
PhysComp96Full paperDraft, 13 May 1996 Permanent Uncertainty:On the quantum evaluation of the determinant andthe permanent of a matrixLidror Troyansky�and Naftali TishbyInstitute of Computer Science and Center for Neural ComputationThe Hebrew UniversityJerusalem 91904, IsraelWe investigate the possibility of evaluating permanents and determinants of matrices by quantumcomputation. All current algorithms for the evaluation of the permanent of a real matrix haveexponential time complexity and are known to be in the class P#P . Any method to evaluate orapproximate the permanent is thus of fundamental interest to complexity theory. Permanents anddeterminants of matrices play a basic role in quantum statistical mechanics of identical bosons andfermions, as the only possible many particle states made of single particle wave functions.We study a novel many-particle quantum-computational model in which an observable operator canbe constructed, in polynomial-time complexity, to yield the determinant or the permanent of anarbitrary matrix as its expectation value. Both quantities are estimated, in this model, by quantummechanics systems in a polynomial time, using fermions and bosons respectively. It turns out thatthe variance of the measurements in a \noise-free case" is zero for the determinant and exponential(in the rank of the matrix) for the permanent. The intrinsic measurement variance is therefore thequantum mechanical correspondence to the computational complexity gap.1 IntroductionQuantum computational models have recently becomeimportant for the theory of computational complexitywhen it was shown that factorization can be performed ina polynomial time by a Quantum Turing machine [7, 6].An intriguing computational question is naturallyraised when considering quantum statistical mechan-ics of identical particles. By Pauli's \spin-statistics"theorem[5], the quantum state of identical particles is ingeneral either symmetric with respect to exchange of par-ticles for integer spin particles (bosons), or anti-symmetricfor half-integer spin particles (fermions). The only possi-ble completely symmetric or anti-symmetric combinationsof general single particle functions are the permanent ordeterminant of those functions, respectively.Whereas in QM the di�erence between permanents anddeterminants simply corresponds to the choice betweenthe quantum statistics of bosons and fermions, determi-nants and permanents have very di�erent computationalcomplexity by all known algorithm. While the determi-nant can be easily evaluated in polynomial time in the sizeof the matrix (e.g. by diagonalization), no such polyno-mial time algorithm is known for the permanent. More-over, there is no known algorithm for the evaluation ofthe permanent that can avoid the summation over expo-nential many terms, i.e. the permanent is known to bein the complexity class #P -complete. In this paper we�Supported in part by the Clore foundation.

would like to understand the quantum mechanical cor-respondence to this dramatic computational complexitygap. We approach this problem by considering many par-ticle quantum observable that correspond to the determi-nant of a given matrix in the fermion case, and to thepermanent of the matrix in the boson case.The permanent of a matrix A = [aij] is de�ned as:per[A] � Xfi1::ing a1i1 � a2i2 : : : anin ; (1)where the set of indices fi1 : : : ing denotes the set of allthe permutations of 1 : : :n [2]. The determinant is de�nedby the same sum of the permutations, where in additioneach odd permutation is taken with a negative sign.Permanents occur naturally in various counting prob-lems in combinatorics[4], graph theory[1], and logic. Ifthere was a way to evaluate, or even to approximate per-manents in a polynomial time, then every P#P (and thusevery NP-complete) problem could have been evaluatedin polynomial time [8] [3]. It can be shown that eventhe approximation of the log of the permanent is a hardproblem[9]. The key technical reason for that computa-tional di�erence between permanents and determinants isthat determinants are invariants under similarity trans-formations of the matrix, while no such simple invariantsare known for the permanent. So diagonalization of thematrix or similar transformations can not help for perma-nents.Determinants and permanents are fundamental func-1



