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Voting

• a finiteset of votersA = {1, ...,n};

• a finiteset of candidates (alternatives)X ;

• profile:

P = (≻1, . . . ,≻n)

≻i = linear order onX (vote) expressed by voteri.

A voting rule maps every profile to a candidate.

A voting correspondencemaps every profile to a nonempty subset of candidates.

Rules can be obtained from correspondences by tie-breaking(usually by using a

predefined priority order on candidates).
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Key question:structureof the setX of candidates?

Example 1 choosing a common menu:

X = {asparagus risotto, foie gras}

× {roasted chicken, vegetable curry}

× {white wine, red wine}

Example 2 multiple referendum: a local community has to decide on several

interrelated issues (should we build a swimming pool or not?should we build a

tennis court or not?)

Example 3 choosing a joint plan (Ephrati & Rosenschein, 93; Klamler & Pfirschy,

07). A group of friends has to travel together to a sequence ofpossible locations,

given some constraints on the possible sequences.

Example 4 recruiting committee (3 positions, 6 candidates):

X = {A | A⊆ {a,b,c,d,e, f}, |A| ≤ 3}.

Combinatorial domains:V = {X1, . . . ,Xp} set ofvariables, or issues;

X = D1× ...×Dp (whereDi is a finite value domain for variableXi)
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation languagein which the voters’

preferences are represented in a concise way.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable (simultaneously).

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. use acompact preference representation languagein which the voters’

preferences are represented in a concise way.

7. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable: multiple election

paradoxesarise as soon as some voters have preferential dependenciesbetween

attributes.

Example
2 binary variablesS(build a new swimming pool),T (build a new tennis court)

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Problem 1: voters 1-4 feel ill at ease reporting a preference on{S, S̄} and{T, T̄}
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable: multiple election

paradoxesarise as soon as some voters have preferential dependenciesbetween
attributes.

Example
2 binary variablesS(build a new swimming pool),T (build a new tennis court)

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Problem 1: voters 1-4 feel ill at ease reporting a preference on{S, S̄} and{T, T̄}

Problem 2: suppose they do so by an “optimistic” projection

• voters 1, 2 and 5:S; voters 3 and 4:̄S⇒ decision =S;

• voters 3,4 and 5:T; voters 1 and 2:̄T ⇒ decision =T.

AlternativeST is chosen although it is the worst alternative for all but onevoter.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable: multiple election

paradoxesarise as soon as some voters have preferential dependenciesbetween

attributes.

Not too bad when all voters haveseparablepreferences:the preference over the

possibles values of a variable is independent from the values of other variables

A preference relation is separable if for everyXi ∈ V , every~x−i ,~x′−i ∈ D−i , and every

xi ,x′i ∈ Di ,

(~x−i ,xi) � (~x−i ,x
′
i) iff (~x′−i ,xi) � (~x′−i ,x

′
i)

Underlying assumption inmulti-winner elections(Meir et al., 08).
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives
explicitly.

V = {X1, . . . ,Xp}; X = D1× ...×Dp

There areΠ1≤i≤p|Di | alternatives.

⇒ as soon as there are more than three or four variables, explicit preference
elicitation is irrealistic.
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How should such a vote be conducted?

Some classes of solutions:

1. vote separately on each variable, in parallel.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters may vote for.

• arbitrary (who decides which alternatives are allowed?)

• so that this solution be realistic, the number of alternatives the voters can vote for

has to be low. Therefore, voters only express their preferences on a tiny fraction

of the alternatives.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply
a voting rule that needs this information only, such as plurality.

Results are completely nonsignificantas soon as the number of variables is much

higher than the number of voters (2p ≫ n).

5 voters, 26 alternatives; rule : plurality

001010: 1 vote; 010111: 1 vote; 011000: 1 vote; 101001: 1 vote; 111000: 1 vote

all other candidates : 0 vote.

11



How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically
using a predefineddistance.
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5 ask voters their preferred alternative(s) and complete them automatically
using a predefineddistance.

