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Motivation

Domain independent optimal planning
A∗ + admissible heuristic (almost always)
Which heuristic to use?

Sample results:

Domain hLA hLM-CUT

airport 25 38
freecell 28 15
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Combining Admissible Heuristics

Why use only one heuristic?

Simplest combination method: maxh

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Other combination methods exist (additive heuristics,
additive/disjunctive, . . . )
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Combining Admissible Heuristics (2)

The problem with maxh

We need to compute many heuristic functions
The heuristic value is the result of only one computation
Some computation is wasted

Possible solution: learn a classifier which predicts which heuristic
will be the “winner”
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Informative vs. Fast Heuristics

Sometimes spending a lot of time to compute the most informed
heuristic is not the best thing to do
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Theoretical Model - Which Heuristic to Compute When?

Assumptions

State space is a tree

Single goal state

Uniform cost actions

Constant branching factor b

Perfect knowledge

Two heuristics: h1 and h2

Consistent

Evaluating hi takes time ti
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Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s) < c∗

What is the best decision?

Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?

Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 time

Using h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time

Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l

We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision - just expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s) < c∗

What is the best decision?Using h2 - 1 evaluation, t2 timeUsing h1Using h2 - 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

l - number of levels to expand

bl t1 time

l

Using h2 - 1 evaluation, t2 time

Using h1 - bl t1 time
Best decision - use h2 iff t2 < bl t1

i.e. l > logb(t2/t1)

l > logb(t2/t1) Estimating l
We make one more assumption:
h1 increases by c for each level.

Then l = h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Justifying the Rule

The decision rule derived from the model can be justified by
some empirical results (Helmert and Röger, 2008)
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Assumptions

State space is a tree

- doesn’t change the rule

Single goal state

- doesn’t change the rule

Uniform cost actions

- doesn’t change the rule

Constant branching factor b

- estimate

Perfect knowledge

- use decision rule at every state

Two heuristics: h1 and h2

Consistent

- doesn’t change the rule

Evaluating hi takes time ti

- estimate
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Learning

Collecting training examples

Labeling training examples

Generating features

Building a classifier
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Collecting Training Examples

State space is sampled using stochastic hill climbing “probes”
Depth limit = 2∗h(s0)
Probabiity of expanding successor s = 1/h(s)

All generated states are added to the training set
Probing stops when enough training examples are collected

s0

Depth limit
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Labeling Training Examples

b, t1, t2 are estimated from the collected examples

h2−h1 is calculated for each state

Each example is labeled by h2 iff h2−h1 > α logb(t2/t1)

WLOG t2 > t1 - the choice is always whether to evaluate the more
expensive heuristic
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Generating Features

We use the simplest features - values of state variables

Better features will probably lead to better results
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Building a Classifier

We use the Naive Bayes classifier
Very fast
Incremental
Provides probability distribution for classification
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Using the classifier

State Evaluation

state

classifier

features

Evaluate h2Evaluate h1

h1 h2

Pr(h1) > ρ Pr(h2) > ρ

Learn

Pr(h1),Pr(h2)≤ ρ
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Final Remarks

This is an active online learning scheme

Using SAS+ helps, because it reduces dependence between
state variables
This approach can be easily extended to multiple heuristics

Learn a classifier for each pair
Decide which heuristic to use by voting
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Evaluation

We used two state of the art heuristics
hLM-CUT - Helmert and Domshlak 2009
hLA - Karpas and Domshlak 2009

Parameters
α = 1 - decision rule bias
ρ = 0.6 - confidence threshold
Training set size = 100

C. Domshlak, E. Karpas, S. Markovitch To Max or not to Max: Online Learning for Speeding Up Optimal Planning



Motivation
Theoretical Model

From Model to Practice
Experimental Evaluation

Results - Solved Problems

Domain hLA hLM-CUT maxh rndh selh
airport 25 38 36 29 36
blocks 20 28 28 28 28
depots 7 7 7 7 7
driverlog 14 14 14 14 14
freecell 28 15 22 15 28
grid 2 2 2 2 2
gripper 6 6 6 6 6
logistics-2000 19 20 20 20 20
logistics-98 5 6 6 5 6
miconic 140 140 140 140 140
mprime 21 25 25 19 25
mystery 13 17 17 14 17
openstacks 7 7 7 7 7
pathways 4 5 5 4 5
psr-small 48 49 48 48 48
pw-notankage 16 17 17 17 17
pw-tankange 9 11 11 10 11
rovers 6 7 7 6 7
satellite 7 8 9 7 9
tpp 6 6 6 6 6
trucks 7 10 9 7 9
zenotravel 9 12 12 10 12
Total 419 450 454 421 460
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Results - Time

Domain hLA hLM-CUT maxh rndh selh
airport (25) 125.96 35.36 73.80 54.78 68.44
blocks (20) 66.01 3.71 6.39 6.44 5.59
depots (7) 196.91 65.99 103.26 155.14 94.36
driverlog (14) 66.67 110.87 86.04 120.84 81.31
freecell (15) 6.04 249.28 23.93 44.22 9.25
grid (2) 12.05 33.78 44.27 38.3 40.26
gripper (6) 71.6 106.48 264.79 161.98 77.07
logistics-2000 (19) 73.32 152.27 255.36 153.89 79.17
logistics-98 (5) 18.84 24.11 29.55 28.69 24.43
miconic (140) 2.03 8.04 10.08 5.67 7.65
mprime (19) 17.52 17.9 15.68 111.48 8
mystery (12) 7.55 1.61 2.03 57.93 2.49
openstacks (7) 15.93 72.3 75.83 52.69 17.11
pathways (4) 5.38 0.08 0.14 1.15 0.18
psr-small (48) 3.55 4.05 7.92 5.73 4.87
pw-notankage (16) 48.8 71.34 71.49 73.92 59
pw-tankange (9) 211.43 173.61 189.89 172.99 130.98
rovers (6) 122.7 5.23 8.79 45.72 7.97
satellite (7) 46.22 3.47 4.51 21.95 3.58
tpp (6) 108.54 14.36 5.9 56.32 5.69
trucks (7) 238.85 11.69 16.48 39.64 15.56
zenotravel (9) 9.84 0.91 1.33 8.27 1.28
Average (Problem) 39.65 38.59 41.39 42.6 24.53
Average (Domain) 67.08 53.02 58.97 64.44 33.83
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Anytime Behavior
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Thank You

Thank You
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