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We investigate the possibility of evaluating permanents and determinants of matrices by quantum
computation. All current algorithms for the evaluation of the permanent of a real matrix have
exponential time complexity and are known to be in the class P¥F. Any method to evaluate or
approximate the permanent is thus of fundamental interest to complexity theory. Permanents and
determinants of matrices play a basic role in quantum statistical mechanics of identical bosons and

fermions, as the only possible many particle states made of single particle wave functions.

We study a novel many-particle quantum-computational model in which an observable operator can
be constructed, in polynomial-time complexity, to yield the determinant or the permanent of an
arbitrary matrix as its expectation value. Both quantities are estimated, in this model, by quantum
mechanics systems in a polynomial time, using fermions and bosons respectively. It turns out that
the variance of the measurements in a “noise-free case” is zero for the determinant and exponential
(in the rank of the matrix) for the permanent. The intrinsic measurement variance is therefore the
quantum mechanical correspondence to the computational complexity gap.

1 Introduction

Quantum computational models have recently become
important for the theory of computational complexity
when it was shown that factorization can be performed in
a polynomial time by a Quantum Turing machine [7, 6].

An intriguing computational question is naturally
raised when considering quantum statistical mechan-
ics of identical particles. By Pauli’s “spin-statistics”
theorem[5], the quantum state of identical particles is in
general either symmetric with respect to exchange of par-
ticles for integer spin particles (bosons), or anti-symmetric
for half-integer spin particles (fermions). The only possi-
ble completely symmetric or anti-symmetric combinations
of general single particle functions are the permanent or
determinant of those functions, respectively.

Whereas in QM the difference between permanents and
determinants simply corresponds to the choice between
the quantum statistics of bosons and fermions, determi-
nants and permanents have very different computational
complexity by all known algorithm. While the determi-
nant can be easily evaluated in polynomial time in the size
of the matrix (e.g. by diagonalization), no such polyno-
mial time algorithm is known for the permanent. More-
over, there is no known algorithm for the evaluation of
the permanent that can avoid the summation over expo-
nential many terms, 1.e. the permanent is known to be
in the complexity class # P-complete. In this paper we
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would like to understand the quantum mechanical cor-
respondence to this dramatic computational complexity
gap. We approach this problem by considering many par-
ticle quantum observable that correspond to the determi-
nant of a given matrix in the fermion case, and to the
permanent of the matrix in the boson case.

The permanent of a matrix A = [a;;] is defined as:
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per[A] =

where the set of indices {7y ...4,} denotes the set of all
the permutations of 1...n [2]. The determinant is defined
by the same sum of the permutations, where in addition
each odd permutation is taken with a negative sign.

Permanents occur naturally in various counting prob-
lems in combinatorics[4], graph theory[l], and logic. If
there was a way to evaluate, or even to approximate per-
manents in a polynomial time, then every P#¥ (and thus
every NP-complete) problem could have been evaluated
in polynomial time [8] [3]. Tt can be shown that even
the approximation of the log of the permanent is a hard
problem[9]. The key technical reason for that computa-
tional difference between permanents and determinants is
that determinants are invariants under similarity trans-
formations of the matrix, while no such simple invariants
are known for the permanent. So diagonalization of the
matrix or similar transformations can not help for perma-
nents.

Determinants and permanents are fundamental func-



tions in quantum statistics of identical particles, as de-
scribed below.

e The wave-function of indistinguishable fermions can
be written in the Slater-determinant form. Namely,
if there are n fermions in n single-particles states,

|1} ...|n), than the n-Particles wave-function is given
by,
(Wa(l...n)) = —[|1 12,2)...n,n)
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The sum is taken over all the permutationsof 1...n
, with parity m, where the first index denote the state
and the second denote particles (7; is the permutation
index).

e Particles with an integer spin (“bosons”) obey the
the many-particles wave-
function is completely symmetric under exchange of
any two particles,

Bose-Einstein statistics:
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In what follows we address two natural questions: (a) is
there a quantum mechanical observable (or measurement)
that can be constructed in order to evaluate the perma-
nent or determinant of an arbitrary matrix; (b) what is
the difference between the evaluation of determinants and
permanents from the quantum computation perspective.

