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Abstract

We consider a supervised learning setting in
which the main cost of learning is the number
of training labels and one can obtain a single la-
bel for a bag of examples, indicating only if a
positive example exists in the bag, as in Multi-
Instance Learning. We thus propose to create a
training sample of bags, and to use the obtained
labels to learn to classify individual examples.
We provide a theoretical analysis showing how
to select the bag size as a function of the prob-
lem parameters, and prove that if the original la-
bels are distributed unevenly, the number of re-
quired labels drops considerably when learning
from bags. We demonstrate that finding a low-
error separating hyperplane from bags is feasible
in this setting using a simple iterative procedure
similar to latent SVM. Experiments on synthetic
and real data sets demonstrate the success of the
approach.

1 Introduction

Consider three applications from three different domains:
In the first, you want to conduct market research using on-
line ads, to identify which products are attractive. You can
put up ads featuring products, but your only feedback is
whether or not the ad was clicked. In the second applica-
tion, consider some chemical or biological problem where
the goal is to learn to classify chemical samples based on
the result of a chemical experiment. Each experiment is
costly, but is possible to conduct an experiment with nu-
merous types of molecules at the same time, and to iden-
tify only if a reaction has occurred or not. In the third ap-
plication, suppose the purpose is to learn a classifier that
identifies images with faces, using a large set of labeled
images. To obtain this labeled set, one introduces a large
set of images to human labelers, who indicate whether the
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image contains a face or not. We would like to minimize
the cost of the human work by reducing the labeling time
to a minimum.

These examples come from different domains, but share a
common feature: In all of them we have access to prac-
tically unlimited data which we can present to a teacher (a
human labeler, or some experimentalmachinery for obtain-
ing a label), but there is a high cost for each label obtained
from the teacher. In addition, it is possible to obtain from
the teacher a single label for a set of examples at essen-
tially the same cost as a label for a single example. The
single label indicates only if there exists a positive exam-
ple in the examined set: In the market research application,
it is possible to feature several products in one ad. In the
chemical experiment task, it may be possible to conduct
one large experiment testing several different samples, in-
stead of several experiments, one for each sample. In the
face recognition task, one can present test subjects an array
of images instead of a single image (see Figure 1) and ask
them to indicate whether there is a face anywhere in the ar-
ray of images1. In these example application, the main cost
of training is the number of labels, and not the total number
of examples.

Figure 1: A person easily identifies whether there is a face in
a bag of images. Left: Negative Label. Right: Positive Label.
Images from CALTECH101 (L. Fei-Fei and Perona., 2004).

We consider learning in the setting illustrated by the three
example applications, and investigate when it is worthwhile
to present a teacher with sets of examples instead of indi-
vidual examples in this setting. In our model we assume
that the cost of obtaining a label does not depend on the
size of the set for which the label was obtained, and that

1There might be other possibilities, such as asking the labeler
to click the exact location of the face in the array, however this
might produce a much slower labeling rate than if the labeler
clicks only Yes or No buttons
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obtaining examples to present to the teacher incurs no cost.
Therefore, the cost of learning depends only on the number
of obtained labels, and the goal is to reduce this number as
much as possible using sets of examples of an optimal size.

The setting in which the teacher labels sets of examples
using a single label is generally known as Multi-Instance
Learning (MIL) Dietterich et al. (1997). In MIL, the train-
ing sample is composed of sets of examples. Sets of ex-
amples are termed bags, and examples in a bag are termed
instances. Each bag in the training sample is labeled using
the OR rule, so that the label is positive if and only if at
least one of the examples in the bag is positive. The goal
of the learner is to find the classification rule that classi-
fies the instances or the bags, depending on the application.
The general problem of learning from a MIL sample has
been theoretically analyzed under various settings (Auer
et al., 1998; Blum and Kalai, 1998; Sabato and Tishby,
2009). Many practical algorithms that were tested on real-
life benchmarks (Dietterich et al., 1997; Andrews et al.,
2002; Andrews and Hofmann, 2003; Maron and Lozano-
Pérez, 1998; Maron and Ratan, 1998; Zhang and Goldman,
2001; Zhi-Hua Zhou, 2007;Weidmann et al., 2003, to name
a few) have been provided for this problem, but in general
it can be a computationally demanding problem for a non-
separable sample. The setting presented in this paper is
different from previous works on MIL, since here the bags
are created by the learner for the purpose of classifying in-
dividual examples. Therefore the size of the bag may be
chosen by the learner, and we also have some control over
the distribution of instances within the bag.

