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Abstract by having each agent run its own reinforcement learning al-

gorithm [4, 13, 14, 12]. In this approach the utility func-

Product Distribution (PD) theory is a new framework for tion of each agent is based on tiwerld utility G(z) map-
controlling Multi-Agent Systems (MAS'’s). First we review ping the joint move of the agents, € X, to the perfor-
one motivation of PD theory, as the information-theoretic mance of the overall system. However in practice the agents
extension of conventional full-rationality game theory to the in a MAS are bounded rational. Moreover the equilibrium
case of bounded rational agents. In this extension the equi-they reach will typically involve mixed strategies rather than
librium of the game is the optimizer of a Lagrangian of the pure strategies, i.e., they don't settle on a single poiop-
(probability distribution of) the joint state of the agents. Ac- timizing G(x). This suggests formulating an approach that
cordingly we can consider a team game in which the sharedexplicitly accounts for the bounded rational, mixed strategy
utility is a performance measure of the behavior of the MAS. character of the agents.

For such a scenario the game is at equilibrium —the La-  Now in any game, bounded rational or otherwise, the
grangian is optimized — when the joint distribution of the agents are independent, with each agetibosing its move
agents optimizes the system’s expected performance. Ong; at any instant by sampling its probability distribution
common way to find that equilibrium is to have each agent (mixed strategy) at that instang; (z;). Accordingly, the

run a reinforcement learning algorithm. Here we investi- gjstribution of the joint-moves is a product distribution,
gate the alternative of exploiting PD theory to run gradi- P(x) = I, ¢i(x:). In this representation of a MAS, all cou-
ent descent on the Lagrangian. We present computer experpjing between the agents occurs indirectly; it is the separate

iments validating some of the predictions of PD theory for gistributions of the agentg;; } that are statistically coupled,
how best to do that gradient descent. We also demonstratgyhile the actual moves of the agents are independent.

how PD theory can improve performance even when we are
not allowed to rerun the MAS from different initial condi-
tions, a requirement implicit in some previous work.

PD theory adopts this perspective to show that the equi-
librium of a MAS is the minimizer of a Lagrangiafi( P),
derived using information theory, that quantifies the ex-
pected value ofz for the joint distributionP (). From this
perspective, the update rules used by the agents in RL-based

1. Introduction systems for controlling MAS’s are just particular (ineffi-
cient) ways of finding that minimizing distribution.
Product Distribution (PD) theory is a recently intro- Various techniques for modifying the agents’ utilities

duced broad framework for analyzing, controlling, and op- from G to improve convergence have been used with such
timizing distributed systems [9, 10, 11]. Among its po- RL-based systems [13]. As illustrated below, by viewing the
tential applications are adaptive, distributed control of a problem as one of Lagrangian-minimization, PD theory can
Multi-Agent System (MAS), (constrained) optimization, be used to derive corrections to those techiques. In addition,
sampling of high-dimensional probability densities (i.e., PD theory suggests novel ways to find the equilbirum, e.g.,
improvements to Metropolis sampling), density estimation, applying any of the powerful search techniques for contin-
numerical integration, reinforcement learning, information- uous variables, like gradient descent, to find theptimiz-
theoretic bounded rational game theory, population biology, ing £. By casting the problem this way in terms of find-
and management theory. Some of these are investigated iimg an optimalP rather than finding an optimal, we can
[2,1,8,3]. exploit the power of search techniques for continuous vari-
Here we investigate PD theory’s use for adaptive, dis- ables even wheHX is a discrete, finite space. Moreover, typ-
tributed control of a MAS. Typically such control is done ically such search techniques can be run in a highly dis-



tributed fashion, sincé is a product distribution. Finally, 2.2. Review of the maximum entropy principle

the techniques for modifying agents’ utilities in RL-based

systems often require rerunning the MAS from different ini- Shannon was the first person to realize that based on any
tial conditions, or equivalently exploiting knowledge of the of several separate sets of very simple desiderata, there is a
functional form ofG to evaluate how particular changes to unique real-valued quantification of the amount of syntac-
the initial conditions would affeatr. PD theory provides us tic information in a distributionP(y). He showed that this
with techniques for improving convergence even when we amount of information is (the negative of) the Shannon en-
have no such knowledge, and when we cannot rerun the systropy of that distribution,S(P) — f dy P(y)ln[M].