tions in quantum statistics of identical particles, as de-scribed below.� The wave-function of indistinguishable fermions canbe written in the Slater-determinant form. Namely,if there are n fermions in n single-particles states,j1i : : : jni, than the n-Particles wave-function is givenby,j	A(1 : : :n)i = 1pn! [j1; 1ij2; 2i : : : jn; ni� j1; 2ij2; 1i : : :jn; ni+ : : : ]= 1pn! Xfi1;:::ing(�1)� j1; i1ij2; i2i : : : jn; ini = 1pn!det[ji; ji]:(2)The sum is taken over all the permutations of 1 : : :n, with parity �, where the �rst index denote the stateand the second denote particles (ij is the permutationindex).� Particles with an integer spin (\bosons") obey theBose-Einstein statistics: the many-particles wave-function is completely symmetric under exchange ofany two particles,j	S(1 : : :n)i = 1pn!�j1; 1ij2; 2i : : :jn; ni+ j1; 2ij2; 1i : : : jn; ni+ : : : �= 1pn! � Xfi1;:::ing j1; i1ij2; i2i : : : jn; ini= 1pn! � per [ji; ji] : (3)In what follows we address two natural questions: (a) isthere a quantummechanical observable (or measurement)that can be constructed in order to evaluate the perma-nent or determinant of an arbitrary matrix; (b) what isthe di�erence between the evaluation of determinants andpermanents from the quantum computation perspective.2 Measuring the permanent of anarbitrary Hermitian matrixLet A = [aij] denote the Hermitian matrix whose perma-nent is required. If A is not Hermitian it can always beinstalled into an Hermitian matrix ~A of the form,~A = � 0 AAT 0 � (4)

and for this matrix, per[ ~A] = per[A])2. So every perma-nent of a real matrix can be evaluated, up to sign, by thepermanent of an Hermitian matrix.Let ! be any single particle QM observable, with con-tinuous unbounded spectrum, such as the linear momen-tum operator p.We denote by 
 = nYi=1!i ; (5)the product of these single particle observables, which isnow a many particle observable on its own. Since single-particle operators that operate on di�erent particles arealways commutative the order of the operators in theproduct is not important.The Hermitian matrix A can be diaganolized by a uni-tary transformation,UyAU = D = 0@ �1 0 0 : : :0 �2 0 : : :0 0 �3 : : : 1A ; (6)where U = [uij] is a unitary matrix,UyU = I.We denote by j�ji the eigenstate of the single particleobservable ! that corresponds to the eigenvalue �j,h�i�ji+ �ij.The idea is to prepare the many particle system in aspecial superposition, that depend on the given matrixA,and then perform a measurement of the product operator
. We prepare the many particle system such that thereis a single boson/fermion in each of the following single-particle superposition of the eigenstates of !i,jii =Xl ulij�li : (7)In that state the matrix elements of !, in this single par-ticle basis, are given by,hij!jji =  Xl h�l ju�il!! Xk ukjj�ki! = Xl h�lju�il! Xk �kuklj�ki! =Xk u�ikukj�k = aij : (8)The new basis is orthonormal due to the unitarity of U.We denote by j	i the n-particle state of the above singleparticle superpositions. Due to the indistinguishability ofthe particles, j	i must be symmetric/antisymmetric withrespect to particle permutations.The expectation value of the operator 
 in the n-2



particle state j	i is given, for the boson case, by:h	j
j	i == 1n! �0@ Xfi1::ingh1; i1j : : : hn; inj1A�  nYi=1!i!0@ Xfi1:::ing j1; i1i : : : jn; ini1A= 1n! � n! � Xfi1:::ingh1j!ji1i : : : hnj!jini= per[A] : (9)Similarly, this expectation is det[A] for the fermion case.For illustration, consider a 2�2 matrix. The symmetrictwo-particles wave-function is,j	(1; 2)i = 1p2! (j1; 1ij2; 2i+ j1; 2ij2; 1i) ; (10)and the expectation value of 
 is:h	j
j	i = 12![(h1; 1jh2; 2j+ h1; 2jh2; 1j)!1!2(j1; 1ij2; 2i+ j1; 2ij2; 1i)]= 12![h1j!j1ih2j!j2i+ h2j!j1ih1j!j2i+h2j!j2ih1j!j1i+ h1j!j2ih2j!j1i]= [h1j!j1ih2j!j2i+ h2j!j1ih1j!j2i+h2j!j2ih1j!j1i+ h1j!j2ih2j!j1i]= a11a22 + a12a21 = per[A] : (11)Similar expression holds for the determinant, where allthe antisymmetric (odd) permutations switch sign forfermions.Thus, both the permanent and the determinant of anarbitrary hermitian matrix can be expressed as the expec-tation value of an n-particle quantum mechanical observ-able in a state of n identical bosons or fermions.The computation required for the preparation of thesystem are only the computations required for the diag-onalization of the matrix A and the preparation of thesingle-particle superpositions, and therefore can be donein a polynomial number of steps. The evaluation of the de-terminant/permanent of the states is \done" by the spin-statistics by itself.Quantum mechanical measurement can yield only oneof the eigenvalues of the measured operator. Thus, mea-suring ! in a superposition of its eigenstates j�1i : : : j�nican therefore yield one of the n possible eigenvalues,�1::�n. Similarly, measuring the n-particle observable
 = Qni=1 !i in the state j	i can therefore yield onlyone of the possible outcomes,OJ := �nJ11 �nJ22 : : : �nJnn ; (12)

