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Abstract
The perception-action cycle is often defined as “the circular flow of information

between an organism and its environment in the course of a sensory guided sequence
of actions towards a goal” (Fuster 2001, 2006). The questionwe address in this pa-
per is in what sense this “flow of information” can be described by Shannon’s mea-
sures of information introduced in his mathematical theoryof communication. We
provide an affirmative answer to this question using an intriguing analogy between
Shannon’s classical model of communication and the Perception-Action-Cycle. In
particular, decision and action sequences turn out to be directly analogous to codes
in communication, and their complexity — the minimal numberof (binary) deci-
sions required for reaching a goal — directly bounded by information measures,
as in communication. This analogy allows us to extend the standard Reinforcement
Learning framework. The latter considers the future expected reward in the course
of a behaviour sequence towards a goal (value-to-go). Here,we additionally incor-
porate a measure of information associated with this sequence: the cumulated in-
formation processing cost or bandwidth required to specifythe future decision and
action sequence (information-to-go).

Using a graphical model, we derive a recursive Bellman optimality equation for
information measures, in analogy to Reinforcement Learning; from this, we ob-
tain new algorithms for calculating the optimal trade-off between the value-to-go
and the required information-to-go, unifying the ideas behind the Bellman and the
Blahut-Arimoto iterations. This trade-off between value-to-go and information-to-
go provides a complete analogy with the compression-distortion trade-off in source
coding. The present new formulation connects seemingly unrelated optimization
problems. The algorithm is demonstrated on grid world examples.
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1 Introduction

To better understand intelligent behaviour in organisms and to develop such be-
haviour for artificial agents, the principles of perception, of intelligent information
processing, as well as of actuation undergo significant study. Perception, informa-
tion processing and actuation per se are often considered asindividual, separate
input-output processes. Much effort is devoted to understand and study each of these
processes individually. Conceptually, the treatment of such input-output models is
straightforward, even if its details are complex.

Compared to that, combining perception, information processing and actuation
together introduces a feedback cycle that considerably changes the “rule of the
game”. Since actuation changes the world, perception ceases to be passive and will,
in future states, generally depend on actions selected earlier by the organism. In
other words, the organism controls to some extent not only which states it wishes to
visit, but consequently also which sensoric inputs it will experience in the future.

The “cycle” view has intricate consequences and creates additional complexi-
ties. It is, however, conceptually more satisfying. Furthermore, it can help identify-
ing biases, incentives and constraints for the self-organized formation of intelligent
processing in living organisms — it is no surprise that theembodied intelligence
perspective is adopted by many AI researchers (Pfeifer and Bongard 2007) which
is intimately related to the perception-action cycle perspective. It has been seen as
a path towards understanding where biological intelligence may have risen from in
evolution and how intelligent dynamics may be coaxed out of AI systems.

A challenge for the quantitative treatment of the perception-action cycle is that
there are many ways of modeling it which are difficult to compare. Much depends
on the choice of architecture, the selected representationand other aspects of the
concrete model. To alleviate this unsatisfactory situation, recent work has begun
to study the perception-action cycle in the context of a (Shannonian) information-
theoretic treatment (Bialek et al. 2001; Touchette and Lloyd 2000, 2004; Klyubin
et al. 2004, 2007), reviving early efforts by Ashby (1956).

The information-theoretic picture is universal, general,conceptually transparent
and can be post hoc imbued with the specific constraints of particular models. On the
informational level, scenarios with differing computational models can be directly
compared with each other. At the same time, the informational treatment allows one
to incorporate limits in the information processing capacity that are fundamental
properties of a particular agent-environment system.

This is especially attractive in that it seems to apply to biologically relevant sce-
narios to some extent; details of this view are increasinglydiscussed (Taylor et al.
2007; Polani 2009). Under this perspective, in essence, oneconsiders e.g. the infor-
mational cost of handling a given task. Vice versa, one can ask how well one can
actually handle a task if constraints on the computational power are imposed (here
in the form of limited informational bandwidth).

