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Abstract

Identfying the relevant information in speech signals is an outstanding prob-
lem in speech and speaker recognition systems. The notion of relevant in-
formation is intimately tied to the goal of the system, e.g. phoneme, word,
speaker, language or gender recognition, among others. Here, we explore a
novel approach to the extraction of relevant information for speaker recog-
nition and for speech recognition using a principled information theoretic
framework - the Information Bottleneck method (IB)[TPB99]. The goal of
this approach is to preserve only the relevant information in the speech sig-
nal about the speaker’s identity or about the phoneme sequence. In this
work, we focus on two specific cases of IB - the Gaussian Information Bot-
tleneck (GIB) [CGTWO3] and the Agglomerative Information Bottleneck
(AIB) [ST00a]. We demonstrate that significantly smaller representations
of the signal can be obtained that still capture most of the relevant informa-
tion about phonemes or speakers. By applying GIB for the speaker recog-
nition task, using the NIST SRE dataset, we were able to boost recognition
performance significantly. The information curve enables us to quantify the
tradeoff between relevant and irrelevant information and thus the difficulty
of the task. Using the Information Bottleneck method seems to have signif-
icant implications for building more efficient speech and speaker recognition
systems.
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Chapter 1

Introduction

Speech recognition aims at extracting relevant features of a spoken conver-
sation. These features may consist of the speaker identity, the language, the
words spoken or others. The notion that is usually directing those systems is
the generative notion. According to the generative notion an effort is made
to build a model that explains the generation process of the signal.

In order to describe the speech recognition challenges more profoundly and
to better understand the use of generative algorithm in speech recognition.
I will first divide them into two subgroups. The first subgroup is the ”sta-
tionary challenges” and the second group is the ”transient challenges”. The
term ”stationary challenges” refers to detection or identification of an aspect
of a call that usually does not change throughout a conversion. Language
identification, speaker recognition and gender recognition are good examples
of members of that group. The language that is used in a conversion can be
changed from one language to another; however that is rarely the case. In
most of the conversions only a single language is used. The same holds for
the speakers’ identities and their gender. The second subgroup, the ”tran-
sient challenges”, involve the detection of aspects of the voice signal that
change rapidly, aspects such as the words spoken. That subgroup is made
out of a diverse set of challenges. Challenges that start from the simplest
of tasks the VAD - voice activity detection and end at the crown jewel of
speech recognition LVCSR Large Vocabulary Continuous Speech Recog-
nition. (The VAD task is usually being referred as a simple one; however
in the present of colored noise and in low SNR (Signal to Noise Ratio) that
task become much more complicated)

We continue by deepening our understanding in the ”stationary challenges”
subgroup. The aspects of a conversion that are part of ”stationary chal-



lenges” subgroup are usually of secondary importance (The speaker usually
unintendedly added those aspects to a conversion). Therefore in order to
tackle those aspects, one needs to overcome the main source of information
in a conversation, the words that were pronounced in it. The commonly
used method to achieve that word equalization effect is by apply a Bayesian
generative model the GMM (Gaussian Mixture Model) [RQDO00]. That ap-
proach tackles the equalization effect in an implicit manner. According to
it, a conversion is sliced into small segments. Each audio segment is trans-
formed into a point in a high dimensional space. Those points in their turn
are treated as a set of i.i.d points. According to the GMM approach, each
point is drawn from one of several possible Gaussian distribution. Each of
those Gaussian distribution has a different prior weight. All of the men-
tioned above is formalized in the following equation.

pop = I[Pl (1.1)
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Intuitively, each Gaussian can be seen as representing a part of a phoneme
in an implicit manner. The GMM algorithm which is the most common
generative algorithm in the ”stationary challenges” subgroup, is presented
in the last equation.

Dealing with challenges from the second subgroup of the ”transient chal-
lenges” is usually referred to as a much more complicated and diverse task.
In order to tackle it, a variety of generative models and algorithms is used.
We will address LVCSR framework as an example for the level of complica-
tion those tasks have and as an example to the generative model associated
with it. The LVCSR challenge is considered as more complicated one, since
in addition to the classification of an event, a detection of the location in
the ausio segment is needed as well.

The speech signal has several sources of information. Each source of in-
formation represents a different level of the human understanding process.
LVCSR system takes advantage of all of those sources in order to improve
recognition accuracy. An even better results are achieved by using those
sources simultaneously. Those sources can fell under main three categories:

e Acoustic Model That model is the lowest level model among the three
models. That model matches between a vowel or a consonant and



the sounds associated with them. Unfortunately, that model is not
accurate enough to provide us with a reasonable level of recognition.

e Dictionary the second source of information handles the construction
of worlds from their basic components (phoneme - vowels and conso-
nants). Each word is represented by the list of phonemes that is used
in its pronunciation. Each dialect has different dictionary associated
with it and even some of the words have several pronunciations within
the same dictionary.

e Language Model Some words have the tendency to follow other words.
Understanding and modeling the relations between words fell under
the language model responsibilities. One should remember that the
language model changes among different dialect and even among dif-
ferent persons.

The most used generative method to model the acoustic level information is
the Hidden Markov Model (HHM) [Rab89]. According to the HMM frame-
work, a model is built for each phoneme. An HMM model assumes that
each phoneme is made out of several stationary states. Each of those states
has a distinct signature in the acoustic space, The observation associated
with that state are located in a small area in the feature space. In addition,
the probability of moving from one state to another is modeled by a Markov
chain. The HMM framework gives us an elegant solution for three interest-
ing questions:

e Efficient likelihood estimation question How do we estimate the like-
lihood of a set of observation O = oq,...,or for a given model A
- P(O|X). Lets recall that in the transient challenges the i.i.d as-
sumption does not hold and therefore it is possible that P (O|\) #

TP (0i]).

e Optimal word sequence How do we find the optimal word sequence
W = wq,...,wy for a given set of observation O = o1,...,o0r and a

model \ - argmaz,, P (w1, ..., wn|O,N)

e Training question How do we estimate correctly the model parame-
ters? argmaxy P (O|\)

Another limitation that LVCSR system faces is the real time factor. Slower
then linear algorithms might prove themselves unpractical. Even maintain-
ing linear time demands O (¢) is not enough. The linear factor plays a



significant role as well. A great deal of research is being performed in order
to reduce the real time demand. That kind of research involves the entire
system. Starting from method to lower the feature space dimension, throw
pruning unlikely paths in the Viterby Table and ending at a better language
model constrains

Over the last paragraphs we have reviewed the work done using generative
approach in speech recognition. We have seen it used in a wide variety of
transient and stationary tasks. Although it is the most used method in
speech recognition, that approach has two main drawbacks. The first draw-
back is the model itself. The generative process that is described is not
the real one, it is only a model and therefore it is suitable only up to a
certain amount. The second drawback is the model goal. The model goal
is to explain the generation process of a signal, and not to discriminate be-
tween two different signals. The Information Bottleneck (IB) method is a
novel approach to tackle those drawbacks [TPB99]. The Information Bot-
tleneck method uses the mutual information with the classification targets
as a guideline to the improve detection and gain discriminate capabilities.
This allows flexibility by tailoring the model or features to the actual task
at hand, as the parts of the speech which are indicative of the speaker are
not necessarily the parts indicative of the language or content.