• every voter specifies one preferred alternatives~x∗;

• for all alternatives~x,~y∈ D,~x≻i ~y if and only if d(~x,~x∗) < d(~y,~x∗), whered is a

predefined distance onD.

+ cheap in elicitation an computation.

− important domain restriction.
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An example of such an approach:Minimax approval voting (Brams, Kilgour &

Sanver, 2007)

• n voters,mcandidates,k≤ mpositions to be filled

• each voter casts an approval ballotVi = (v1
i , . . . ,v

m
i ) ∈ {0,1}m

v j
i = 1 if voter i approves candidatej.

• for every subsetY of k candidates,

– d(Y,Vi) = Hamming distance betweenY andVi (number of disagreements)

– d(Y,(V1, . . . ,Vn)) = maxi=1,...,n d(Y,Vi)

– find Y minimizingd(Y,(V1, . . . ,Vn))
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Example: n = 4, m= 4, k = 2.

1110 1101 1010 1010 sum max

1100 1 1 2 2 6 2

1010 1 3 0 0 4 3

1001 3 1 3 3 10 3

0110 1 3 2 2 8 3

0101 3 1 4 4 12 4

0011 3 3 2 2 10 3

• finding an optimal subset isNP-hard (Frances & Litman, 97)

• (Le Grand, Markakis & Mehta, 07; Caragiannis, Kalaitzis & Markakis, 10):

approximation algorithms.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting : decide on every variable one after the other, and
broadcast the outcome for every variable before eliciting the votes on the
next variable.
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Sequential voting

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Fix the orderS> T.

Step 1 elicit preferences on{S, S̄}

if voters report preferences optimistically: 3 :S≻ S̄; 2 : S̄≻ S

Step 2 compute the local outcome and broadcast the result

S

Step 3 elicit preferences on{T, T̄} given the outcome on{S, S̄}

4: S: T̄ ≻ T; 1: S: T ≻ T̄

Step 4 compute the final outcome

ST̄
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Sequential voting: another example

Inspired from (Ephrati & Rosenschein, 93) and (Klamler & Pfirschy, 07)

A group of agents has to travel together to a set of places of interest. Time constraints

imply that they can only visit two places. Transportation constraints imply that not all

edges are feasible. At each time step they decide which location they should visit next.

A B

CD

init

Three agents with separable preferences:

agent 1 A≻ B≻C ≻ D

agent 2 B≻ D ≻ A≻C

agent 3 A≻ D ≻ B≻C
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Sequential voting: yet another example

A university has a position to fill. Three candidates: A, B, C.

A already has a position in another university.

B and C do not have any position.

The law requires the recruiting committee to consider transfers first.

transfer?

A B or C?

B C

majority of “yes” majority of “no”

majority for B majority for C
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Sequential voting

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to compute)

Two possibilities:

• restriction-free sequential voting

• “safe” sequential voting
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“Safe” sequential voting

Prerequisite:conditional preferential independence(Keeney & Raiffa, 76)

{X ,Y ,Z } partition ofV .

DX = ×Xi∈X Di etc.

X is preferentially independent ofY (givenZ ) iff

for all x,x′ ∈ Dom(X ), v,v′ ∈ Dom(Y ), w∈ Dom(Z ),

(x,y,z) � (x′,y,z) if and only if (x,y′,z) � (x′,y′,z)

given a fixed value z of Z, the preferences over the possibles values of X are

independent from the value of Y
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“Safe” sequential voting (Lang & Xia, 09)

O : X1 > .. . > Xp order on variables

At stepi, all voters vote on variableXi , using a local voting ruler i , and the outcome is
communicated to the voters before variableXi+1 is considered.

Requires the domain restriction

(R) the preferences of every voter on Xi are independent from the values of

Xi+1, . . . ,Xn.