On the other side, there is the established framework ofMarkovian Decision
Problems(MDPs) which is used to study how to findpolicies(i.e. agent strategies)
that perform a task well, where the quality of the performance is measured via some
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cumulative reward value which depends on the policy of the agent. The MDP frame-
work is concerned with describing the task and with solving the problem of finding
the optimal policy. It is not, however, concerned with the actual processing cost that
is involved with carrying out the given (possibly optimal) policies. Thus, an opti-
mal policy for the MDP may be found which maximizes the rewardachieved by an
agent, but which does not heed possible computational costsor limits imposed on
an agent — this is in contrast to simple organisms which cannot afford a large infor-
mational bandwidth or minimal robots for which a suboptimal, but informationally
cheap performance would be sufficient.

It is therefore the goal of the present paper to marry the MDP formalism with
an information-theoretic treatment of the processing costrequired by the agent (and
the environment) to attain a given level of performance (in terms of rewards). To
combine these disparate frameworks, we need to introduce notions from both infor-
mation theory as well as from the theory of MDPs.

To limit the complexity of the present exposition, this paper will concentrate only
on modelling action rewards; we will not address here its symmetric counterpart,
namely (non-informational) costs of sensoric data acquisition. Furthermore, we will
skim only the surface of the quite intricate relation of the present formalism with
the framework of predictive information (e.g. in Sec. 5.3.2).

2 Rationale

An important remark about the present paper is that its core intention is the de-
velopment of a general and expressive framework, and not a particularly efficient
algorithm. In adopting the principled approach of information theory, we are here
not concerned with producing an algorithm which would compare performance-
wise with competitive state-of-the-art MDP learners (suchas, e.g. Engel et al. 2003;
Jung and Polani 2007); and neither are we concerned with proposing or investigat-
ing particular flavours of the perception-action architecture. Instead, the idea behind
the application of information theory to the perception-action cycle is to open the
path towards a new way of looking at the perception-action cycle with the hope that
this will lead to new concepts, new insights and, possibly, new types of questions.

In particular, because of its universality, and because theframework of informa-
tion theory has deep ramifications into many fields, including physics and statistical
learning theory, it makes different architectures, modelsas well as scenarios compa-
rable under a common language. This allows information theory to be applied across
various and quite disparate domains of interest (such as e.g. robotics, language, or
speech); in addition, it opens up a natural approach to bridge the gap between the
study of artificial and of biological systems. Information theory gives rise to a rich
and diverse set of theorems and results, far beyond its original application to com-
munication theory. These results include the formulation of fundamental bounds for
computational effort and/or power. Furthermore, information-optimal solutions ex-
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hibit a significant array of desirable properties, among other being least biased or
committed, or being maximally stable (see Sec. 8.2).

The particular slant that the present paper takes is essentially to consider the
issue of optimal control in the guise of MDPs and expressing it in the language of
information. This is not a mere equivalent re-expression ofthe control task. Rather,
it adds a rich structural and conceptual layer to it.

In recent work, the classical task of optimal control has found an elegant re-
formulation in probabilistic and information-theoretic language: the control task is
formulated as a probabilistic perturbation of a system by anagent, and the Bell-
man equation governing the optimal control solution can be expressed instead as a
Kullback-Leibler divergence minimization problem (Todorov 2009); by identifying
optimal control problems with Bayesian inference problems(Strens 2000), the effi-
cient methods for graphical model inference become available for the computation
of the optimal policies (Kappen et al. 2009). This can be generalized to consider di-
rectly the desired distribution of outcomes of the agent’s action (Friston et al. 2006;
Friston 2009).