n(y)
tem. So for example, the distribution with minimal information

In the next section we review the game-theory motivation is the one that doesn't distinguish at all between the various
of PD theory. We then present details of our Lagrangian- y, i.e., the uniform distribution. Conversely, the most infor-
minimization algorithm. We end with computer experi- mative distribution is the one that specifies a single possi-
ments involving both controlling a spin glass (a system of ble y. Note that for a product distribution, entropy is addi-
coupled binary variables) and controlling the agents in ative, i.e.,S(I[, ¢:(v:)) = >_; S(a)-
variant of the bar problem [13]. These experiments both val-

Say we given some incomplete prior knowledge about

idate some of the predictions of PD theory of how best to a distributionP(y). How should one estimatB(y) based

modify the agents’ utilities frondz, and of how to improve
convergence when one cannot rerun the system.

2. Bounded Rational Game Theory

In this section we motivate PD theory as the information-
theoretic formulation of bounded rational game theory.

2.1. Review of honcooperative game theory

In noncooperative game theory one has a séY gflay-
ers. Each player has its own set of allowegure strate-
gies A mixed strategyis a distributiong;(x;) over player
1's possible pure strategies. Each playalso has grivate

on that prior knowledge? Shannon’s result tells us how to
do that in the most conservative way: have your estimate of
P(y) contain the minimal amount of extra information be-
yond that already contained in the prior knowledge about
P(y). Intuitively, this can be viewed as a version of Oc-
cam’s razor. This approach is called the maximum entropy
(maxent) principle. It has proven useful in domains rang-
ing from signal processing to supervised learning [7].

2.3. Maxent Lagrangians

Much of the work on equilibrium concepts in game the-
ory adopts the perspective of an external observer of a game.
We are told something concerning the game, e.qg., its utility
functions, information sets, etc., and from that wish to pre-
dict what joint strategy will be followed by real-world play-

utility functiong, that maps the pure strategies adopted by ers of the game. Say that in addition to such information,
all N of the players into the real numbers. So given mixed we are told the expected utilities of the players. What is our

strategies of all the players, the expected utility of player
is E(gi) = [ dz [1; ¢;(x;)gi(x) *.
In a Nash equilibrium every player adopts the mixed

best estimate of the distributionthat generated those ex-
pected utility values? By the maxent principle, it is the dis-
tribution with maximal entropy, subject to those expectation

strategy that maximizes its expected utility, given the mixed values.

strategies of the other players. More formaMy, ¢; =
argmay, [ dx q;[];, ¢;(x;) gi(x). Perhaps the major ob-

jection that has been raised to the Nash equilibrium con-

cept is its assumption dull rationality [5, 6]. This is
the assumption that every playecan both calculate what
the strategieg;-; will be and then calculate its associated
optimal distribution. In other words, it is the assumption
that every player will calculate the entire joint distribution
q(x) = [, ¢;(z;). If for no other reasons than computa-

tional limitations of real humans, this assumption is essen-

tially untenable.

1 Throughout this paper, the integral sign is implicitly interpreted as ap-
propriate, e.g., as Lebesgue integrals, point-sums, etc.

To formalize this, for simplicity assume a finite num-
ber of players and of possible strategies for each player.
To agree with the convention in other fields, from now on
we implicitly flip the sign of eacly; so that the associated
playeri wants to minimize that function rather than maxi-
mize it. Intuitively, this flippedy; (x) is the “cost” to player
1 when the joint-strategy is, though we will still use the
term “utility”.

Then for prior knowledge that the expected utilities of
the players are given by the set of valugs}, the max-
ent estimate of the associate given by the minimizer of
the Lagrangian

Lq) = Zm[Eq(gnfeistm) @)



— [ da (z:)gi(x) — €] — S(q)\2 irrational player, i.e., by a perfectly uniform mixed strat-
zi:ﬁ [/ 1;[%( 1)9:() ] (a)2) egy ¢;. Soj3; in the maxent Lagrangian explicitly specifies

the balance between the rational and irrational behavior of
where the subscript on the expectation value indicates thathe player. In particular, fof — oo, by minimizing the La-
it evaluated under distributiop, and the{3;} are “inverse  grangians we recover the Nash equilibria of the game. More
temperatures” implicitly set by the constraints on the ex- formally, in that limit the set of; that simultaneously min-