Intuitively, there is an inherent trade-off when obtaining
one label for a whole bag: On the one hand, this allows one
label to provide information on a large number of exam-
ples. On the other hand, this information can be ambigu-
ous, since if the label is positive we do not know which
examples in the bag are the positive ones. In this work
we investigate this trade-off, and show that it is possible
to reduce the number of required labels by presenting bags
of examples to the teacher instead of individual examples.
After describing the formal setting (Section 2), we show,
both analytically and experimentally, that using bags can
indeed improve performance considerably, for a wide range
of problem parameters. We show analytically (Section 3)
how to select the bag size presented to the teacher for op-
timal performance. In addition, we propose (Section 4) a
simple and practical algorithm along the lines of Felzen-
szwalb et al. (2008) for finding a separating hyperplane for
individual examples from a training sample composed of
labeled bags. Several types of experiments were performed
(Section 5), on synthetic data sets and on real data sets.
The experiments demonstrate the success of the proposed
approach for an even wider range of parameters than guar-
anteed by the analysis.

2 Problem Setting

Let X be a domain of examples, and let D be an arbitrary
and unknown distribution over X and c : X → {0, 1} an
unknown labeling of the examples. The goal of the learner
is to learn c, i.e. to find a function h : X → {0, 1}with low
(true) labeling error PX∼D[h(X) "= c(X)]. As in the PAC
framework, we will focus on learners that choose h from
some fixed hypothesis classH.

We diverge from the classical supervised learning setting in
our assumptions on the training set. We assume the learner
has unlimited access to samples x drawn fromD. We con-
sider the case where the main cost incurred in the learn-
ing procedure is that of obtaining labels from the teacher,
while the cost of presenting examples to the teacher is neg-
ligible. We assume that one can ask the teacher to la-
bel bags of examples using a single label. The teacher’s
label indicates whether at least one of the examples in
the bag is positive. Formally, denote a bag of size r by
x = (x1, . . . , xr), where each xi ∈ X is a single exam-
ple. Any hypothesis h that labels individual examples can
be converted to a bag-labeling hypothesis h using the OR
rule, so that h(x) = OR(h(x1), . . . , h(xr)). We denote
H ! {h | h ∈ H}. For every bag x presented to the
teacher, the teacher returns a single binary label c(x). We
wish to get low error over individual examples, using the
smallest possible number of labels. Note that unlike active
learning, here the entire sample is generated in advance,
with no feedback from the teacher. The following proce-
dure is proposed:

1. Select a bag size r and a sample sizemr;

2. Createmr bags of size r from r ·mr examples drawn
independently fromD;

3. Present the bags {xi}
mr

i=1 to the teacher, and receive
mr labels {yi}

mr

i=1 such that yi = c(xi).

4. Return the hypothesis ĥ ∈ H such that ĥ minimizes
the training error over bags:

ĥ = argmin
h∈H

mr
∑

i=1

|h(xi) − yi|. (1)

This procedure is a generalization of the classical empirical
risk minimization (ERM) strategy, where the learner finds
the hypothesis with minimal training error: For r = 1 this
procedure is exactly ERM over an i.i.d. sample drawn from
the distributionD. For a general r, we use an i.i.d. sample
drawn from the distribution Dr. Importantly, regardless of
the chosen r, our goal is to minimize P[ĥ(X) "= c(X)], the
error on individual examples drawn from D, and we will
measure success based on this goal.