In fact, this interpretation invites an even more general picture of the control
problem: instead of specifying the reward structure externally, one can consider the
intrinsic informational dynamics of an agent interacting with its environment. On
the one hand, the study of the information flows in such a system gives important in-
sights into the operation of the agent-environment system (Ay and Wennekers 2003;
Lungarella and Sporns 2006; Ay and Polani 2008). On the otherhand, one can obtain
natural, intrinsically driven (“self-motivated”, “reward-less”) agent behaviours by
optimizing information flows (Lungarella and Sporns 2005; Sporns and Lungarella
2006), predictive information (Ay et al. 2008) or the agent-external channel capac-
ity of the perception-action cycle (“empowerment”, Klyubin et al. 2005a, 2008).
Because of its cyclical character, the interplay between agent-external and agent-
internal information processing has been likened to an informational “Carnot Cycle”
(Fry 2008), whose optimal thermal efficiency would find an informational analog in
the concept ofDual Matching, which is essentially thejoint source-channel coding
proposed in (Gastpar et al. 2003).

Here, we will revisit the earlier mentioned MDP problem, andagain we will em-
ploy an informational view. However, here, unlike in (Todorov 2009; Kappen et al.
2009), the informational picture will not be used to implement a Bayesian infer-
ence mechanism that realizes a solution to the Bellman equation — quite the oppo-
site: we will, in fact, stick with the classical decision-theoretic Bellman approach to
MDP. We will, however, combine this approach with a perspective which elevates
the information used in the agent’s decision process to the “first class object” of our
discourse. Adopting this philosophy, we will see how the ramifications of the infor-
mation approach will project into a wide array of disparate issues, ranging from the
analogy between the perception-action cycle and Shannon’scommunication chan-
nel to the relation between the Dual Matching condition mentioned earlier (“Carnot
optimality”) and the perfectly adapted environment in Secs. 5.3.2 and 7.2.



Information Theory of Decisions and Actions 5

3 Notation

3.1 Probabilistic Quantities

We will employ uppercase characters for random variablesX,Y,Z . . . , lowercase
characters for concrete valuesx,y,z. . . that they assume and curved characters
X ,Y ,Z for their respective domains. For simplicity we will assumethat the do-
mains are finite.

The probability that a random variableX assumes a valuex∈ X is denoted by
Pr(X = x). However, to avoid unwieldy expressions, we will, by abuse of notation,
write p(x) with x being the lowercase of the random variableX in question. Occa-
sionally, we will need to associate two different distributions with the same random
variable domainX ; these cases will be clearly indicated, and the corresponding dis-
tributions will be denoted by the notationp(x), p̂(x),q(x) . . . and similar. Where a
random variable is subscripted, such as inXt , a different indext will denote different
variables.

3.2 Entropy and Information

We review some of the basic concepts of Shannon’s information theory and nota-
tional conventions relevant for this paper. For a more complete discussion see e.g.
(Cover and Thomas 1991).

Define theentropy H(X) of a random variableX as

H(X) := − ∑
x∈X

p(x) logp(x) (1)

where the result is expressed in the unit ofbits if the logarithm is taken with respect
to base two; we assume the identification 0 log0= 0. Furthermore, in the follow-
ing we will drop the summation domainX when the domain is obvious from the
context. Also, we will writeH[p(x)] instead ofH(X) if we intend to emphasize the
distributionp of X.

The entropy is a measure of uncertainty about the outcome of the random variable
X before it has been measured or seen, and is a natural choice for this (Shannon
1949). The entropy is always nonnegative. It vanishes for a deterministicX (i.e. if
X is completely determined) and it is easy to see (e.g. using the Jensen inequality)
that H[p(x)] is a convex functional over the simplex of probability distributions
which attains its maximum log|X | for the uniform distribution, reflecting the state
of maximal uncertainty.

If a second random variableY is given which is jointly distributed withX accord-
ing to the distributionp(x,y), then one can define the joint entropyH(X,Y) trivially
as the entropy of the joint random variable(X,Y). Furthermore, one can now define
theconditional entropyas
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H(X|Y)
∆
= ∑

y
p(y)H(X|Y = y) := −∑

y
p(y)∑

x
p(x|y) logp(x|y) .