2 Measuring the permanent of an
arbitrary Hermitian matrix

Let A = [a;;] denote the Hermitian matrix whose perma-
nent is required. If A is not Hermitian it can always be
installed into an Hermitian matrix A of the form,

A=( 4 b)) (1)

and for this matrix, per[A] = per[A])%. So every perma-
nent of a real matrix can be evaluated, up to sign, by the
permanent of an Hermitian matrix.

Let w be any single particle QM observable, with con-
tinuous unbounded spectrum, such as the linear momen-
tum operator p.

We denote by

Q:Hwi, (5)

the product of these single particle observables, which is
now a many particle observable on its own. Since single-
particle operators that operate on different particles are
always commutative the order of the operators in the
product 1s not important.

The Hermitian matrix A can be diaganolized by a uni-
tary transformation,

A 00
UAU=D=[ 0 X 0 , (6)
0 0 As

where U =

We denote by |A;) the eigenstate of the single particle
observable w that corresponds to the eigenvalue A;,
(Aidj) + bij.

The idea i1s to prepare the many particle system in a
special superposition, that depend on the given matrix A,
and then perform a measurement of the product operator
Q. We prepare the many particle system such that there
is a single boson/fermion in each of the following single-
particle superposition of the eigenstates of wj,

= Zuli|/\l>
]

[u;;] is a unitary matrix, UTU = L

(7)

In that state the matrix elements of w, in this single par-
ticle basis, are given by,

(ilwls) = (Z /\1|U”) (Z ugi|Ar) ) =
(Z /\l|uzl) (Z Ak urt|Ak) ) = Zu?kukj/\k =a;; . (8)

The new basis is orthonormal due to the unitarity of U.
We denote by |¥) the n-particle state of the above single
particle superpositions. Due to the indistinguishability of
the particles, [¥) must be symmetric/antisymmetric with
respect to particle permutations.

The expectation value of the operator € in the n-



particle state |¥) is given, for the boson case, by:

(V]Qw) =
1 . .
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Similarly, this expectation is det[A] for the fermion case.
For illustration, consider a 2 x 2 matrix. The symmetric
two-particles wave-function is,

1
ﬁ(“’ 1)[2,2) + [1,2)[2, 1)) ,

and the eXpectation value of € is:

W(1,2)) = (10)
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Similar expression holds for the determinant, where all
the antisymmetric (odd) permutations switch sign for
fermions.

Thus, both the permanent and the determinant of an
arbitrary hermitian matrix can be expressed as the expec-
tation value of an n-particle quantum mechanical observ-
able in a state of n identical bosons or fermions.

The computation required for the preparation of the
system are only the computations required for the diag-
onalization of the matrix A and the preparation of the
single-particle superpositions, and therefore can be done
in a polynomial number of steps. The evaluation of the de-
terminant /permanent of the states is “done” by the spin-
statistics by itself.

Quantum mechanical measurement can yield only one
of the eigenvalues of the measured operator. Thus, mea-
An)
can therefore yield one of the n possible eigenvalues,
A1..A,.  Similarly, measuring the n-particle observable
Q = [, wi in the state |¥) can therefore yield only
one of the possible outcomes,

suring w in a superposition of its eigenstates |A1) ...

, (12)

=0,1,...nandforall J and ) ;_, n{ =n. The

total number of possible outcomes of this measurement is

2n—1 ~ 920
n )

i.e., the number of possible ways to distribute n 1dentical
balls into n distinct cells. The expectation value of Q is
obtained, asymptotically in the number of measurements,

SN
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Whereas the permanent include n! as (%)n terms with
equal weights, the decomposition in eq. (13) contains
only ~ 227 different terms, each with a different weight.
This decomposition can be considered as the probability-
amplitude space induced by the permanent.

The probability to get the outcome

where n

(Q) = per[A] = APl L nd). (13)
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in a measurement of © in the boson case, 1s given by,
2
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where (A1 ;,| denotes that the i; particle is in the eigen-
state (A1), ete.

The composite n-particles wave-function ¥ can be writ-

ten as
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The matrix U? is derived from the unitary matrix, U,
with the first row taken n{ times, the second row n3
times, etc. [4].

The probability amplitude for any of the outcomes of
the measurement of the product is by itself proportional to
a permanent of a matrix, and therefore a direct evaluation
of the joint probabilities P(n{,nJ ...nJ) is a again in
P#P ie. exponential in the rank of the matrix.