In chapter 2 we outline the Information Bottleneck method and demon-
strate two commonly used algorithms: Agglomerative Information Bottle-
neck, and Gaussian Information Bottleneck. In the current work we have
decided to focus on two derivatives of the information bottleneck method.
These derivatives are quite different from one another. They can be seen
as the two ends of a broad variety of spectrum of derivatives. By the time
that the first derivative (AIB) handles a discrete feature space the second
derivative (GIB) handles a continuous feature space. One of our goals in
this work is to demonstrate the vast number of opportunities that the infor-
mation bottleneck can provide us with. In this work we decided to focus on
two different stages in two different applications, Feature extraction stage
in the speech recognition application and the supervector stage in speaker
recognition. Chapter 3 describes the feature extraction commonly used in
speech recognition. Chapter 4 describes the steps in speaker recognition
Gaussian Mixture Model, Score Normalization and Supervector/Test Utter-
ance Parameterization. In Chapter 5 we describe a novel application of the
Information Bottleneck method for the vector quantization step in the fea-
ture extraction. Theoretically speaking it looks like each application (Lan-
guage Identification, Gender Identification, Speaker Recognition and Speech
Recognition) should have a different set of features. However, in reality, the



feature extraction stage is almost identical for all applications. Chapter 6
applies the Information Bottleneck for speaker recognition. In one of the
last stages of the speaker identification process, each call is mapped into
a single point in a high dimensional Euclidean space. During that stage a
familiar problem arise, high dimensional data on one side and small number
of observation on the other side. One of the methods to tackle the issue
is to reduce the observation space. In this chapter we describe the dimen-
sion reduction method performed by the Gaussian Information Bottleneck.
Chapter 7 summarizes the results and proposes future directions in the ap-
plication of IB to speech recognition. The IB can be applied in all stages of
the speech and speaker recognition tasks. In that chapter we have suggested
ways to integrate the IB into all stages of the speech recognition application.
Integration can be preformed from the first stage of the feature extraction,
through the acoustic model to the language model.



Chapter 2

Information Bottleneck
Method

Before we describe the Information bottleneck Method, we will start by
introducing the notion of sufficient statistics and relevance. Many of the
machine learning tasks suffer from a significant amount of data in each ob-
servation. These tasks are complicated to learn since it is hard to make the
right deductions in a high dimensional space. One way to tackle this issue
is by using a large training set. Another way is to reduce the dimension
of each observation. Instead of using the observation as is, a representative
of the observation is used. This representative is known as statistic. An
example of a statistic is the number of heads in a coin toss sequence of N
tosses. If one aims at estimating the ’head’ probability of a coin, one does
not need to use the entire sequence. An estimate can be made as the num-
ber of heads divided by the total number of tosses. In this example the
estimation will not be improved by using the entire data-set. In such cases
where the representative holds all the information for the task at hand the
statistic is known as a sufficient statistic.

Till now we have described in general the notion of ”sufficient statistic”. In
the following paragraph we are going to formalize it. We shall denote our
signal z€ X, in the current work our signal is the speech signal or a trans-
formation of that signal. Our goal signal will be denoted by y€Y. In the
speech recognition case y might be the speaker identity or the words that
were spoken. Finally we will denote our statistic by . An ideal Z is one
that contains all the relevant information and only the relevant information.
In the case of the speech signal for example, the commonly used vocoders
reach a rate of 5-12Kb per second (In this case that is our X). This rate



is achieved by extracting features that are correlated to the position of the
vocal tract and the vocal cords. By extracting that information we are able
to reconstruct the original signal quite accurately (from the listener point of
view) and thus preserve all the information that a listener needs. However
if our goal is not to reconstruct the signal but to preserve the information
about the word sequence (this is our Y') it might be possible that a better
compression exists, an & that is sufficient statistics of z for the sequence y.
Intuitively, in a second of audio there are about three words and decoding
them require significantly less space.

We argued that an ideal Z is one that contains all the relevant information
and only the relevant information. Such # are hard to find, and a softer
version of our demand must be applied - ”"Finding % that contains as much
as possible relevant information and as least as possible irrelevant infor-
mation”. Intuitively speaking, all the information can be seen as the sum
of the relevant information and the irrelevant information. Therefore the
former demand is identical to - "Finding & that contains as much as possi-
ble relevant information and as least as possible information”.

At first lets formalize the second part of the phrase ” as least as possible
information ”. Since & is produced from x (x — %), the amount of informa-
tion of Z is the amount of information of x that exists in it. The amount of
information that a random variable has on another one is known as the mu-
tual information between the two and is labeled as I [ X; X). This can be

easily understood if we think about the mapping from z to Z. The volume
of elements of  is 27(*) where H (z) is the entropy of z and is defined as
followed.

H(X)= —ZfeXP (2)logP () (2.1)

For a specific value of Z, the volume of elements of 2 that are mapped to it
is 2H(X18=X) where H (X |2 =X ) is defined as follows

H <X|a: - X) ==Y P(ali)logP (x]2) (2.2)

By taking the weighted average of the former value we get the average
volume of z that are mapped to an element of Z

H(x|X) = > P H(X|i=X) (2.3)
- _Z:EGXP (%) ZweXP (z|2)logP (x|Z)
— _ZjeszeXP (z,2)logP (z|%)
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The difference between the entropy of x with out knowing z and the entropy
of x when Z is known, is a lower bound on the amount of information in Z.

This value is known as I (X ; X ) the mutual information between x and Z.