The conditional entropy measures the remaining uncertainty aboutX if Y is known.
If X is fully determined on knowingY, it vanishes. With the conditional entropy,
one obtains the basic additivity property, orchain rulefor the entropy,

H(X,Y) = H(Y)+H(X|Y) = H(X)+H(Y|X) . (2)

This additivity of the entropy for (conditionally) independent variables can, in
fact, be taken as the defining property of Shannon’s entropy,as it uniquely deter-
mines it under mild technical assumptions.

Instead of the uncertainty that remains in a variableX once a jointly distributed
variableY is known, one can ask the converse question: how much uncertainty in
X is resolved ifY is observed, or stated differently, how muchinformationdoesY
convey aboutX. This gives rise to the highly important notion ofmutual information
betweenX andY, which is expressed in the following equivalent ways,

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) = H(X)+H(Y)−H(X,Y) . (3)

It is non-negative and symmetric, and vanishes if and only ifX andY are indepen-
dent. The mutual information turns out to play a major role inShannon’s source and
channel coding theorems and other important ramifications of information theory.

A closely related, technically convenient and theoretically important quantity is
therelative entropy, or Kullback-Leibler divergence: assume two distributions over
the same domainX , p(x) andq(x), wherep is absolutely continuous with respect
to q (i.e.q(x) = 0⇒ p(x) = 0). Then define the relative entropy ofp andq as:

DKL [p||q]
∆
= ∑

x
p(x) log

p(x)
q(x)

, (4)

with the convention 0 log00
∆
= 0. The relative entropy is a measure how much “com-

pression” (or prediction, both in bits) could be gained if instead of an hypothesized
distributionq of X, a concrete distributionp is utilized. It is the mean code length
difference ifq(x) is assumed for the prior distribution ofX but p(x) is the actual
distribution.

We mention several important properties of the relative entropy needed for the
rest of the paper (for details see e.g. Cover and Thomas 1991). First, one has
DKL [p||q] ≥ 0 with equality if and only ifp = q everywhere (almost everywhere
in the case of continuous domainsX ). In other words, one can not do better than
actually assuming the “correct”q. Second, the relative entropy can become infinite
if for an outcomex that can occur with nonzero probabilityp(x) one assumes a
probabilityq(x) = 0. Third, the mutual information between two variablesX andY
can be expressed as

I(X;Y) = DKL [p(x,y)||p(x)p(y)] (5)
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where we writep(x)p(y) for the product of the marginals by abuse of notation. Basi-
cally, this interprets mutual information as how many bits aboutY can be extracted
from X if X andY are not independent, but jointly distributed. If they are indeed
independent, that value vanishes.

Furthermore, we would like to mention the following property of the relative
entropy:

Proposition 1 DKL[p||q], is convex in the pair(p,q).

The first important corollary form this is the strong concavity of the entropy func-
tional, i.e. that there is a unique distribution with maximum entropy in any (compact)
convex subset of the simplex. Since the mutual information can be written as

I(X;Y) = DKL [p(x,y)||p(x)p(y)] = EyDKL [p(x|y)||p(x)] ,

one can assert thatI(X;Y) is a concave function ofp(x) for a fixed p(y|x), and
a convex function ofp(y|x) given p(x). This is relevant because it guarantees the
unique solution of the two fundamental optimization problems of information the-
ory. The first is minp(y|x) I(X;Y), givenp(x) and subject to other convex constraints,
i.e., the source coding or Rate-Distortion function. The second is maxp(x) I(X;Y),
givenp(y|x) and possibly other concave constraints, i.e., the channel capacity prob-
lem.