pected utilities. imize the Lagrangians is the same as the set of delta func-
Solving, we find that the mixed strategies minimizing the tions about the Nash equilibria of the game. The same is
Lagrangian are related to each other via true for Eq. 3.
_E, (Cle) Eq. 3 is just a special case of Eqg. 4, where all player's
qi(wi) oce O 3) share the same private utilitg. (Such games are known

asteam games) This relationship reflects the fact that for
this case, the difference between the maxent Lagrangian and
the one in Eq. 2 is independent ¢f Due to this relation-
ship, our guarantee of the existence of a solution to the set
of maxent Lagrangians implies the existence of a solution
of the form Eq. 3. Typically players a will be closer to min-
imizing their expected cost than maximizing it. For prior
knowledge consistent with such a case, thare all non-
negative.

For each player define

where the overall proportionality constant for edadk set

by normalization, and = 3", 3;9; . In Eq. 3 the probabil-

ity of playeri choosing pure strategy, depends on the ef-
fect of that choice on the utilities of the other players. This
reflects the fact that our prior knowledge concerns all the
players equally.

If we wish to focus only on the behavior of playgit is
appropriate to modify our prior knowledge. To see how to
do this, first consider the case of maximal prior knowledge,
in which we know the actual joint-strategy of the players,
and therefore all of their expected costs. For this case, triv- filz,qi(z;)) = Bigi(z) + In[g; (z;)]. (5)
ially, the maxent principle says we should “estimageds
that joint-strategy (it being the with maximal entropy that ~ Then we can maxent Lagrangian for playés
is consistent with our prior knowledge). The same conclu-
sion holds if our prior knowledge also includes the expected Li(q) = /da: q(x) fi(z, qi(x;)). (6)
cost of player.

Modify this maximal set of prior knowledge by remov- Now in a bounded rational game every player sets its strat-
ing from it specification of playei’s strategy. So our prior  egy to minimize its Lagrangian, given the strategies of the
knowledge is the mixed strategies of all players other than other players. In light of Eq. 6, this means that we inter-
1, together with playei’s expected cost. We can incorpo- pret each player in a bounded rational game as being per-
rate prior knowledge of the other players’ mixed strategies fectly rational for a utility that incorporates its computa-
directly, without introducing Lagrange parameters. The re- tional cost. To do so we simply need to expand the domain

sultantmaxent Lagrangianis of “cost functions” to include probability values as well as
joint moves.
Li(g:) = Bilei— E(g:)] — Siai) Often our prior knowledge will not consist of exact spec-
= Bilei— [ da qu(xj)gi(x)] — Si(q) ification of the expected costs of the players, even if that
; ' knowledge arises from watching the players make their

moves. Such alternative kinds of prior knowledge are ad-
solved by a set of coupld8ioltzmann distributions: dressed in [10, 11]. Those references also demonstrate the
extension of the formulation to allow multiple utility func-
tions of the players, and even variable numbers of players.
Also discussed there asemi-coordinatetransformations,
under which, intuitively, the moves of the agents are modi-
fied to set in binding contracts.

qi(;) o e PiFag (gsl@s) (4)
Following Nash, we can use Brouwer’s fixed point theorem
to establish that for any non-negative val§gs, there must
exist at least one product distribution given by the product
of these Boltzmann distributions (one term in the product
for eachi).

The first term inZ; is minimized by a perfectly ratio-
nal player. The second term is minimized by a perfectly

3. Optimizing the Lagrangian

First we introduce the shorthand

Glz] = BEG|x) )
2 The subscripy;) on the expectation value indicates that it is evalu- , , ,
ated according the distributi(ﬂ#i - = dz'o(z; — ;) G(x) H ai(v;), (8)
J#i



where the delta function forceg = x; in the usual way. Both WLU and AU require recording not just(zx) for
Now given any initialg, one may use gradient descent to the Monte Carlo sample, but alsoG at a set of points re-
search for they optimizing £(q). Taking the appropriate lated in a particular way te. When the functional form of

partial derivatives, the descent direction is given by G is known, often there is cancellation of terms that obvi-
ates this need. Indeed, often what one does need to record
Agi(zi) = oL _ [Glz;] + B og q(z:) +C (9) in these cases is easier to evaluate than islowever when
6gi(zi) the functional form ofGG is not known, using such private