I (X; X) —H(X)-H (X|X') (2.4)

We have so far addressed the second part of the phrase. Lets continue by
addressing the first part of the phrase - "Finding & that contains as much
as possible relevant information”.

One approach to define relevance of variable z is by comparing it to the
variable z, that & was generated from. The notion behind this approach is
that since x contain relevant information and since & was generated from zx,
I can’t posses more information then z posses. Therefore a good estimation
to the amount of relevant information Z posses can be achieved by using
a specific kind of distance measure between Z and z. Lets denote that
distance measure as d (z, z) and the total distance between all the pairs of
and & as ). x> ,ex P (x,2)d (x,2). Thus our goal of preserving relevant
information is equivalent to minimizing the distance according to d between
z and x.

By joining the two parts of our phrase we formalize our goal as can be seen
in the following equation.

R (D) = minp(gja):5, o5, e x Plad)d(e,a)<D] (X;X> (2.5)

This approach is known as the ”Rate Distortion Theory” [CT91] and it suf-
fers from a significant drawback: defining the right distance measure is an
extremely complicated task.

A second approach measures ’s relevant information directly and empiri-
cally . Unlike the first approach that compares Z to z, in that approach we
will compare & to y, the relevant information itself. The amount of informa-
tion that & has on y is [ (X' ; Y) the mutual information between the two.

Equation 2.5 can be rephrased as follows:

R(Ip) = minP(:f:|x):I(X;Y)>IoI (X;X> (26)

This equation can be change by using Lagrange Multipliers where ( is a
tradeoff parameter.

L[P (i) =1 (X; X) — I (X Y) (2.7)



This variational principle is known as the ”Information Bottleneck Princi-
ple” [TPB99]( That principle being referred as the ”Information Bottleneck
Method” as well). It has been succesfully applied to adress a wide verity of
problems [ST00b] [SST*02]. That approach has some significant advantages
over the Rate Distortion approach. The first and most important one is that
in the information bottleneck method approach, one doesn’t need to define
the distance measure, the empirical data does that for him. Another advan-
tage lies in the variable we are conducting the comparison with. Instead of
comparing Z to x, hoping for the best, in the information bottleneck method
approach we are comparing to y the relevant data itself.

The Information Bottleneck Method has many specific cases and approxi-
mations. In the rest of this section we will address two specific cases. Those
two cases were picked in order to demonstrate the two sides of a broad range
of information bottleneck derivatives. The first case that we will use is the
Agglomerative Information Bottleneck (or AIB in short) [ST00a].The AIB
deals with a discrete space observation set and is based on a greedy ap-
proximation. Our second case is the Gaussian Information Bottleneck (or
GIB in short) [CGTWO03]. Unlike the AIB, the GIB deals with a continuous
observation space in which all the variables are Gaussian variables.

2.1 Agglomerative Information Bottleneck (AIB)

A greedy approximation to the above optimization problem was introduced
in [ST00a] . This is done using an agglomerative greedy hierarchical clus-
tering algorithm which merges = points that result in the smallest loss of
mutual information about Y. The algorithm starts with a trivial partition of
singleton clusters where each element of the data X is in its own cluster (we
denote the cluster set by X ). Each cluster induces a conditional probability
distribution on the relevant variable p (y|Z;). At each step of the algorithm
we merge two conditional distributions in the current partition into a single
distribution in a way that locally minimizes the loss of mutual information
on the relevant variable Y. Lets denote the two clusters that were merged

10



by ¢ and j. The new cluster that emerges is denoted by k.

min AT (Y; X) -y (Y; Xbef 0’"6) .y (Y; Xof te’") - (28
Abefore
- Zp (y a}l?ef‘”e> log P <y’ i
* ~before
yey p (wl ) P(y)

€T
Abefore
+ ZP (y’ J ) logp <jbefore

yey

_ Zp (y wafter) log
>k (Aafter
plz

yey

~before

~before ~before p <y|xz )

= (#77) X (i) tog )
p

yey

p <y| i
~b ~b J
+p <:cjefore) E P (y|xjefore) log

o ()

The information loss in merging the distributions p (y|#;) and p(y|#;) is
given by the Jensen-Shannon divergence [Lin91] between the distributions:

JSx p (yl2:) llp (yl25)] = (2.9)
miDkr [p (y|2:) ||mip (y|2:) + m5p (y|25)] +
miDrcr [p (yla5) |[mip (y|2:) + mip (yl25)]
where Dgr|p, ¢] is the Kullback Leibler divergence:
Dicr [pllg) =) p(x) log (2.10)

and m; = ——E& () ) for each . This greedy merging yields hierarchical

p(2:)+p(2;
clusters that provide a simple approximation to the optimal solution of the

IB problem in many cases. Throughout the merges we monitor the amount
of information preserved by X clusters about Y 1 (X' ; Y) and compare it

to the original value of I (X;Y"). This way we can stop the merging when
we reach an acceptable level of relative information loss.

11



2.2 Gaussian Information Bottleneck (GIB)

In the special case that X and Y are jointly continuous multivariate Gaus-
sian the IB tradeoff takes an especially convenient form, developed in [CGTWO03].
In this case, we seek a reduced dimensional representation 7" of the original
variable X. We start the description of GIB with a few basic definitions. For
two continuous random variables, X and Y, we will denote the covariance
matrices by ¥, and ¥, respectively. The cross covariance matrices of X and

Y will be denoted by ¥, and X¥,, , and the conditional covariance matrix
will denoted by X defined as follows:

Saly = S — SayS  Tya (2.11)

zly

Solving the information bottleneck for general continuous distributions is
complicated and involves an iterative solution. However, for the Gaussian
case there is an elegant analytic solution to equation (2.7 ) [CGTWO3]:

ming y, L = I (X;T) - BI(T;Y) (2.12)

In this case, the optimal representation 7T, is the projection of X, as can be
seen in the following eqution. Where ¢ is an independent component.