We denote by α the probability of a single example having
a positive label, i.e. the frequency of positive examples in
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D. As we will see, the methods we describe are relevant
when α is substantially smaller then half. That is, when
positive examples are relatively rare. When the frequency
α of positive examples is small, measuring the error be-
comes tricky: a hypothesis which labels everything as neg-
ative has error α, but we typically want a hypothesis that
better balances type I and type II errors. In our analysis we
assume for simplicity that all the hypotheses inH have the
same probability for a positive label:

∀h ∈ H, PX∼D[h(X) = 1] = PX∼D[c(X) = 1] = α. (2)

That is, all hypothesis are calibrated by the known positive
example rate. This assumption implies that the probabil-
ity of type I errors is identical to the probability of type II
errors, and allows us to use the overall error as a single ob-
jective even for very small α. In particular, if the learner
balances type I and type II errors, or in the realizable case,
if the learner seeks a zero empirical error hypothesis, then
the hypotheses chosen by the learner satisfies this condi-
tion at least approximately. This assumption also implies
that the true error of h is in the range [0, 2α].

3 Theoretical Analysis

In this section we analyze the procedure described above,
and show how it can reduce the required number of la-
bels. For simplicity we focus on the realizable case, where
c ∈ H. We start by analyzing the relationship between the
bag size, the sample size, and the resulting true error over
individual examples, based on theoretical error bounds. We
then use these bounds to choose a bag size r and study the
reduction in sample size achieved by the proposed proce-
dure.

3.1 The Sample Complexity of Training on Bags

We will base our analysis on standard results, that bound
the true error when using ERM on a training sample with a
given sample size. These bounds do not suffice by them-
selves, since they refer to the true error over examples
drawn from the same distribution as the training sample. In
our case, these results will bound the error over bags drawn
from Dr, while we wish to bound the true error over indi-
vidual examples drawn fromD. We thus start with the fol-
lowing theorem, which provides the relationship between
the true error on bags and the true error on individual ex-
amples. The proof can be found in Sabato et al. (2010) .
Theorem 1. For any h : X → {0, 1} such that Eq. (2)
holds, we have

P[h(X) "= c(X)] = κα
r (P[c(X) "= h(X)]) (3)

where κα
r (ε) ! 2((1 − α)r − (1 − α − ε/2)r).

To bound the true error on bags achieved by ĥ, we invoke
the VC-bound for the realizable case (Vapnik and Chervo-

nenkis, 1971). With probability at least 1− δ over a sample
ofmr bags:

P[ĥ(X) "= c(X)] ≤ (4)

≤ 2
dr

mr
(log

2emr

dr
+ log

2

δ
) ! VC-BOUND(mr, dr),

where dr denotes the VC-dimension of H, the class of hy-
potheses over bags of size r.

Combining Theorem 1 with Eq. (4), and taking the inverse
of κα

r , yields the following learning bound for the proposed
procedure:
Corollary 1. If Eq. (2) holds and c ∈ H, and the procedure
described in Section 2 is used, then with probability 1 − δ
over the samples of bags,

P[ĥ(X) "= c(X)] ≤

2(1 − α) − 2((1 − α)r − VC-BOUND(mr, dr)/2)1/r.

In order to understand the effect of using bags, it will be
useful to study the relationship between the bag size and
the sample complexity, based on the bound in Corollary
1 (Note that the sample size is equal to the number of la-
bels, which is the cost we wish to minimize). We will thus
fix a target error rate, and ask how the sample complex-
ity for this error rate changes as a function of the bag size.
To this end, define m̃r(ε) as the number of bags of size r
required to obtain a bound of ε on the true error of indi-
vidual examples, based on Corollary 1. This is an upper
bound on the sample complexity when using bags of size
r. In particular, m̃1(ε) is the “standard” VC-bound sample
complexity, when using a regular sample with individual
examples. The following theorem bounds the reduction in
sample complexity when bags of size r are used instead of
a regular sample:
Theorem 2. Let d be the VC-dimension ofH, and let dr be
the VC-dimension of the class H of hypotheses over bags
of size r. We have:

m̃r(ε)

m̃1(ε)
≤

ε

κα
r (ε)

·
dr

d
. (5)

Proof. Letmr = min{m̃1(ε)
ε

κα
r (ε) ·

dr

d , m̃1(ε)}. We have

P[ĥ(X) "= c(X)] ≤ VC-BOUND(mr, dr) =

drm̃1(ε)

dmr
· 2

d

m̃1(ε)
(log

2emr

dr
+ log

2

δ
)

≤
drm̃1(ε)

dmr
VC-BOUND(m̃1(ε), d) =

drm̃1(ε) · ε

dmr
≤ κα

r (ε).