utilities would require rerunning the system, i.e., evaluat-
ing G for many points besides.
PD theory provides us an alternative way to improve the
convergence of the sampling. This alternative exploits the
/dxi‘ﬁ(xi) = /dxi(‘h‘(l"vi) + Agi(wi)) = 1. (10) fact that the joint distribution of all the agents is a prod-
uct distribution. Accordingly, we can have the agents all an-
Evaluating, we find that nounce their separate distributiofys } at the end of each
block. By itself, this is of no help. However say thatas
C = 1 /dmi{[G\xi] + 47t logqi(xi)}. (11) well as G(x) is recorded for all the samples taken so far
Jdzil (not just those in the preceding block). We can use this in-
formation as a training set for a supervised learning algo-
rithm that estimate&;. Again, this piece of information is
of no use by itself. But if we combine it with the announced
{¢;}, we can form an estimate of eafghi | z;].
This estimate is in addition to the estimate based on the

whereC' is a constant set to preserve the norm of the prob-
ability distribution after update, i.e., set to ensure that

(Note that for finiteX, those integrals are just sums.)

To follow this gradient, we need an efficient scheme for
estimation of the conditional expecté&d for different ;.
Here we do this via Monte Carlo sampling, i.e., by repeat-

ly 1D samplingg and recording the resultant priv il-
el Sl andecorang e resant e ot Cafosapies hre e Norie arlo ampes o
y . g P all blocks are used, to approximat&x), rather than to di-

the gradient for each agent, we update the agents’ distribu- . . .
. . rectly estimate the variougs | x;]. Accordingly we can
tions accordingly. We then start another block of IID sam- . .

. . . combine these two estimates. Below we present computer
pling to generate estimates of the next gradients. . o . )

. o . experiments validating this technique.
In large systems, the sampling within any given block

can be slow to converge. One way to speed up the conver-4 E . t
gence is to replace ea¢y | x;] with [g; | z;], whereg; is - EXpenments

set to minimize bias plus variance [9, 11]: 4.1 Known world utilities

-1
gi(z) := G(z) — dmi%G(u’c,i,xi), (12) We first consider the case where the functional form of
J dxiL%i- the world utility is known. Technically, the specific problem

that we consider is the equilibration of a spin glass in an ex-
ternal field, where each spin has a total angular momentum
3/2. The problem consists of 50 spins in a circular forma-
tion, where every spin is interacting with three spins on its
right, three spins on its left as well as with itself. There are
also external fields which interact with each individual spin
differently. The world utility is thus of the following form:

where L, is the number of times the particular valug
arose in the most recent block bfsamples. This is called
the Aristocrat Utility (AU). It is a correction to the util-
ity of the same name investigated in [13] and references
therein.

Note that evaluation of AU for ageritrequires know-
ing G for all possiblez;, with z(;) held fixed. Accordingly,

we consider an approximation, which is called tven- G(z) = th + Z Jijxix, (13)
derful Life utility (WLU), in which we replace the values i <ig>
L71

W defining agent’s AU with a delta function about where)__, .. means summing over all the interacting pairs

about the least likely (according ¢g) of that agent’s moves. once. In our problem, t_he set elements in the{ge} and

(This is version of the utility of the same name investigated {Ji;} are Qe”efated uniformly at fa”de f‘?’*‘“’-5 0 0.5.

in [13] and references therein.) The algorithm for the Lagrangian estimation goes as fol-
Below we present computer experiments validating the lows:

theoretical predictions that AU converges faster than the 1. Each spin is treated as an agent which possesses

team game, and that the WLU defined here converges faster ~a probability distribution on his set of actions:

than its reverse, in which the delta function is centered on {qi(x;) | x; € o; = {—1,1}}, which is initially set to

themostlikely of the agent’s moves. be uniform.



2. Each agent picks its choice of state according to the 5.  Unknown world utilities
probability distribution forL times sequentially, where
L is the Monte Carlo block size. We denote the num-
ber of stater; picked by agentby L,,. We requireL,,,