T=AX +¢; (2.13)
§ N (0,%)

By replacing each of the mutual information components with its definition
2.4, the original equation can be transformed to the following form:

L =h(T) - h(T|X) - Bh(T) — Bh(T|Y) (2.14)

By substituting the entropy with its explicit form for Gaussian variable
h(X) = 3log ((27Te)d |Z$|>, the equation can be simplified yet further:

L = (1-p)log (JAZ, AT + %) (2.15)

— log (|2§|) + (log (|A2x|yAT + E&l)
The optimal representation 7', obtained as the solution of (2.15) is the pro-
jection of X on eigenvectors of the conditional covariance matrix 3,3, L

The selected eigenvectors v ... vy and their relative weights are determined
by the tradeoff parameter 3, as:

[07;...;07] 0<p<pf
[all/f;OT; .. ;OT] e <pB<py
A= [aluf; aovd ;075 . ;OT] ﬂgc <B< ﬂgc (2.16)
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The left eigenvectors are sorted according to their eigenvalues in an ascend-
ing order. The scalars a’s and the critical 3’s, where the dimensionality of
the projection increases, are determined by the eigenvalues and eigenvectors
as follows:

1
e _ 2.17
Bge(l—x)—1
- A Y 2.1
i )\ﬂ’i ( 8)
ri = vl (2.19)

Where A are the eigenvalues of the matrix X, %, .

13



Chapter 3

Speech Recognition

In the first part of this chapter we describe the human Speech Generation
Process. In the second part we explore features used to represent speech
and understand the motivation behind them.

3.1 Speech Generation Process

An intuitive way to understand the human speech production process is to
look at it as if it were a machine transmitting a signal. Both of them have
the same goal, transmitting a signal that contains some relevant information.
In the current paragraph we will review the human production mechanism.
People produce speech in three major stages:

e At the first stage the air is exhaled from the lungs toward the vocal
cords. During this stage the signal gains its energy. However, currently
the energy is scattered across a wide range of frequencies. Thus, if it
were transmitted, its range would be quite small.

e The human production process overcomes this problem by using the
vocal cords (The vocal cords are not always used in the process). By
passing through the vocal cords the signal energy is centralized in a
small set of energy bands. The vocal cords are made of two leafs that
are located in the Larynx and are closing it almost entirely. The flow
of air through the cords is causing it to vibrate in a specific frequency.
This frequency is known as the pitch frequency or simply as Fy. Ac-
tually the cords don’t vibrate at a single frequency, but rather in all
of the pitch harmonies as well.

14



e Up to now we have produced what is known as a carrier signal. During
the third stage the information that we want to transmit is added. For
each phoneme, a different signal envelope is used. The signal envelope
is determined by a set of all pole mechanical filters through which
the signal passes. The resonance frequencies of those filters are knows
as the Formant frequencies (usually there are up to four formants
Fy, Fy, F5, Fy). Those filters are the vocal tract, the nasal and oral
cavities. Using the teeth, tongue and lips we change the structure of
the cavities causing them to resonate in different frequency each time
and thus achieve a different envelope.

By looking at the above transcribed mechanism it is easy to understand the
goal of the front end stage of a speech recognition algorithm: slice the signal
into small windows. For each window estimate correctly its envelope.

The channel between the speaker and listener changes the signal as well. The
effect of that channel is also modeled as a filter. However whereas the filters
of the vocal tract change rapidly as we speak, the channel filter remains
unchanged throughout a conversation. All the stages that we described
above can be described formally by the following equation:

Ppitch (eiw) Hyocal tract (eiw) H hannet (eiw) =S (eiw) (31)

However, the rate of changing of the vocal tract filter is much higher than
the channel changing rate. Thus we usually model the channel filter as a
constant filter. Where S is the Fourier transform of the signal. It is impor-
tant to mention that the described speech production process is relevant for
the Indo-European languages. In other languages, like Mandarin, the pitch
plays a much more significant part and in some African languages informa-
tion is transmitted in the inhalation stage as well.

3.2 Feature Extraction

The goal of the feature extraction stage is to estimate the envelope of the
signal. As mentioned in the previous paragraph, the signal should be sliced
to small frames and the envelope of each frame should be estimated.

Choosing the optimal frame size entails a tradeoff. The longer the frame
is, the more accurate is the signal envelope estimation. However, speech
signals are generally not stationary, a characteristic which limits the size of
the frame. A rule of thumb says that each third of a phone can be treated

15
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‘ A — Frame Partition ‘

‘ B - Hamming ‘
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‘ D — Mel Scale + log ‘
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‘ G - differentiation ‘

Figure 3.1: The feature extraction process.

as being stationary. By combining that with the average phone length, a
20msec frame is a reasonable choice. In order to overcome uncertainty in
the phone actual starting point, a 50 percent overlap between two adjacent
frames is used.

The feature estimation process consists of seven stages (figure 3.1). Some
of the stages use information only from the current frame and some from
adjacent frames as well. The first stage of the frame processing consists of
multiplying the signal with a Hamming window. This is done to prevent
leakage [0S99]. Only now can we achieve our first estimate of the signal
spectrum and its envelope using the FFT algorithm. However estimating
the envelope at the current stage suffers from a couple of disadvantages.
First, it is not accurate and second, its dimension it extremely high.

A commonly used adjustment to the FF'T estimation is known as melody
scale [Sht00] or mel-scale in short. It is known that people are less sensitive
to change in frequency at the high frequency range and much more sensitive
to change in frequency at the low frequency range. This variation in sensi-
tivity is mimicked by a filter bank. The bandwidth of a filter broadens as its
middle frequency increases. Those filters have triangle shape as can be seen
in figure 3.2. By using this technique, we are able to gain two advantages.
The first is a scale that mimics the human ear and the second one is the
signal dimension reduction. The dimension is reduced from the FFT size
to a new dimension, the number of filters. Usually the signal dimension is
reduced from about a hundred to about a twenty.

16
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Figure 3.2: Mel Scale Filter Bank. Each Triangle represents a single filter.

The commonly used distance measure in speech recognition is the Cepstral
Distance. It measures the distance between two frames and is defined as
the Euclidian distance between the Cepstral coefficients of those frames. To
better understand the Cepstral Coeflicients we will first define a distance
measure between the signals of two frames. Here, instead of using the power
spectrum, we are using its logarithm. The distance measure between two
frames is:

& = = [ pogls (¢9) | <151 (¥ IPds (32)

Were the representation of each frames is log |S (ei“’) | According to Parse-
val theorem the signal can be represented as the following sum and that
representation is unitary. The ¢, are known as the Cepstral coefficients.

log S (e™) | = Z cpe (3.3)

n=—oo
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Lets recall one of the property of an inner product space.
1 [7 . .
— log |S () |e™"“" " dw =
5 | logls ()]

1M & _. »
=5 ( Z cpe “"") e “Mdw = ¢y, (3.4)
—T \n=-—0c0

1 i iwm I m=0

— e “Mdw =

2r ), { 0 m#0
By combining the last three equations it can be seen that our goal is equiv-
alent to the Euclidian distance in the Cepstral space.