4 Markov Decision Processes

4.1 MDP: Definition

The second major building block for the treatment of perception-action cycles in the
present paper is the framework of Markov Decision Processes(MDPs). It is a basic
model for the interaction of an organism (or an artificial agent) with a stochastic
environment. We note that, as discussed in Sec. 8.2, the Markovicity of the model is
not a limitation; while our exposition of the formalism employed below will indeed
assume access to the full state of the system for the purposesof computation, it will
fully retain the ability to model the agent’s subjective view.

In the MDP definition, we follow the notation from (Sutton andBarto 1998).
Given a state setS , and for each states∈ S an action setA (s), an MDP is spec-
ified by the tuple(Ps′

s,a,R
s′
s,a), defined for alls,s′ ∈ S and a ∈ A (s) wherePs′

s,a
defines the probability that performing an actiona in a states will move the agent
to states′ (hence

∑
s′

Ps′
s,a = 1 (6)

holds) andRs′
s,a is the expected reward for this particular transition (notethat Rs′

s,a
depends not only on starting states and actiona, but also on the actually achieved
final states′).
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4.2 The Value Function of an MDP and its Optimization

The MDP defined in Sec. 4.1 defines a transition structure plusa reward. Apol-
icy specifies an explicit probabilityπ(a|s) to select actiona ∈ A (s) if the agent
in a states∈ S . The policyπ has the character of a conditional distribution, i.e.

∑
a∈A (s)

π(a|s) = 1.

Given such a policyπ , one can now consider the cumulated reward for an MDP,
starting at timet at statest , and selecting actions according toπ(a|st). This action
gives a rewardrt and the agent will find itself in a new statest+1. Iterating this
forever, one obtains the total reward for the agent following policyπ in the MDP by
cumulating the rewards over the future time steps:

Rt =
∞

∑
t′=t

rt′ , (7)

whereRt is the total reward accumulated1 into the future starting at time stept.
Due to the Markovian nature of the model, this cumulated reward will depend

only on the starting statest and, of course, the policyπ of the agent, but not time,
so that the resulting future expected cumulative reward value can be writtenVπ(s)
where we dropped the indext from the states.

Usually in the Reinforcement Learning literature a distinction is made between
episodicand non-episodicMDPs. Strictly spoken, Eq. (7) applies to the non-
episodic case. For the episodic case, the sum in Eq. (7) is notcontinued to infinity,
but stops at reaching so-calledgoalstates. However, to unify the treatment, we will
stick with Eq. (7) and rather suitably adapt(Ps′

s,a,R
s′
s,a).

A central result from the theory of Dynamic Programming and Reinforcement
Learning is the so-called Bellman recursion. Even while thefunctionVπ would be,
in principle, computed by averaging over all possible pathsgenerated through the
policy π , it can be expressed through theBellman Equationwhich is a recursive
equation forVπ :

Vπ(s) = ∑
a∈A (s)

π(a|s) · ∑
s′∈S (s)

Ps′
s,a ·

[

Rs′
s,a +Vπ(s′)

]

(8)

where the following assumptions hold:

1. a sums over all actionsA (s) possible ins;
2. s′ sums over all successor statesS (s) of s;
3. for an episodic MDP,Vπ(s) is defined to be 0 ifs is a goal state.

In the Reinforcement Learning literature, it is also commonto consider the value
function V being expanded per-action into the so-calledQ function as to reflect

1 To simplify the derivations, we will always assume convergence of the rewards and not make
use of the usual MDP discount factor; in particular, we assume either episodic tasks or nonepisodic
(continuing) tasks for which the reward converges. For further discussion, see also the remark in
Sec. 8.2 onsoft policies.
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which actiona in a statesachieves which reward:

Qπ(s,a) = ∑
s′∈S (s)

Ps′
s,a ·

[

Rs′
s,a +Vπ(s′)

]

. (9)

In turn,Vπ(s) can be obtained fromQπ(s,a) by averaging out the actionsa with
respect to the policyπ .