From Theorem 1 it follows that P[ĥ(X) "= c(X)] ≤ ε.
Therefore the minimal sample size to achieve ε using bags
of size r is no more thanmr, and Eq. (5) follows.
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Examining Eq. (5), it is obvious that dr

d ≥ 1, since
the hypotheses class over bags cannot have a lower VC-
dimension then the hypotheses class over individual exam-
ples. Therefore a reduction in sample complexity will only
be attained if κα

r (ε) > ε. That is, only if the error rate on
bags is higher then the error rate on individual examples.
This may seem counterintuitive—whywould we gain from
using bags if it causes an increase in the error rate? The
key point is that we are interested in the implied error rate
on individual examples, and so we can allow ourselves a
higher error rate on bags, if it implies a lower error on indi-
vidual examples. Note, however, that any reduction in the
sample complexity due to κα

r (ε) > ε might be canceled if
the VC-dimension dr grows very fast with r. Fortunately,
this is not the case, as the following theorem shows:
Theorem 3.

dr ≤ −
d

ln(2)
· W−1

(

− ln(2)
er

)

= O(d log r). (6)

Where W−1 denotes the negative branch of the Lambert W
function, x = W (x)eW (x).

This result is derived from the implicit inequality on dr

(Sabato and Tishby, 2009): dr ≤ d log2(e·rdr/d). The full
derivation is available in Sabato et al. (2010). Equipped
with Theorems 2 and 3, we can now study the optimal bag
size and the reduction in sample complexity it affords.

3.2 Choosing the Bag Size

We now turn to the question of how to choose a bag size r
so as to minimize the sample complexity m̃r(ε). The two
important parameters here are the positive example rate α
and the desired error guarantee ε. Intuitively, it can be spec-
ulated that a good size for a bag is such that the labels on
bags are distributed more or less evenly, such that every la-
bel received from the teacher conveys a large amount of in-
formation to the learner. Thus r should be larger for smaller
α. The bag size r should also grow as ε is reduced, since
larger bags imply a higher sensitivity to error. The follow-
ing analysis corroborates this intuition, and quantifies the
dependence on both ε and α.

Following Theorem 2, we would like to choose r such
that κα

r (ε)/dr is maximal. However, since d ≤ dr ≤
O(d log r), i.e. dr grows relatively slowly with r, we ig-
nore the exact value of dr, and define our choice for the
bag size as the value of r that maximizes κα

r (ε):

r∗(α, ε) ! argmax
r

κα
r (ε)

≡ argmax
r

[(1 − α)r − (1 − α − ε/2)r] .

We shall see that though this choice is not necessarily opti-
mal, it provides a substantial reduction in sample size. Nu-
merical calculations show that using the upper bound for
dr does not change the resulting sample size significantly.

Differentiating κα
r (ε) we obtain a single maximum in r for

all 0 < α < 0.5, 0 < ε < 2α:

r∗(α, ε) = ln

(

ln(1 − α − ε/2)

ln(1 − α)

)

/

ln

(

1 − α

1 − α − ε/2

)

.

(7)

As our preliminary intuition implied, r∗(α, ε) is mono-
tonic decreasing in α and in ε. We also speculated that
the labels on bags of an optimal size should be bal-
anced. Defining r∗(α, 0) ! limε→0+ r∗(α, ε), we have
r∗(α, 0) = −1/ ln(1 − α) ≈ 1/α. For this value of r∗,
P[c(X) = 1] = 1 − 1/e and the expected number of pos-
itive examples in each bag is approximately one. Figure 2
plots P[c(X) = 1] as a function of α. The gray area be-
tween the two boundaries corresponds to different values
of ε, in the range (0, 2α]. This plot shows that choosing the
bag size to be r∗(α, ε) results in an almost constant proba-
bility of obtaining positive labels, confirming our intuition.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

α

P
[ c

( X
)=

1
]

r∗(α,0)

r∗(α,2α)

Figure 2: The probability for a positive bag.