We now consider the case where the explicit formula for
the world utility is not known and hence the calculations for
to be non-empty for alt; € w;, i.e., if someL,, = 0, WLU, uniform AU and weighted AU are not possible. Re-
we randomly pick a sample’ and set; = «/ so that call that for this case we require that each player not only
L,, = 1. This process is to ensure that we can get submits her choices of actions during each Monte Carlo
conditional expected valugé&i|x;] for all z; € o;. It block, but her probability distribution as well. Although this
should be noted though that it violates the assumptionsbrings a constant overhead to the transmission, this becomes

of IID sampling underpinning the derivation of the pri- negligible whenl. is large. _ .
vate utilities minimizing bias plus variance. The problem we consider here is a 100-agent 4-night bar

problem [14]. In this problem, each agent’s strategy set con-
3. The gradients for each individual component is calcu- sists of four elementd1, 2, 3, 4}. The world utility is of the
lated based on thé samples taken from the previous form:
step (c.f. eq. 9), and gradient descents are performed
for all  simultaneously. Since all probabilities must be
positive, for each componeiit the magnitude of de-
scent is halved if;(x;) is no longer positive for some

4
G(z) = =50 x Ze‘f"‘(”)/ﬁ
k=1
where fi,(z) = >, 0(x; — k), i.e., fr(z) is the number of
agents attending the bar at nightThe precise algorithm is
as follows:

(15)

4. Repeat steps 2 and 3. 1. Each agent possesses a probability distribution on her

set of actions{q;(z;) | x; € w;}, which is initially set
In figure 1, we have shown a comparison of three differ- to be uniform.
ent ways of doing the descent direction estimation in step 3
above. Team game means that we |dsk;] to get the de-
scent directions, weighted Aristocratic Utility corresponds
to using the formula in eq. 12 to get the descent directions,
and uniform Aristocratic Utility corresponds to simplifying

the functions{g;} to

2. Each agent picks its state according to the probabil-
ity distribution for L times sequentially, wherg is the
Monte Carlo block size, as well as her probability dis-
tribution {¢;(z;) | z; € w;}. Again, we require_,, to
be non-empty for alk; € w;, i.e., if someL,, = 0,
we randomly pick a sample’ and set:; = 7 so that
Ly, =1.

. Denote the set of samples in thevionte Carlo step by
S, each agent generates a set of artificial data points ac-
cording to agents’ probability distributions, and denote
those byA;. Then we define the following quantity:

! Z G(z_i,x;).

|Ji| T;€0;

9i(x) = G(z) — (14) 3

In figure 1, we see that weighted AU outperforms uni-

form AU except at3—! = 0.2. This unexpected result at )
= -«

=1 = 0.2 may be due to the limitation on the size bf G, = Z §(z; — 2)G(x)  (16)
(Recall that we have required that, # 0, and if it ever ' S| 2=

does, we randomly pick a sampté and setx; = z} so o 5z — 2 17
that L,, = 1.) Hence, as shown in figure 3, the number Jr|Ai| I; ( zi)Gs(z) (A7)

of L,, = 1 is greater wher3~! = 0.2 than that when

B! = 0.6. This demonstrates that gr! = 0.2, quite a

few redistributions of the samples are happening and hence
the size of L has to be enlarged to get decent statistics.
The speculation is further strengthened by comparing cor-
rect WLU (where# defining agent’s AU are re-
placed with a delta function about about the least likely (ac-
cording tog;) of that agent's moves) and incorrect WLU
(where the same quantities are replaced with a delta func-
tion about about the most likely (according ¢g of that
agent's moves) with different sample size As shown in
figures 4 and 5, the increase in sample size does amend the
problem caused by resampling.

wherea is a weighting parameter between 0 and 1 and
G is defined by:

Pwes Az, 2")G(a")
ZI’GS d(x7 xl)
whered( . , . ) is some appropriate metric. In the
present 100-agent 4-night bar problediz, z’) =
™2 2 ME@ =@ \yhere the functiond f1(.)}

are as defined in eq. 15.

és(x) =

(18)

. Each agent updates her probability distribution accord-

ing to the gradients calculated as in eq. 9 but with
[G|z;] replaced byG,,. Again, for each agent the
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Figure 1. Plots of 3~! vs. the Lagrangian
for different utilities. The curves are gener-
ated by plotting the Lagrangian at the 20th
timestep, i.e., after 20 descents. The initial
step sizes are set to be 0.2 times the gradi-
ents. Also, L = 100 and a total of 40 simula-

15

-30

-35 -
\‘—X.XIIIIII T
AN TF Tz oz
N
40} N
45}
-50 . . , .
0 5 10 15 20 25

Figure 2. The time series of Lagrangian along
the 20 time steps (curves generated at 3! =
0.6). (Red dotted line: Team game, green
dashed line: uniform AU, blue solid line:
weighted AU.)

tions are performed. (Red dotted line: Team

game, green dashed line: uniform AU, blue
solid line: weighted AU.)

magnitude of descent is halveddf(x;) is no longer
positive for some’.