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to compute)

+ voters have no problem reporting their preferences, nor do they ever experience
regret after the final outcome is known

− the number of profiles satisfying (R) is exponentially small; however

+ many “practical” domains comply with (R)

main course > first course > wine

+ still: much weaker restriction than separability.
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CP-nets(Boutilier, Brafman, Hoos and Poole, 99)

Language for specifying preferences on combinatorial domains based on the notion
of conditional preferential independence.

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

X independent ofY andZ; Y independent ofZ

x : y≻ ȳ

∣

∣

∣

∣

∣

∣

if X = x

thenY = y preferred toY = ȳ

everything else (z) being equal (ceteris paribus)

xyz≻ xȳz; xyz̄≻ xȳz̄;

x̄ȳz≻ x̄yz; x̄ȳz̄≻ x̄yz̄
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CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻X: xyz≻ x̄yz, xyz̄≻ x̄yz̄, xȳz≻ x̄ȳz, xȳz̄≻ x̄ȳz̄

≻Y: xyz≻ xȳz, xyz̄≻ xȳz̄, x̄ȳz≻ x̄yz, x̄ȳz̄≻ x̄yz̄

≻Z: xyz≻ xyz̄, xȳz≻ xȳz̄, x̄yz≻ x̄ȳz, x̄ȳz̄≻ x̄ȳz

≻C = transitive closure of≻X ∪ ≻Y ∪ ≻Z
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CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻: xyz
ր

ց

xȳz

xyz̄

ց

ր
xȳz̄→ x̄ȳz̄→ x̄ȳz→ x̄yz→ x̄yz̄
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X Y Z

1. elicit voters’ preferences onX (possible because their preferences onX are

unconditional);

2. apply local voting rulerX and determine the “local” winnerx∗;

3. elicit voters’ preferences onY givenX = x∗ (possible because their preferences

onY depend only onX);

4. apply local voting rulerY and determiney∗;

5. elicit voters’ preferences onZ givenX = x∗ andY = y∗.

6. apply local voting rulerZ and determinez∗.

7. winner: (x∗,y∗,z∗)
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Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

For all voters,X is preferentially independent ofY: G = {(X,Y)}

≻X:

3 voters 2 voters 2 voters

x̄≻ x x≻ x̄ x≻ x̄

4 voters unconditionally preferx over x̄ ⇒ x∗ = rX(≻1, . . . ,≻7) = x
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Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

x∗ = rX(≻1, . . . ,≻7) = x

≻Y|X=x:

3 voters 2 voters 2 voters

ȳ≻ y y≻ ȳ ȳ≻ y

givenX = x, 5 voters out of 7 prefer ¯y to y⇒ y∗ = rY|X=x(≻1, . . . ,≻7) = ȳ

Seq(rX, rY)(≻1, . . . ,≻7) = (x, ȳ)
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Question: given some propertyP of voting rules, do we have

r1, . . . , rp satisfyP⇒ Seq(r1, . . . , rp) satisfiesP?

General study in (Lang & Xia, 09); here we just give an examplefor participation
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Question: given some propertyP of voting rules, do we have

r1, . . . , rp satisfyP⇒ Seq(r1, . . . , rp) satisfiesP?

General study in (Xia, Lang & Ying, TARK-07) and (Lang and Xia, 09); here we just

focus on three properties:

• Condorcet-consistency;

• participation

• strategyproofness
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Sequential Condorcet winner:

2 voters 1 voter 2 voters

xȳ≻ x̄ȳ≻ xy≻ x̄y xy≻ xȳ≻ x̄y≻ x̄ȳ x̄y≻ x̄ȳ≻ xy≻ xȳ

X andY are preferentially independent⇒ take any order

3 voters unconditionally preferx to x̄ ⇒ x local Condorcet winner

3 voters unconditionally prefery to ȳ ⇒ y local Condorcet winner

⇒ xy sequential Condorcet winner

Properties:

1. ~x Condorcet winner⇒~x sequential Condorcet winner

N.B. The converse does not hold (4 voters prefer ¯xȳ to xy).