3.3 The Sample Size Reduction Factor

We can now ask whether our choice of r∗ leads to a re-
duction in the sample size, and how large is this reduction.
Substituting Eq. (7) and Eq. (6) in Eq. (5), yields an upper
bound on m̃r∗(ε)/m̃1(ε), the sample size reduction factor
when using a bag of size r∗. For ε → 0 we have a simpli-
fied form:
Corollary 2.

lim
ε→0+

m̃r∗(α,ε)(ε)

m̃1(ε)
≤

(1 − α) ln(1 − α) · W−1

(

ln(2) ln(1 − α)/e
)

·
e

ln(2)
.

The bound for ε ∈ [0, 2α] is plotted in Figure 3. Whenever
the bound is smaller than 1, using bags of size r∗ results in
a guaranteed sample size reduction. From the figure it can
be seen that this holds for α < 0.04. This result is only a
worst case bound; The experiments described in Section 5



Sivan Sabato, Nathan Srebro, Naftali Tishby

0.00 0.01 0.02 0.03 0.04
0.0

0.2

0.4

0.6

0.8

1.0

1.2

α

m̃
r
∗
(α

,ε
)
(ε

)/
m̃

1
(ε

)

ε=0

ε=2α

1

Figure 3: Sample size reduction factor. Anything below 1 im-
plies a multiplicative reduction.

show that in practice an even larger reduction is achieved,
and that it is achieved for larger α as well.

4 Finding a Separating Hyperplane using
Bags: The PMIL Algorithm

The analysis above provides bounds on the required sample
size under the assumption that it is possible to find the hy-
pothesis with the lowest training error on samples of bags
of an arbitrary size. We now turn to show how one might
find the correct hypothesis efficiently. This problem is not
trivial, since it is not known which are the positive exam-
ples in a positive bag. Learning from bags with arbitrary
distribution is theoretically solvable in the almost realiz-
able case (Sabato and Tishby, 2009), however there is no
algorithm that is guaranteed to work with the small sample
size that our learning bounds allow. Many heuristic algo-
rithms have also been proposed for MIL (Andrews et al.,
2002; Andrews and Hofmann, 2003; Dietterich et al., 1997;
Zhi-Hua Zhou, 2007, and others). These algorithms are
typically quite involved, as they must deal with samples of
bags with arbitrary dependence between instances. Luck-
ily, though the MIL problem is hard in general, our setting
only employs bags with statistically independent instances,
which can be expected to be a much easier problem. This
case is also provably solvable (Blum and Kalai, 1998), but
again only by using a large sample size.

We propose PMIL (Table 1), a simple iterative algorithm
for finding a separating hyperplane from samples of bags,
following ideas from Felzenszwalb et al. (2008). PMIL ex-
ecutes the basic perceptron algorithm several times on dif-
ferent input samples, using parameters T and L. Though
PMIL is a local-search algorithm for a non-convex objec-
tive and so might potentially find only a local minimum, it
was very successful in our experiments (see Section 5), and
has almost always found the separating hyperplane with
zero or close to zero mistakes. This indicates that it is
practically feasible to reduce the number of required labels
using bags of independent examples. We defer the compar-

ison of PMIL to other possible heuristics to future work.
Table 1: The PMIL algorithm

1. Initialize a separator w randomly;

2. Repeat until T time has passed, or until w clas-
sifies the bags with zero training error:

(a) For each bag xk = (x1
k, . . . , xr

k), select a
representative example from the bag with
index ik = argmaxi(w · xi

k),
(b) Run L epochs of the perceptron algo-

rithm on the sample of individual examples
{(xik

k , yk)}m
i=1.

5 Experiments

In this section we present the results of experiments done
on several types of learning problems. In the first batch
of experiments, presented in Section 5.1, the procedure
is tested on a finite hypothesis class, using an exhaustive
search for the hypothesis with the lowest training error.
This allows us to inspect the learning curves of the true ĥ,
without needing to worry about the possible sub-optimality
of the PMIL algorithm. Then, in Section 5.2, we show that
the PMIL algorithm is indeed successful on both synthetic
and real data sets. The experiments demonstrate a signifi-
cant sample size reduction that is even better than the one
promised by the analysis. They further demonstrate that
using bags improves performance even when the simplify-
ing assumption that c ∈ H does not hold. Moreover, it is
shown that even using a small bag size yields a significant
improvement.