where nJi = 0; 1; : : :n and for all J andPni=1 nJi = n: Thetotal number of possible outcomes of this measurement is�2n� 1n � � 22n ;i.e., the number of possible ways to distribute n identicalballs into n distinct cells. The expectation value of 
 isobtained, asymptotically in the number of measurements,h
i = per[A] = (2n�1n )XJ=1 �nJ11 �nJ22 : : :�nJnn P (nJ1 : : :nJn): (13)Whereas the permanent include n! � �ne �n terms withequal weights, the decomposition in eq. (13) containsonly � 22n di�erent terms, each with a di�erent weight.This decomposition can be considered as the probability-amplitude space induced by the permanent.The probability to get the outcomeOJ := nJ1nJ2 : : :nJnin a measurement of 
 in the boson case, is given by,������ 1pn1!::nn! Xfi1::ing(h�1;;i1 j)nJ1 ::(h�n;inj)nJn j	i������2 ; (14)where h�1;i1j denotes that the i1 particle is in the eigen-state h�1j, etc.The composite n-particles wave-function 	 can be writ-ten as j	i = 1pn! Xfi1:::ing j1; i1ij2; i2i : : : jn; ini (15)= 1pn! Xfi1::ing nYk=1( nXj=1 ukjj�j;iki) :Since: h�j;in jj�l;im i = �jl�inim ;we obtain sum of the permutations as,Xfi1:::ing 1pnJ1 ! : : :nJn!(h�1;;i1 j)nJ1 : : : (h�n;in j)nJn( nXj=1 u1jj�j;i1i) : : : ( nXj=1 unjj�j;ini)= 1pnJ1 ! : : :nJn!per[UJ ] : (16)The matrix UJ is derived from the unitary matrix, U,with the �rst row taken nJ1 times, the second row nJ2times, etc. [4].The probability amplitude for any of the outcomes ofthe measurement of the product is by itself proportional toa permanent of a matrix, and therefore a direct evaluationof the joint probabilities P (nJ1 ; nJ2 : : :nJn) is a again inP#P , i.e., exponential in the rank of the matrix.3



3 Physical implementationWhile in general, the evaluation of an expectation valueof an operator which is constructed from a product ofmany single-particle observables may be di�cult, an ac-tual, rather simple physical device which allows the evalu-ation of permanents of n�n matrices can be constructed,using a scattering experiment with n input channels andn output channels, as schematically shown in �gure 1.In this device, amplitude of the scattering from the i-thinput channel to the j output channel is just uij.
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|N>Figure 1: A sketch of the physical implementation.If a single boson is enters each of the input channels,than each of the output channels can contain from 0 to nbosons. The probability for each of theseJ = 1 : : :�2n�1n � possible scattering outcomes is given by,P (nJ1 ; nJ2 ; : : :nJn) = 1pn1!n2! : : :nn!per[UJ] : (17)IfM such scattering experiments are performed and foreach outcome, OJ , the term 1M�nJ11 � �nJ22 : : : �nJnn is added,then in the limitM !1 this sum converges, by the lawof large numbers, to the expectation value, i.e., the realvalue of the permanent.4 The accuracy of themeasurementAs can be expected, while there is nothing so far thatdiscriminates the permanent from the determinant in themany-particle quantum measurement, the caveat must bein the variance, or precision of our estimate. The accu-racy in which the above procedure yields an estimate tothe value of the permanent, in a �nite number of mea-surements, depends on the variance in the measurement,or the intrinsic quantum mechanical uncertainty of ourproduct observable 
.