3 Physical implementation

While in general, the evaluation of an expectation value
of an operator which 1s constructed from a product of
many single-particle observables may be difficult, an ac-
tual, rather simple physical device which allows the evalu-
ation of permanents of n x n matrices can be constructed,
using a scattering experiment with n input channels and
n output channels, as schematically shown in figure 1.
In this device, amplitude of the scattering from the i-th
input channel to the j output channel is just u;;.
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Figure 1: A sketch of the physical implementation.

If a single boson is enters each of the input channels,
than each of the output channels can contain from 0 to n
bosons. The probability for each of these
J=1... (Znn_ 1) possible scattering outcomes 1s given by,

1

J J Jy
P(nl,nz,...n)_ﬁ
Ny Na.... Ny

per[U’] . (17)

If M such scattering experiments are performed and for
J J J
each outcome, Oy, the term ﬁxfl “AY7 L Apr s added,
then in the limit M — oo this sum converges, by the law
of large numbers, to the expectation value, i.e.; the real
value of the permanent.

4 The accuracy of the
measurement

As can be expected, while there i1s nothing so far that
discriminates the permanent from the determinant in the
many-particle quantum measurement, the caveat must be
in the variance, or precision of our estimate. The accu-
racy in which the above procedure yields an estimate to
the value of the permanent, in a finite number of mea-
surements, depends on the variance in the measurement,
or the intrinsic quantum mechanical uncertainty of our
product observable €2.

The second moment of 2, in the many-particle state
|¥) is given by,

n

(@%) = ([Jwi) = per[B].

i=1

(18)

where B 1s the matrix whose elements are:
bij = <Z|w2|j>

However, this expectation value is simply related to the
original matrix, A, through,

(A% = aqay =Y (ilw|l)(llw]j) =

l l

(19)
= (ilw?]j) = by
and therefore,

(Q%)y = per[A7] . (20)

Since each of the elements of A? is a sum of n products of
pairs of elements of the Hermitian matrix A — the perma-
nent of A% might be exponentially larger than (per[A])?.
This means that the intrinsic variance can be exponential
in the rank of the matrix, so an exponential number of
experiments might be needed for a good approximation
of the permanent.

If the same scheme is applied to fermions, the second
moment in the measurements of Q2 will be

(Q% g = det[A?] . (21)

However, since
det[A%] = (det[A])?

the variance in this measurements of €2 is identically zero.
Thus for the fermionic case, the exact value of the deter-
minant is obtained in a single(!) scattering experiment, if
we ignore all other noise sources.

The inherent difference in the quantum computational
complexity of permanents and determinants i1s therefore
expressed, in our particular setup, in the variance of the
possible outcomes of measurements. Although we have
discussed a specific physical setup, we believe that this
is a generic result, up to polynomial factors, in any QM
many-particle experiment.

5 Permanent of a unitary
Hermitian Matrix

The eigenvalues of a unitary Hermitian matrix can be
either +1 or —1. In this case the decomposition in eq.
(13) contained only two terms:

per(U) = P(+1) — P(-1). (22)



In this case, in order to approximate the permanent we
need to estimate just two probabilities, at least one of
them is of O(1). The accuracy of such an estimation will
be of order 1/M, were M is the number of experiments.
Since the value of a permanent of a unitary, Hermitian
matrix can be any real value between —1 and +1, this may
give a good approximation for certain matrices. However,
the value of the permanent any be exponentially small,
and in this case the relative approximation may not be
good enough. Still; there is no way that we know of to
get a better approximation.

6 Conclusions

In this work we consider the possibility of using the sym-
metry properties of quantum mechanical systems of in-
distinguishable particles to evaluate the determinant or
permanent of a given real valued Hermitian matrix. We
show that it is rather easy to construct a quantum me-
chanical scattering experiment that yields the permanent
and determinant of a matrix, as its expectation value, for
bosons and fermions respectively.

While such an experiment can be prepared and per-
formed in a polynomial time in the size of the matrix, we
traced the manifestation of the notorious difference be-
tween the computational complexity of determinants and
permanents to the intrinsic variance of the measurement.
While there is usually an exponentially large variance in
the measurements of the product observable Q = H?:l Wi
in the setup we described for an n-boson system, there
will be no variance at all for an n-fermion system, or the
estimation of the determinant. Since this is an intrinsic
QM uncertainty, we consider this result to be generic for
any possible many-particle quantum mechanical compu-
tation of the permanent, but proving it remains an open
problem.
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