2. if everyr i is Condorcet-consistent thenSeq(r1, . . . , rp) elects the sequential

Condorcet winner when there is one (obvious)

Corollary : if every r i is Condorcet-consistent thenSeq(r1, . . . , rp) is

Condorcet-consistent
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Counter-example forparticipation

two variablesX, Y. DX = {x0,x1,x2}; DY = {y, ȳ}.

r1 a scoring rule with score vector(3,2,0), r2 = majority.

r1 andr2 satisfy participation.

V1,V2: x0y≻ x0ȳ≻ x1ȳ≻ x1y≻ x2ȳ≻ x2y

x0 ≻ x1 ≻ x2

x0 : y≻ ȳ

x1 : ȳ≻ y

x2 : ȳ≻ y

V3: x1y≻ x2y≻ x0y≻ x1ȳ≻ x2ȳ≻ x0ȳ

x1 ≻ x2 ≻ x0 y≻ ȳ

P = {V1,V2}: Seq(r1, r2)(P) = x0y

P′ = {V1,V2,V3}: Seq(r1, r2)(P′) = x1ȳ

But 3 prefersx0y to x1ȳ.

32



Manipulability

Does (non-)manipulability transfers from local rules to their sequential composition?

Proposition (obvious): if one of ther i is manipulable thenSeq(r1, . . . , rp) is
manipulable.

The converse is false:

Proposition Sequential majority for binary issues is manipulable (although the
majority rule is not).

Two binary issuesX, Y.

V1 : xy≻ x̄y≻ xȳ≻ x̄ȳ

V2 : xȳ≻ xy≻ x̄y≻ x̄ȳ

V3 : x̄y≻ x̄ȳ≻ xȳ > xy.

{V1,V2,V3} is compatible withx > y.

If 1 votes sincerely:Seq(ma j1,ma j2)(V1,V2,V3) = xȳ.

If 2 votes forx̄ instead ofx: Seq(ma j1,ma j2)(V ′
1,V2,V3) = x̄y.

⇒ if 1 knows the preferences of 2 and 3 then he has no interest to vote sincerely.
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Decomposability

A voting ruler onX = D1× . . .×Dp is decomposableif there existn voting rules
r1, . . . , rp onD1, . . . ,Dp such that: for any linear orderO = X1 > ... > Xp onV and
for any preference profileR = (R1, ...,RN) compatible withO , we have
Seq(r1, . . . , rp)(R) = r(R).

Example: Positional scoring rules are not decomposable.

4 voters 3 voters 3 voters 2 voters

xy

x̄y

xȳ

x̄ȳ

xȳ

xy

x̄y

x̄ȳ

x̄y

x̄ȳ

xy

xȳ

x̄y

x̄ȳ

xȳ

xy

The profile follows the orderX > Y.

Sequential winner =xy.

Score(xy) = 4s1 +3s2 +3s3 < Score(x̄y) = 5s1 +4s2 +3s3

⇒ no scoring rule electsxy.
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A voting ruler onX = D1× . . .×Dp is decomposableiff there existn voting rules

r1, . . . , rp onD1, . . . ,Dp such that: for any linear orderO = X1 > ... > Xp onV and

for any preference profileR = (R1, ...,RN) following O , we have

Seq(r1, . . . , rp)(R) = r(R).

• no positional scoring rule is decomposable;

• most other well-known voting rules fail to be decomposable

Obviously:

• any dictatorial rule is decomposable

• any constant rule is decomposable

Question: are there any “reasonable” decomposable rules/correspondences?

Proposition (Xia and Lang, 09): ifC is a decomposable, neutral and nondictatorial

correspondence, thenC(R) = X for all R.
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“Safe” sequential voting: relies on a strong domain restriction:

(R) all voters have a preference relation compatible with the order X1 > .. . > Xn

+ simple elicitation protocol for these sequential voting rules

− the number of profiles satisfying (R) is exponentially small

even if

+ many “practical” domains comply with (R)

main course > first course > wine

What can we do when (R) is not reasonable?
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Sequential voting

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to compute)

• restriction-free sequential voting

+ always applicable

− voters may feel ill at ease reporting a preference on some attributes, or

experience regret after the final outcome is known

– the outcome depends on the order in which the attributes are decided
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voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Suppose voters behave optimistically, and that the chair knows that.