The second moment of 
, in the many-particle statej	i is given by,h
2i = h nYi=1!2i i = per[B]: (18)where B is the matrix whose elements are:bij = hij!2jji:However, this expectation value is simply related to theoriginal matrix, A, through,[A2]ij =Xl ailalj =Xl hij!jlihlj!jji = (19)= hij!2jji = bijand therefore, h
2i	 = per[A2] : (20)Since each of the elements of A2 is a sum of n products ofpairs of elements of the Hermitian matrixA { the perma-nent of A2 might be exponentially larger than (per[A])2.This means that the intrinsic variance can be exponentialin the rank of the matrix, so an exponential number ofexperiments might be needed for a good approximationof the permanent.If the same scheme is applied to fermions, the secondmoment in the measurements of 
 will beh
2i	 = det[A2] : (21)However, since det[A2] = (det[A])2the variance in this measurements of 
 is identically zero.Thus for the fermionic case, the exact value of the deter-minant is obtained in a single(!) scattering experiment, ifwe ignore all other noise sources.The inherent di�erence in the quantum computationalcomplexity of permanents and determinants is thereforeexpressed, in our particular setup, in the variance of thepossible outcomes of measurements. Although we havediscussed a speci�c physical setup, we believe that thisis a generic result, up to polynomial factors, in any QMmany-particle experiment.5 Permanent of a unitaryHermitian MatrixThe eigenvalues of a unitary Hermitian matrix can beeither +1 or �1. In this case the decomposition in eq.(13) contained only two terms:per(U) = P (+1)� P (�1): (22)4



In this case, in order to approximate the permanent weneed to estimate just two probabilities, at least one ofthem is of O(1). The accuracy of such an estimation willbe of order 1=M , were M is the number of experiments.Since the value of a permanent of a unitary, Hermitianmatrix can be any real value between �1 and +1, this maygive a good approximation for certain matrices. However,the value of the permanent any be exponentially small,and in this case the relative approximation may not begood enough. Still, there is no way that we know of toget a better approximation.6 ConclusionsIn this work we consider the possibility of using the sym-metry properties of quantum mechanical systems of in-distinguishable particles to evaluate the determinant orpermanent of a given real valued Hermitian matrix. Weshow that it is rather easy to construct a quantum me-chanical scattering experiment that yields the permanentand determinant of a matrix, as its expectation value, forbosons and fermions respectively.While such an experiment can be prepared and per-formed in a polynomial time in the size of the matrix, wetraced the manifestation of the notorious di�erence be-tween the computational complexity of determinants andpermanents to the intrinsic variance of the measurement.While there is usually an exponentially large variance inthe measurements of the product observable 
 =Qni=1 !iin the setup we described for an n-boson system, therewill be no variance at all for an n-fermion system, or theestimation of the determinant. Since this is an intrinsicQM uncertainty, we consider this result to be generic forany possible many-particle quantum mechanical compu-tation of the permanent, but proving it remains an openproblem.AcknowledgmentsWe would like to thank Nati Linial and Avi Wigdersonfor useful discussions.References[1] Brualdi, Richard and Herbert Ryser, CombibnatorialMatrix Theory, Encyclopedia of Mathematics and Its Ap-plications Vol. 39, Cambridge University Press (1991),198-235.[2] Cauchy, Augustin-Louis, \M�emoire sur les fonctions quine peuvent obtenir que deux valeurs �egales et de signescontraires per suite des transpositions op�er�ees entre lesvariables qu'elles renferment", J.�Ec. Polyt. 10:17 (1812),29-112.
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