1 (7 ) L
& = — [ |log|S(e“)|—1log|S (e“)||*dw = (3.5)

2 J_,
1 /= ) > )

— 2_ | Z cne—zwn_ Z C/ne—zwn|2dw:
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1 M :

= -/ | Y (en—én) e ™" Pdw =
A
1 [7 ° . © .

= o ( > <cn—én>e"‘”"> ( > <cm—ém>ewm> dw =
TJ-m \n="oo m=—o00

e} e}

DD (<cn—c'n><cm—em> | eiw<n—m>dw)=

=—00Mm=—00 -n

= Z (Cn_én)2
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Let’s look once again at our representation of a frame (3.1) using the cepstral
coefficients.

log S (e™) | = (3.6)
= log |Ppitch (6 ) Hyocal tract (eiw) H hannet (eiw) | =
= log |Ppitch (eiw) | + log | Hyocat tract (eiw) | + log | Hchannel (eiw) |

w

Each of these parts has a different behavior. The pitch, log |Ppicn (ei“’) l,
has most of its energy in the high Cepstral coefficients. These coefficients
represent the part of the signal that has impressive harmonies. These har-
monies are the pitch harmonies.
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On the other hand, the vocal tract, log|Hyocal tract (e“") |, has most of its
energy in the low coeflicients. These coefficients represent the part of the
signal that doesn’t have harmonies. In the vocal tract case, the lack of
harmonies usually characterizes the formants and they in their turn are re-
sponsible for the envelope. Since our goal was to estimate the envelope,
we achieve this by selecting only the lower coefficients. These coefficients
contain the information about the formants without information about the
pitch. Usually about ten to twenty coefficients are used.

Unlike the two former components of the signal, the channel component,
log |H channet (ei‘”) |, is spread across all the Cepstrum coefficients. There-
fore we can’t eliminate its effect by choosing a subset of the Cepstrum coef-
ficients. However, since the channel filter is constant throughout the speech
segment, by removing the mean of each coefficient its effect is eliminated.
That technique is known as Cepstrum Mean Subtraction (CMS in short).
The analysis so far applied to vowels; however for consonants things are a
bit different. While as vowels tend to be stationary, consonants have a tran-
sient nature. To overcome this, in addition to the Cepstrum coefficients,
their derivatives are used as well. Speech recognition features fall under two
main categories, discrete features and continuous ones. The features we have
been considering so far have been continuous features. Transforming them
into discrete features is done by using a Vector Quantization algorithm [ref].
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Chapter 4

Speaker Recognition

Most state of the art speaker recognition systems are made of three main
stages, a feature extraction stage and a Bayesian model stage followed by a
decision stage. The first stage, the feature extraction stage, also known as
the front end stage, was described in the previous chapter. During that stage
the relevant information is extracted from the raw speech samples. Extrac-
tion of relevant features is known to have a significant impact on the system
performance. The output of the first stage is a set of ¢ points in a high
n-dimensional space O = {o1,...,0;} 0; € R". Most speaker recognition
systems extract the first 10-20 coefficients of the Mel Frequency Cepstral
transform and its first and second derivatives.

The second stage is the Bayesian model stage. During that stage, the like-
lihood of the input features is estimated p (z|\), where A denotes a speaker
model. The majority of the systems assume a Gaussian Mixture Model
(GMM) when estimating the likelihood. The GMM is explained in section
4.1. The output of the second stage, the likelihood, needs to be normalized.
There is a variety of normalization techniques for the different aspects of the
calls, aspects varying from speaker and segment through channel and noise
level to hand set and language. Only after the different normalizations have
been performed can the decision take place. Normalization and decision are
the last steps and they are reviewed in section 4.2.

4.1 Gaussian Mixture Model
The Gaussian Mixture Model or GMM in short is a Bayesian Model; as such

it estimates the probability of a set of observation O = {o1,...,or} given a
model A. Under this model we assume that the feature space distribution is
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stationary for all the frames.
P (O|\) = H P (05| \) (4.1)

The GMM probability distribution function is the weighted sum of a set of
G Gaussian distribution functions. Intuitively, this kind of distribution is
relevant for speaker recognition. Each Gaussian can be seen as representing
a specific speech event (a part of phoneme for example).

G
P (0i|\) = Zwg;e*%(orug)TEEI(orug) (4.2)

=1 yf2rn s,

In order to reduce the number of model parameters a diagonal covariance
matrix is assumed.

2
_1xn (Oiyj_“g,j)
2 2uj=1 22 .
(0 Wy ———¢€ 95 .
) g 4.3

g=1 \/27r"|Zg|_

Thus the model parameters are wyg, yi4,,04,;. The goal is argmazP (O|\)
Estimating the model tends to be a complicated task. First of all there is
no analytic solution therefore the EM procedure is used. In addition since
data is missing, MAP-estimation is used [RR95].

4.2 Score Normalization

One can model the speech signal as a multiplexing of many signals that
originated from different sources like the channel or handset for example.
Therefore, the likelihood of segments is affected by these sources, and not
solely from the speaker identity. In order to eliminate the effect of these
sources, a normalization procedure is applied. The simple normalization
procedure is the background normalization. The score of the speaker sp on
a segment seg is set to the likelihood ratio between the speaker model and
a single model trained from a large number of speakers, the former model is
known as background model (bkg in short).
B P (segilAsp) B
Score (sp|seg) log P (segi ong) (4.4)
= log P (segi|\sp) — log P (segi|Apig)
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T Norm is an extension of the BKG normalization. According to this ap-
proach the likelihood of the target speaker is normalized by the mean and
standard deviation of the likelihoods of reference models. Each of those
models is trained from a single speaker.

SP
Scorer (sp|seg) = log P (segi|\sp) — ijo log P (segi|Asp;) (4.5)

While as the last two techniques are for segment likelihood normalization,
The Z Norm is for speaker likelihood normalization. It was observed that the
models of some speakers are more likely than the models of other speakers. A
method to over come this issue is by normalizing the likelihood of a speaker
with its likelihood on other segments. A mean and standard deviation is
applied.