To streamline and simplify the notation in the following, weassume without loss

of generality that, in principle, all actionsA
∆
=

⋃

s∈S

A (s) are available at each state

s and all statesS could be potential successor states. For this, we will modify the
MDP in a suitable way: actionsa∈ A that are not in the currently legal action set

A (s) will be excluded from the policy, either by imposing the constraintπ(a|s)
!
= 0

or, equivalently, by settingRs′
s,a

!
= −∞. Similarly, transition probabilitiesPs′

s,a into
non-successor statess′ are assumed to be 0. Furthermore, for an episodic task, a goal
states is assumed to be absorbing (i.e.Ps′

s,a = δs,s′ where the latter is the Kronecker

delta) with transition rewardRs′
s,a = 0.

The importance of the Bellman Equation (8) is that it provides a fixed-point equa-
tion for Vπ . The value function which fulfils the Bellman Equation is unique and
provides the cumulated reward for an agent starting at a given state and following a
given policy. Where a value functionV which is not a fixed point is plugged into the
right side of Eq. (8), the equation provides a contractive map which converges to-
wards the fixed point of the equation and thus computes the value ofVπ for a given
policy π . This procedure is calledvalue iteration.

Finally, for an optimization of the policy — the main task of Reinforcement
Learning — one then greedifies the policy, obtainingπ ′, inserts it back into the
Bellman Equation, recomputesVπ ′

and continues the double iteration until conver-
gence (Sutton and Barto 1998). This two-level iteration forms a standard approach
for MDP optimization. In the current paper, we will develop an analogous iteration
scheme which, however, will also cater for the informational cost that acting out an
MDP policy entails. How to do this will be the topic of the coming sections.

5 Coupling Information with Decisions and Actions

The treatment of an MDP, fully specified by the tuple(Ps′
s,a,R

s′
s,a), is usually con-

sidered complete on finding an optimal policy. However, recent arguments concern-
ing biological plausibility indicate that any hypothesized attempt to seek optimal
behaviour by an organism needs to be balanced by the considerable cost of infor-
mation processing which increasingly emerges as a central resource for organisms
(Laughlin 2001; Brenner et al. 2000; Taylor et al. 2007; Polani 2009). This view
has recently led to a number of investigations studying the optimization of informa-
tional quantities to model agent behaviour (Klyubin et al. 2005a; Prokopenko et al.
2006; Ay et al. 2008). The latter work creates a connection betweenhomeokinetic



10 Naftali Tishby and Daniel Polani

dynamics and the formalism of predictive information (Der et al. 1999; Bialek et al.
2001).

In view of the biological ramifications, the consideration of anexplicit reward be-
comes particularly relevant. The question then becomes to find the optimal rewards
that an organism can accumulate under given constraints on its informational band-
width; or, more generally, the best possible trade-off between how much reward the
organism can accumulate vs. how much informational bandwidth it needs for that
purpose.

In this context, it is useful to contemplate the notion ofrelevant information. The
concept of relevant information stems from the informationbottleneck formalism
(Tishby et al. 1999). To do so, one interprets an agents’ actions as the relevance in-
dicator variables of the bottleneck formalism. This provides an informational treat-
ment of single-decision sequential (Markovian) decision problems (Polani et al.
2001, 2006), quantifying how much informational processing power is needed to
realize a policy that achieves a particular value/reward level. Since we determine the
relevance of information by the value it allows the agent to achieve, we speak in this
context also ofvaluable information2. A related, but less biologically and resource-
motivated approach is found in (Saerens et al. 2009). The topic of the present paper
is a significant generalization of these considerations to the full-fledged perception-
action cycle, and their treatment in the context of a generalized Bellman-type recur-
sion.

