if } \lambda_i \in \alpha_i \text{ then } h(\lambda_1) \neq h(\lambda_2) \)
Best Response Computation

- **Best response is:**
 \[h(\lambda \in T) = \arg \max_{a \in A} u_{gen}(\lambda, a, \tau_A) \]

- Set of distinct intervals \(I \)
- For any \(\alpha \in I, \) if \(\lambda_1, \lambda_2 \in \alpha \subset T \) then \(h(\lambda_1) = h(\lambda_2) \)
- For any \(\alpha_1 \neq \alpha_2 \in I, \) if \(\lambda_i \in \alpha_i \) then \(h(\lambda_1) \neq h(\lambda_2) \)

- **Best response is piece-wise linear**
- Efficient computation of \(\tau_{h,A} \)
FP in CAPs: Results

- Empirically converges in all auction experiments
 - Equilibrium for simultaneous first price auctions with continuous private type
- Empirical convergence rate appears to be exponential
 - Surprise: in finite games FP converges slowly
Present and Future Work

- Efficient best response computation for manifold U
- Linearity of u_{gen} is type is not essential
- Counterexample exists for general convergence of FP
 - In auction based experiments it converges – why?
 - Necessary and sufficient conditions for FP to converge in CAPs
Questions