SEG
Scorey (splseg) = log P (segi|Asp) — Zizo log P (segi|Asp) (4.6)

In addition to these three procedures there are quite a significant amount
of normalization procedures. However, these three procedures are the most
commonly used and they are the most significant ones from the performance
point of view.

4.3 Supervector / Test Utterance Parameteriza-
tion (TUP) model

The field of speaker recognition has developed significantly over the last few
years. A most significant improvement was the GMM supervectors (also
known as Test Utterance Parameterization TUP [ABA04]), which is one of
the methods that enables us to represent a speaker as a point in a high di-
mensional Euclidean space [CCB06]. Unfortunately, the estimation of this
representation tends to be very noisy, and it is desirable to eliminate the
noise while preserving the relevant information about the speaker. This can
be achieved by dimension reduction[AIB05][KBODO05].

Our baseline system is based on GMM supervectors, which are the exten-
sion of the commonly used GMM-UBM (Gaussian Mixture Model Universal
Background Model) approach [RQDO00]. Unlike the original approach, there
is a full symmetry between the train and test segments. Instead of evaluat-
ing the GMM distributions just for the train segments, and calculating the
likelihood of the test segments, we estimate GMMs for both. The likelihood
is approximated by the KL distance between the two models, without using

22



the samples directly. To calculate the KL distance efficiently, each GMM is
transformed into a point in a high-dimensional space (the dimension is the
product of the number of Gaussians and the feature dimension) as in Eq.
4.7:

Lg-d+j = vwg@ (4.7)

Where d is the feature space dimension, ¢ indexes the Gaussians and j
indexes the dimension. In this space, the Euclidean distance between two
points provides a good approximation to the KL distance between the two
original GMMs.

The front end of our system is based on MFCC feature extraction [ETS]. It
extracts 13 cepstral coefficients and their first derivatives every 10ms. We
are estimating the coefficient on a window of 25ms. The selection of the
relevant frames is done by energy-based Voice Activity Detection (VAD).
Mean and variance normalization is applied to the features. We used a
single Universal Background Model (UBM); we didn’t train different UBMs
for different channels or different handsets. For normalization purposes we
used two types of score normalizations: T-norm [ACLT00] and Z-norm.
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Chapter 5

AIB oriented VQ

We apply the Information Bottleneck method to a commonly used repre-
sentation of speech signals the Mel-cepstrum [Sht00]. We perform a vector
quantization of the mel-cepstrum feature set, and use the resulting quanti-
zation as our initial data-space. We then extract compact representations
of the data-space that preserve information about our target variables via
clusters obtained through the agglomerative information bottleneck proce-
dure (AIB) [ST00a]. This procedure takes into account the ultimate goal
of recognition by iteratively merging cluster pairs which lead to the mini-
mal reduction of mutual information with the target variable, phonemes in
one case and speakers identity in the other. We show that this procedure
efficiently preserves the relevant information for either phoneme recognition
or speaker recognition, and makes it possible to use a much smaller repre-
sentation without reducing recognition relevant information. We show that
starting with a higher number of codebook vectors and reducing them using
the AIB preserves significantly more relevant information than starting with
a quantization of the same size. This has obvious implications for designing
efficient speech recognition systems.

5.1 Relevant Speech Quantization

Speech is a complex signal with a high entropy rate. It contains ample in-
formation about the various components of its acoustic structure, such as
the spoken language, specific utterances, identity of the speaker, his/her
physical conditions, mood, etc. Yet most speech processing algorithms em-
ploy standard front-end processing that eliminates much of the entropy of
the signal, but do it in a universal task independent way. Such a repre-
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sentation is bound to contain irrelevant information which thus reduces the
efficiency and performance of the recognizer that follows. It is therefore a
fundamental problem in speech technology to filter out only (or mostly) the
task-relevant components of the signal. This is a difficult problem, as the
relevant acoustic distortion measure is unknown and involves both complex
perceptual and linguistic variables. Our approach to this problem is to uti-
lize the available tagging of the signal (phonemes or speakers) to guide the
selection of its representation.

We begin with the joint representation of the speech signal, denoted by X,
and its relevant labeling signal whether phonemes, speaker identity, or other
attributes denoted here by Y. We then estimate their joint distribution,
P (z,y). The amount of relevant information in X about Y is determined
by Shannons mutual information between the variables I (z;y).

Our goal is to find a compact representation of X, denoted by X , that on
the one hand compresses it by minimizing the mutual information between
them I (x;2) and on the other preserves as much as possible the informa-
tion about Y I (#;y). To this end we minimize the Information-Bottleneck
variational functional,

LIP (i|x)] = I (z;2) — BI (&;y) (5.1)

with respect to the (stochastic) mapping P (Z|x), where (3 is a positive La-
grange multiplier .

5.2 Database and Feature Extraction

Our database was taken from the OGI multi-language phonetically tran-
scribed corpus [MCO92]. We used files from the English story part. The
database included over 100 PCM wave files of different speakers, each about
one minute long. We used the standard Mel-cepstrum speech feature ex-
traction (figure 5.1) [Sht00]. For each file the speech signal was divided into
frames of 20 msec long. Each frame was multiplied by a Hamming window,
and Fourier transformed. The power spectrum coefficients were mel-scaled.
The log-mel-scaled coefficients passed through iDCT and cepstrum mean
subtraction. The resulting features are a set of 16 coefficients of cepstrum
values and their temporal derivative between adjacent frames. Each set of
coefficients is tagged by the label phoneme (Y7) and speaker (Y5).

As the mutual information for the full continuous cepstral space is difficult
to estimate, we performed vector quantization for discretizing the space. We
used a training set taken from the database at different stages of the feature
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Figure 5.1: The feature extraction process.

extraction process to produce codebooks of different sizes, N, which hence-
forth serve as our compressed variable X. We then calculated the empirical
mutual information between the tagged phoneme Y; and the discretized
speech features X.

5.3 Results

Our first interesting observation is that the mutual information of X and
Y7 increases at each stage of the standard feature extraction procedure (as
shown in figure 5.2), despite the fact that each stage reduces entropy and
thus discards information. This can be explained by the facts that first,
the information discarded is less relevant for phoneme identification as it
should be and second, after quantization we are left with a more efficient
representation. This suggests the code-book obtained from the final process-
ing stage, GG, as the best choice of data-space for our relevant compression
procedure.