5.1 Finite hypothesis class

We start by examining the actual sample complexity be-
havior, with experiments on a finite hypothesis class, where
the hypothesis with lowest training error is found using ex-
haustive search. We generated random examples from the
domain X = {0, 1}1000, with each of the 1000 features
drawn independently with a positive example rate of α, for
various values of α. The examples were labeled with a hy-
pothesis from the classH = {h1, . . . , h1000}, where hi(x)
is the value of the i’th coordinate of x. Each experiment
reported was repeated either 100 or 1000 times. The plots
show the average true error that was achieved.

First, we wanted to check the effect of the proposed bag-
ging strategy on the output error on individual examples: If
we fix the sample size, is there an optimal bag size r > 1
that achieves the lowest error? How close is the empirical
optimal r to our r∗(α, ε)? Figure 4 shows the average true
error of the learned hypothesis as a function of the bag size,
for different sample sizes, and for two values of α. Even for
α as large as 0.2, using bags reduces the achieved error with
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Figure 4: Experiments on a finite hypothesis class for two dif-
ferent α. Plots show the error as a function of the bag size, for
several sample sizesm.

a fixed sample size. The dips in the plot lines indicate the
existence of an optimal bag size, as predicted by the theo-
retical analysis. The calculated r∗(α, ε), indicated with the
dashed line, is quite close to the empirical optimum in both
plots, and yields almost optimal performance.

To visualize the improvement in learning performance
compared to regular supervised learning, we plotted the
learning curves for selected bag sizes. The plots in Fig-
ure 6 compare the achieved error as a function of the sample
size, for three bag sizes: one, two, and r∗(α, 0) (rounded).
The left and middle plots show results for two values of α,
with no label noise. We see a sharp improvement in per-
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Figure 5: The sample size to achieve a fixed recall. Compare
dashed lines (no bags) to solid lines (r = r

∗).

formance for r ∼ r∗(α, 0). The improvement is sharper
for the smaller α. Note also, that even a bag with only two
examples delivers a much better result than when using no
bags. This means that a considerable improvement can be
achieved even in an application that allows only small bag
sizes.

One of the assumptions in our theoretical analysis was that
c ∈ H. We now deviate from this assumption by adding
randomly flipping some of the labels creating a situation
where the optimal hypothesis has error 0.017 = α/3. The
right plot in Figure 6 shows that even when label noise is
high compared to α, bagging improves the achieved error
rate considerably.

Finally, we show a striking comparison between the re-
quired sample size when learning with no bags, to the re-
quired sample size when bags of optimal size are used. We
have seen in the analysis that the positive example rate α
is a significant parameter affecting optimal bag size and
expected improvement when using bags. As α decreases,
labels on single examples become less balanced. In regular
learning, this means that more examples are required for
effective learning. Since it is less informative to compare
absolute error for varyingα, Figure 5 examines the effect of
α on the outcome recall (the fraction of positive examples
which are identified by the output hypothesis; Note that by
Eq. (2), the precision is also controlled). When learning
without bags (dashed lines), the required sample size for a
fixed recall value grows fast as α decreases. In contrast,
when bags of size r∗(α, 0) are used (solid lines), the effect
of α disappears completely. Thus, the use of bags almost
eliminates the effects of unbalanced labels, by changing the
bag size according to α.

5.2 Experiments Using PMIL

Having investigated the sample complexity effects of the
use of bags, we now turn to more realistic experiments,
where H is the set of separating hyperplanes, and PMIL
is used to find a separator. In each setting we applied the
procedure in Table 1 several times, until a separator with
perfect classification on the sample of bags was found, or
one second of runtime had passed. If a second had passed,
we selected the separator that produced the lowest number
of errors. L was set to 10.