S> T
3 votes forS, 2 votes forS̄; local outcome: S

givenS = S, 4 votes forT̄, 1 vote forT ⇒ T̄; final outcome: ST̄

T > S
3 votes forT, 2 votes forT̄; local outcome: T

givenT = T, 4 votes forS̄, 1 vote forS⇒ S̄; final outcome: S̄T

The chair’s strategy:

• if she prefersST̄ to S̄T: choose the orderS> T

• if she prefersS̄T to ST̄: choose the orderT > S

Note thatST andS̄T̄ cannot be obtained.

The chair can (sometimes) control the election by fixing the agenda
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Now: how hard is it to control the outcome by fixing the agenda?

Several types of control:

• local/global dichotomy:

– global control: the chair tries to determine the winning alternative

– local control: the chair tries to determine the outcome of a single issue

• constructive/destructive dichotomy:

– constructive control: the chair tries to ensure that a particular alternative or a

particular value for an issue wins,

– destructive control: the chair tries to ensure that a particular alternative or a

particular value for an issue doesnotwin.
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Formulating the problem

Input:

• a set of voters{1, . . . ,n}

• a set of binary issuesI = {X1, . . . ,Xp} (⇒ local rules: majority)

• an outcome~x (global control), or a valuexi of an issue (local control), that the
chair wants to obtain (or not to obtain)

• for every voter, a compact specification of her vote on each single issue, given
partial assignments of some other issues: “conditional behaviour net”

X Y

vote x

x : votey

x̄ : vote ȳ

X unassigned: vote ¯y

CB-nets may be required to beconsistent: if I vote Y = y both whenX is assigned to
true and whenX is assigned to false, then I should voteY = y whenX is unassigned.
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Formulating the problem

Input:

• a set of voters{1, . . . ,n}

• a set of binary issuesI = {X1, . . . ,Xp} (⇒ local rules: majority)

• an outcome~x (global control), or a valuexi of an issue (local control), that the
chair wants to obtain (or not to obtain)

• for every voter, a compact specification of her vote on each single issue, given
partial assignments of some other issues: “conditional behaviour net”

X Y

vote x

x : votey

x̄ : vote ȳ

X unassigned: vote ¯y

The chair doesn’t need to know the CB-net of every voter. It isenough for her to
know the majority CB-net.
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Constructive control

• global constructive control isNP-complete.

• local constructive control isNP-complete.

Membership easy.

Hardness (both for global and local control) by reduction from the restriction of

HAMILTONIAN CYCLE to graphs where each node has degree at most 3.

In both cases,NP-hardness holds even if either of the following conditions holds:

1. there is only one voter

2. all CB-nets are consistent and share the same dependency graph.

Can constructive control sometimes be easier?

• if the voters’ CB-nets share the same dependency graphG, and every node inG

has at most one parent, then constructive control, both local and global, is inP.
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Destructive control

• local destructive control isNP-complete (trivially from theNP-completeness of

local constructive control)

• global destructive control isNP-complete.

NP-hardness holds even if all the CB-nets are consistent.

NP-hardness proof by reduction fromEXACT COVER BY 3-SETS

• if the voters’ CB-nets share the same dependency graphG, then global

destructive control is inP.
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Conclusion: the pros and cons of (restriction-free) sequential voting

+ always applicable

+ elicitation and computation easy

− voters may feel ill at ease, and may experience regret after the final outcome is

known

− the chairman can control the process

+ but at the cost of lengthy computations

Further work

Hardness shown only in the worst case; we do not yet know aboutwhether control is

“usually” hard.
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Strategic Sequential Voting(Xia, Conitzer & Lang, 10)

Three new assumptions:

1. all voters act strategically, and this is common knowledge.

2. the order in which the issues will be voted upon, as well as the local voting rules

used at the different steps, are common knowledge;

3. all voters’ preferences on the set of alternatives are common knowledge.
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Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.