The application of the agglomerative information bottleneck procedure
leads to the desired result. For a given number of clusters, the amount of
mutual information between the clusters and the target variable Y is much
higher when starting from a larger codebook and then reducing its size using
the AIB algorithm (figure 5.3 ). As an example, the mutual information be-
tween a code book of size N = 256 extracted directly from the vector quan-
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Figure 5.2: The mutual information between the VQ codebook and the
phonemes. Note the monotonic increase of the relevant information along

the stages as well as with the VQ size. Error bars are for 7 cross-validation
batches.
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Figure 5.3: Mutual information between the clusters ( X ) and the phonemes
(Y1) at different stages of the AIB algorithm. Shown are results for N=32,

64, 128, 256, and 512
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Figure 5.4: Mutual information between clusters and phonemes, I (Z;y;)
vs. the mutual information between clusters and speakers I (Z;y2) . Results
shown are for initial data-spaces of sizes N = 1024 and N = 32. The
results shown are for the AIB applied to the phonemes (dashed) and the
AIB applied to the speakers (solid).

tization stage described in section 2.1 is lower than the mutual information
between the target Y and a codebook of size 256 obtained by AIB applied
to an initial data-space of 512 vectors. An important advantage of the IB
algorithm is flexibility in choosing the relevant target. When performing the
IB algorithm for purposes of maximizing the mutual information with the
tagged phoneme Y7 we observe a large range in which the number of clusters
decreases without a considerable decrease in the mutual information about
Y7 (figure 5.4). On the other hand, the mutual information with the speaker
target (Ys) drops rapidly (see figure 5.4). When applying the IB algorithm
with the goal of maximizing the mutual information about the speaker’s
identity Y5, we observe a larger range where I (Z;y2) barely drops, while
I (#;y1) decreases rapidly (figure 5.4). Interestingly, this is more noticeable
when starting from a smaller data-space size N. The IB indeed captures
the relevant information about the target, whether phonemes or speaker, as
it is designed to do. The difference between the phoneme-cluster informa-
tion and the speaker-cluster information is about 50 percent of the mutual
information, which (roughly) predicts a similar improvement in recognition
performance for each task (respectively). Moreover, the analysis of the re-
sulting clusters can identify the speaker vs. phoneme dependent components
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of the Mel-cepstra, identifying them as clearly different components of the
signal.

Table 5.1: Entropies and Mutual Information (bits) for the phonemes and
speakers for the initial size N = 1024 VQ and after applying the AIB algo-
rithms for phonemes and speakers with reduced N = 32 clusters.

Entrophy | VQ 1024 | MI after AIB | MI after AIB

MI to speakers | to Phonemes
Phonemes 3.58 1.33 0.35 0.82
Speaker 4.0 1.08 0.35 0.15
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Chapter 6

GIB oriented Speaker
Recognition

In the previous chapter we demonstrated the advantages of the Information
Bottleneck method for extracting a discrete feature set for speech signals.
We showed that the IB method selects features that encapsulate the relevant
information for the speech property at hand, be it phoneme or speaker recog-
nition. In this chapter we will apply the Information Bottleneck method for
another important step in the speech processing scheme - dimensionality re-
duction of the supervectors in the TUP method. This will be demonstrated
for the problem of speaker recognition.

In chapter 4 we described the TUP procedure, which maps the GMM pa-
rameters to a point in a high dimensional space. In speaker recognition
systems, each speaker is mapped to one point in this space. The ultimate
speaker recognition consists of selecting the GMM point with the smallest
Euclidean distance from the GMM point of the sample. In this chapter we
show that the IB method is very efficient in reducing the dimensionality
of the TUP space. We compare and contrast the GIB solution to another
method for dimensionality reduction - Fisher‘s Linear Discriminant Analysis
(LDA) [DHSO01]. We show that the IB dimensionality reduction increases
the success rate of speaker recognition.

6.1 GIB for speaker recognition

The optimal projection according to the GIB algorithm consists of the eigen-
vectors of the matrix X,, ¥, (equation (2.16)). In our case the X vectors
are the GMM supervectors of the voice segments (a 256*26 dimensional vec-
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tor). The Y vectors are the GMM supervectors of the speakers. The GMM
supervector of a speaker was set to be the average vector of all the segments
that were generated by the speaker:

1 &
Ys = — sti (6.1)
Ng

i=1

ys is the GMM supervector of speaker s

Zg is the GMM supervector of segment 7 of speaker s

ng is the number of segments made by speaker s

It can be seen in the following equation that under these conditions the cross
covariance matrices Xz, X, are equal to the speaker covariance matrix ¥,.

1 SP 1 Ns
_ _ T _
1 SP 1 Ns 1 SP
_ T _ T _
= S—P; (Z/s (n_szx"”)) = S—P;ysys = Ey

i=1
By using the equation (6.2) we can simplify the optimal projection equation.

SalyTr = (B — Tay ¥y ' Tye) X' = (6.3)
= (8 — 5%, '%,) 57t = (B - 5y) 87

Due to the scarcity of training data, a full covariance matrix cannot be
estimated properly. In order to overcome this problem and to simplify the
estimation, we assumed that the two matrices are block-diagonal [NAO6].
This is equivalent to assuming that there is no correlation between values
of x that originate from different cepstral coefficients and no correlation
between an MFCC and its derivative. Therefore, the size of each block was
the number of Gaussians. In addition, we used a fewer Gaussians than the
commonly used 1024 or 2048 Gaussians, specifically 256.

6.2 Comparing the GIB and the LDA algorithms

In the current section, we will compare the LDA method to our current
version of GIB, in which Y (the speaker vector) is defined as the average of
all the segments of the speaker. The goal of LDA is to find the eigenvectors
of the matrix SV_V15 B that have the highest eigenvalues. Sp is the between-
class scatter matrix, and is defined as ¥, . Sy is the within-class scatter
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matrix and we will now prove that it is equal to 3.

L% 1
SPS:1 g

Ns

D

=1

Sw

(ys — 2si) (ys — l’si)T> =
SP Ns
sip ((nis ) (:ESixg;)> - ysysT> =

(6.4)

Thus, the optimal projection according to the LDA algorithm consists of
the eigenvectors of the matrix X, 3 I with the highest eigenvalues.

We have shown in equation 6.3 that in our version of GIB, the goal is to find
the eigenvectors of the matrix ¥, %" V=T1-%,57" that have the smallest

eigenvalues.

Table 6.1: LDA and GIB matrices.