5. Repeat steps 2 to 4.

Given that the utility function is reasonably smooth, it
is natural to expect that the estimates aided by artificial
data points will provide an improvement. And this is indeed
shown in figure 6 with varyingv. The same experiments
are also performed for the 50-spin model introduced in sec-
tion 4.1 but with a new metrid(z, z') = 320, §(x; — ).

The results are shown in figure 7.

An immediately improvement to the scheme above is to
realize that there is no need to restrict ourselves to data
available in that particular time step in calculatiég, in
eg. 16. Namely, unlike step 3 above, we can accumulate
“true” data from previous steps in calculatiidg,, which

15
1.
0.5
0 L L L
0 5 10 15 20 25
Figure 3. Plots of time step versus

25 2 Yogico, 0(La, — 1) at different tem-
peratures. (Red dotted line: B~' = 0.2, blue
solid line: 37! =10.6.)

will certainly improve the accuracy of the estimation. To il-
lustrate this idea, at time steépwe defineS’ to be the set
true samples drawn at time ste@nd with the set of true
samples drawn at time step- 1, and we calculaté’,, as:

6. Conclusion

Product Distribution (PD) theory is a recently introduced

~ 11—«

G, = 5] > 6w — 2)G(x) (19)
z’'€S
+% 3 bz —a)Gs(2) . (20)

' E€A;

The results for the bar problem are shown in figure 8.

broad framework for analyzing, controlling, and optimizing
distributed systems [9, 10, 11]. Here we investigate PD the-
ory’s use for adaptive, distributed control of a MAS. Typi-
cally such control is done by having each agent run its own
reinforcement learning algorithm [4, 13, 14, 12].

In this approach the utility function of each agent is
based on the world utilityz(x) mapping the joint move of
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Figure 4. The time series of Lagrangian along
the 20 time steps with sample size L = 100
(curves generated at 3~!' = 0.2). (Red dotted
line: correct WLU, blue solid line: incorrect
WLU.)
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Figure 6. Plots of 3~! vs. the Lagrangian with
various weighing parameters « for the bar
problem. The curves are generated by plot-
ting the Lagrangian at the 20th timestep. (Red
dotted line: no data augmentation, green
dashed line: data aug. with o = 0.3, blue solid
line: data aug. with o = 0.5, black dashed dot-
ted line: data aug. with o =0.7.)
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Figure 5. The time series of Lagrangian along
the 20 time steps with sample size L = 200
(curves generated at 3~! = 0.2). (Red dotted
line: correct WLU, blue solid line: incorrect
WLU.)
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Figure 7. Plots of 3~! vs. the Lagrangian
for the 50-spin model. The curves are gen-
erated by plotting the Lagrangian at the 20th
timestep. (Red dotted line: no data augmen-
tation, blue solid line: data aug. with  « =0.5.)
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Figure 8. Plots of 3~! vs. the Lagrangian
with data accumulation (blue line) and with-
out data accumulation (red dotted line) for
the bar problem. The curves are generated
by plotting the free energies at the 10th
timestep. The initial step sizes are set to be
0.2 times the gradients. Also, the number of
true data |S| is 20, the number of data stored
is 20 and the number of artificial data  |4;] is
40. A total of 80 simulations are performed.
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(5]
(6]
(7]
(8]

9]

(10]

the agentsy € X, to the performance of the overall system.
However in practice the agents in a MAS are bounded ratio-
nal. Moreover the equilibrium they reach will typically in- [12]
volve mixed strategies rather than pure strategies, i.e., they
don't settle on a single point optimizing G(z). This sug-

gests formulating an approach that explicitly accounts for [13]
the bounded rational, mixed strategy character of the agents.

(11]

PD theory directly addresses these issues by casting th
control problem as one of minimizing a Lagrangian of the
joint probablity distribution of the agents. This allows the
equilibrium to be found using gradient descent techniques.
In PD theory, such gradient descent can be done in a dis-
tributed manner.

T4

We present experiments validating PD theory’s predic-
tions for how to speed the convergence of that gradient de-
scent. We then present other experiments validating the use
of PD theory to improve convergence even if one is not al-
lowed to rerun the system (an approach common in RL-
based schemes). These results demonstrate the power of PD
theory for providing a principled way to control a MAS in
a distributed manner.
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