Order in which issues are decided:A > B.

Local rule at each step: majority.
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Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.
A

B B

ab ab̄ āb āb̄

Y N

Y N Y N
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Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.
A

B B

ab ab̄ āb āb̄

ab̄

Y N

Y N Y N
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Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.
A

B B

ab ab̄ āb āb̄

ab̄ āb

Y N

Y N Y N
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Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.
A

B B

ab ab̄ āb āb̄

ab̄ āb

āb
Y N

Y N Y N

50



Two binary issuesA, B with domains{a, ā} and{b, b̄})

Three voters:

• voter 1: ab≻ āb≻ ab̄≻ āb̄;

• voter 2: ab̄≻ ab≻ āb≻ āb̄;

• voter 3: āb≻ āb̄≻ ab̄≻ ab.
A

B B

ab ab̄ āb āb̄

ab̄ āb

āb
Y N

Y N Y N

Voter 1’s preferences areseparable: she prefersa to ā whatever the value ofB, andb

to b̄ whatever the value ofA.

And yet she strategically votes for ¯a
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Two interpretations:

• modeling sequential voting as a complete-information game, which allows us to

analyze sequential voting in multi-issue domains from a game-theoretic point of

view;

• a new family of voting rules on multi-issue domains (a distinguished subset of

the family of voting trees).
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[O = X1 > .. . > Xn be the order in which the issues are decided

Question 1: in which situations is it in the voters’ interestto vote truthfully at every

stage?

Answer: yes when

• when every voter hasO-lexicographic preferences

• when for everyi, the preferences of every voter on the values ofXi depend only

on the values ofXi+1, . . . ,Xp (anda fortiori, when every voter has separable

preferences).
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Question 2: do multiple election paradoxes arise?

Answer: unfortunately yes

For any p∈ N and any n≥ 2p2 +1, there exists a profile P such that the outcome is

ranked among the⌊p/2+2⌋ worst alternatives, and is Pareto-dominated by

2p− (p+1)p/2 alternatives.
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation language in which the voters’
preferences are represented in a concise way.
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7. use acompact preference representation language in which the voters’
preferences are represented in a concise way.

+ no domain restriction, provided the language is totally expressive.

− potentially expensive in elicitation and/or computation:computing the winner is

generallyNP-hard orcoNP-hard.

Examples of such approaches:

• using GAI-nets: (Gonzalès & Perny, 08);

• using CP-nets: (Xia, Conitzer & Lang, 08);

• using weighted logical formulae: (Uckelman, 09).
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Any preference relation on a combinatorial domain is compatible with some CP-net

(possibly with cyclic dependencies).

Elicit the CP-net corresponding to each voter and aggregate“locally”.

Example 1(swimming pool): 5 voters, 2 binary variablesS, T
2 voters

ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

2 voters

S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

1 voter

ST≻ S̄T≻ST̄ ≻ S̄T̄

S T

S≻ S̄ T ≻ T̄

apply an aggregation function (here majority) on each entryof each table

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

ST

ST̄

S̄T

S̄T̄
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Example 2: 3 voters, 2 binary variablesA, B

A B

A≻ Ā
A : B≻ B̄

Ā : B̄≻ B

A B

B : A≻ Ā

B̄ : Ā≻ A
B≻ B̄

A B

Ā≻ A B̄≻ B

apply an aggregation function (here majority) on each entryof each table

A B

B : Ā≻ A

B̄ : A≻ Ā

A : B≻ B̄

Ā : B̄≻ B

AB

AB̄

ĀB

ĀB̄

58



+ always applicable

− elicitation cost: in the worst case, exponential number of queries to each voter

− computation cost: dominance in CP-nets with cyclic dependencies is

PSPACE-complete

− there might be no winner; there might be several winners
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How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives
explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a
voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a
predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe
outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation languagein which the voters’
preferences are represented in a concise way.

Conclusion:either impose a strong domain restriction, or pay a high communication

and computational cost
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