Algorithm Matrix
LDA Z T =
GIB cBTEﬂyZ;l = ~vgT

An eigenvector and its corresponding eigenvalue of the LDA matrix are
denoted by 7,A and those of the GIB matrix are denoted by &, .

GIB: &7%,,5;" ="
5 S @ =@
. —ly =\
LDA: Z$|y2yu = \U

1 N o
Sy (Bz = ypy) 7= A7
(za;zx _ I) 7=\

—

(zg;'yzm) F=(1+\)7
HLA (z;ﬁ/zw) P=7

(6.5)

(6.6)

By placing the eigenvector 7 of the LDA algorithm in the GIB equation, we

get:

IR A |
IR INIEZED ) YN 7 (m

(z
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Therefore any eigenvector of the LDA matrix, is also an eigenvector of
the GIB matrix, with some other eigenvalues. However, since there is a
monotonously decreasing mapping A — (1 + /\)_1 between the eigenvalues,
choosing the largest for LDA, is exactly the same as choosing the smallest
for GIB. Therefore, both methods will select exactly the same eigenvectors
for a given reduced dimension.

6.3 Results

Our experiments were conducted on the male part of the common task
of the NIST SRE 2005. Evaluation of the background model was done
from the male training segments of common task of the NIST SRE 2004
[NIS04][NIS05]. A total of about 250 segments from about 100 different
speakers were used for the background training. The models of the target
speakers were estimated by using MAP adaptation from the single back-
ground model. As was mentioned in chapter 4, in the GMM supervector
approach each of either the train or test segments is represented by a point
in a high dimensional space. This creates an appealing symmetry between
the train set and the test set. Similarly there is now an equivalence between
T -norm and Z -norm, as both normalizations are done in the same space.
All the segments (train and test) of the male part of the common task of the
NIST SRE 2004 were used to compute the T -norm and Z -norm of each
sample. There are about 700 segments that were generated by about 100
different speakers. These segments were used in the evaluation of the three
matrices (Zx,Zy,Eﬂy) as well.

We first conducted three experiments. The first one was a baseline ex-
periment, in which the original representation of the model space was left
untouched, i.e. no dimensionality reduction transformation was applied to
it. In the second and third experiments, the LDA and GIB transformations
were applied respectively to the model space. In both transformations, all
the eigenvectors were used. The results of those experiments can be seen in
figure 6.1 [MDK97]. We performed two additional sets of experiments, one
using the GIB method and the other using LDA. In these experiments, we
measured the degradation in recognition performance due to the reduction
of the number of eigenvectors that were used. The results of these sets of
experiments can be seen in figures 6.2 and 6.3. In figure 6.2 the performance
measure is the equal error rate (EER) and in figure 6.3 the performance is
measured using the detection cost function (DCF). In both figures, the base-
line system always uses the original GMM supervector, without any kind of
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Figure 6.1: DET Curve of three systems: the best GIB system, the best
LDA system and the baseline system
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Figure 6.2: EER vs. the new dimension of each block

dimensionality reduction. Therefore, the x-axis is irrelevant for the baseline,
and it is plotted as a horizontal line for purely aesthetic reasons.

6.4 Information Curve

A better understanding of the recognition process can be gained by ex-
amining the information curve the dependence of the relevant information,
I(T;Y), on the representation complexity I(7'; X). The easier the task - the
steeper this curve. It can be seen that even when using a small dimension
(80), the majority of the information about the speaker can be preserved.
Furthermore, there is a correlation between the mutual information about
the speaker and the detection performance. Still, the fact that there is no
clear knee in the curve means that information on the speaker exists on all
scales and all dimensions.

We demonstrated that the IB method in general [For05] [ST00a] [HT05] and
the GIB method in particular are efficient principled methods for improving
the performance of speaker recognition. The IB, through its discriminative
nature, provides a subspace that contains as much information about the
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Figure 6.3: DCF vs. the new dimension of each block

speaker as possible, while minimizing irrelevant acoustic information. We
also showed that the classical LDA is a special case of GIB, where the rel-
evance variable Y is the average of the X vectors for each speaker. Even
for this simple case, where the two variables (X and Y') are not from truly
different sources, we obtain a significant improvement in performance.
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Chapter 7

Conclusion

In this thesis we demonstrated that using the information bottleneck method
for speech recognition offers an improvement in recognition performance. We
chose two applications at the two ends of the recognition scheme. In the first
application we used AIB to cluster the discrete space of the front end stage
of the speech recognition task. We have shown improvement in preserving
the mutual information between the signal representation and its label, be
it phoneme spoken or speaker identity. In the second application we used
GIB to reduce the dimension of the TUP representation of the continuous
GMM space. We have shown improvement in recognition performance as
measured by EER and contrasted and compared to another dimensionality
reduction method - LDA.
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Chapter 8

Future Work

In this chapter I will discuss different directions in which this work can be
extended. All the directions that will be addressed fall under the LVCSR
(Large Vocabulary Continuous Speech Recognition) framework [WOVY94].
Currently this is considered the most complicated task in speech recogni-
tion. The goal is to recognize the word spoken in spontaneous speech using
a dictionary of tens of thousands of words.

An LVCSR system consists of several components. Each of these compo-
nents is equivalent to a different level of the speech understanding process.
The information bottleneck method can be used to improve the following
components:

e The first component is the feature extraction process. In this thesis
we have used the AIB algorithm for a discrete feature space. However,
state of the art systems use a high dimensional continuous feature
space instead (The cepstrum feature space is commonly used). This
feature space is reduced today by using HLDA (Heteroscedastic Linear
Discriminant Analysis [Gal00]). The IB can become an alternative to
the HLDA.

e Another component in which the IB can contribute significantly is the
phoneme model level. The two commonly used phoneme models are
the left to right HMM model and the left to right with jumps HMM
model [RPKM™05]. In these models the feature space in each state
is modeled by a Gaussian mixture. The parameters of these models
are usually estimated using the maximum likelihood criterion. The
IB can become an alternative discriminative training criterion. Some
models are estimated using discriminative criteria (MCE, MPE, MMI
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[RPKM05]), however the IB may hold advantages over these methods
by facilitating reduction in the number of Gaussians.

e An important part in the training of a speech recognition model is
known as the tying stage. During this stage, models that are similar
are merged to a single model. Here, as in the phoneme model level,
the tying mechanism is based on the maximum likelihood criterion.
The IB can be assessed as an alternative criterion.
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