The first set of experiments was on synthetic examples with
no label noise, drawn uniformly from X = [0, 1]10. A pos-
itive label was a assigned to a fraction of size α of the cube.
We performed the experiments with different sample sizes,
bag sizes, and values of α. PMIL usually succeeded in
achieving zero or almost zero error on the training set. Even
for a bag size of 19, the algorithm usually finished with a
negligible number of errors. Figure 7 compares the learn-
ing curves when using bags and without the use of bags for
two values of α. Each dot in is the average of 1000 exper-
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Figure 6: Learning curves for the finite hypothesis class, with different values of α: comparing no use of
bags, bags of size 2, and bags of size r

∗(0, α). In the right plot, some of the labels were randomly flipped.
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Figure 7: Learning synthetic data using PMIL, For two different α.
The optimal bag size produces a significant improvement over r = 1

iments. Here too the improvement in performance when
using bags is clearly visible.

Next, we tested our learning procedure on real data sets,
using samples of bags created from the original labeled ex-
amples. The first data set is the Statlog (Shuttle) dataset
(Asuncion and Newman, 2007). It was chosen due to
the relative ease of classification using regular supervised
learning, which allowed us to investigate the results of us-
ing bags in multiple experiments. To make the original
multi-class problem into a binary classification problem,
we selected from the training set and from the test set only
examples with class 1 and 5. Class 5 was mapped to a pos-
itive label. Its occurrence in the data set is α = 0.067, thus
r∗(α, 0) ∼ 14.5. The results are plotted in Figure 8. On
the left is the error as a function of the bag size for different
sample sizes, showing that the lowest error is achieved, as
expected, around r = 14. In the middle we compare the
learning curve between learning with no bags, with bags of
size 2, and with r = 14. Here too even a bag size of 2
provides a large improvement in the error.

The second real data set we learned with PMIL was
the Caltech101 image data set (L. Fei-Fei and Perona.,
2004), exemplified in Figure 1. The positive class was the
Faces easy category. The negative class was all the cate-
gories except for Faces and BACKGROUND Google, since
they contain images of faces. We built a random training set

of 3850 images and a random holdout set of 500 images.
In both sets the we set the fraction of faces to α = 0.1.
We extracted 1000 features from the training images using
k-means clustering on interest points detected as in Miko-
lajczyk and Schmid (2004), with default parameters. PMIL
was applied to the resulting feature vectors with several bag
sizes and sample sizes. Because of the default feature ex-
traction methodology and the relatively small number of
examples of faces, the best error rate that could be reached
using individual examples was quite high compared to α,
and only small bag sizes could be tested. Figure 8 (Right)
compares the learning curves for r = 1, r = 2 and r = 5,
which are lower than r∗(α, 0) ∼ 9.5. An interesting effect
can be seen: When the sample size is small, it is better to
use bags of a smaller size. As the sample grows, larger bags
become more beneficial.

6 Summary

We studied a novel paradigm for learning from a labeled
sample using a teacher that can provide OR-labels, when
the cost of obtaining labels from the teacher is high, while
the cost of presenting examples to the teacher is negligi-
ble. We demonstrated that a significant improvement in the
error can be achieved with a fixed amount of labels, by pre-
senting to the teacher bags of examples instead of individ-
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Figure 8: Left and Middle: Experiments on the Statlog data set (α = 0.067). Left: the error as a function of the
bag size. Each line is a sample size. Middle: Learning curves, comparing bag sizes of 1 (no bags), 2, and 14.
Right: Classifying images with faces (α = 0.1) – learning curves, comparing three bag sizes.

ual examples. We have shown that the size of the bag that
should be used has an optimum and that an almost optimal
bag size can be analytically found. The PMIL algorithm
was proposed for finding a separating hyperplane with low
training error from a sample of bags. Experiments on vari-
ous types of data sets demonstrate that the proposedmethod
and learning algorithm work well in practice, and that the
method can be used even if the exact problem parameters
are not known. Many aspects in this new paradigm call
for further work. One important issue is a more general
analysis of the problem that would dispense with the sim-
plifying assumptions, and allow for a non-negligible cost
of presenting examples to the teacher, and a labeling error
that depends on the bag size.
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