5.1 Information and the Perception-Action Cycle

To apply the formalism of information theory, the quantities involved are best rep-
resented as random variables. Specifically in the context ofan MDP, or more specif-
ically of an agent acting in an MDP, one can make use of the formalism of (Causal)
Bayesian Networks (Pearl 2000; Klyubin et al. 2004, 2007). Here, we introduce
for completeness the general Bayesian Perception-Action Cycle formalism, before
specializing it to the particular case studied in the present paper.

5.1.1 Causal Bayesian Networks

We briefly recapitulate the definition of(Causal) Bayesian Networks, also called
probabilistic graphical models(see Pearl 2000). Causal Bayesian Networks provide
a way to describe compactly and transparently the joint distribution of a collection
of random variables.

2 Valuable information is not to be confused with thevalue of informationintroduced in (Howard
1966). Serving similar purposes, it is conceptually different, as it measures the value difference
attainable in a decision knowing vs. not knowing the outcomeof a given random variable. Stated
informally, it could be seen as “non information-theoreticconjugate” of valuable information.
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A Bayesian networkG over a set of random variablesX ≡ {X1, . . . ,Xn} is a
Directed Acyclic Graph (DAG)G in which each vertex is annotated by (or identified
by) names of the random variablesXi . For each such variableXi , we denote byPa[Xi ]
the set of parents ofXi in G andPa[xi ] their values. We say that a distributionp(x)
is consistentwith G, written p∼ G, if it can be factored in the form:

p(x1, . . . ,xn) =
n

∏
i=1

p(xi | Pa[xi ]) .

(To simplify notation, we adopt the canonical convention that a conditional distri-
bution conditioned against an empty set of variables is simply the unconditional
distribution).

5.1.2 Bayesian Network for a Reactive Agent

To see how Bayesian Networks can be applied to model an agent operating in a
world, consider first a minimal model of a reactive agent. Theagent carries out
actionsA after observing the stateW of the world to which it could, in principle,
have full access (this assumption will be revisited later).Such an action, in turn,
transforms the old state of the world into a new world state.

In different states, typically different actions will be taken, and if one wishes to
model the behaviour of the agent through time, one needs to unroll the cycle over
time. This leads to the Causal Bayesian Network which is shown in Eq. (10); here
the random variables are indexed by the different time steps. . .t −3,t −2, . . . ,t,t +
1. . . . Each arrow indicates a conditional dependency (which can also be interpreted
as causal in the sense of Pearl). For instance, at timet, the state of the world is
Wt which defines the (possibly probabilistic) choice of actionAt immediately (no
memory); this action, together with the current state of theworld determines the
next state of the worldWt+1, etc.

. . . Wt−2 //

��:
::

::
::

Wt−1 //

��:
::

::
::

Wt //

��:
::

::
::

Wt+1

��:
::

::
::

. . .

At−3

AA�������
At−2

AA�������
At−1

BB�������
At

AA�������
At+1

(10)
Note that in this model there is a priori no limitation on the arrow fromWt to At ,

i.e. onp(at |wt ), and the agent could theoretically have full access to the stateWt .

5.1.3 Bayesian Network for a General Agent

After the simplest of the cases, consider a significantly more general case, the
perception-action cycle of an agent with sensors and memory, as in Eq. (11).
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. . .Wt−3
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,
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��,
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,

// Wt+2 . . .

St−3

��,
,,
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,

At−3

HH������
St−2

��,
,,

,,
,

At−2

HH������
St−1

��,
,,

,,
,

At−1

JJ������
St

��(
((
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(

At

HH������
St+1

��,
,,

,,
,

At+1

FF

Mt−3

HH������
// Mt−2

HH������
// Mt−1

HH������
// Mt

JJ������
// Mt+1

HH������

(11)
Here,Wt represents again the state of the world at timet, At the actions; addi-

tionally, one hasSt as the sensor and a memory variableMt . The sensor variable
St models the limited access of the agent to the environment, the memory variable
allows the agent to construct an internal model of the external state that can depend
on earlier sensoric observations.

A few notes concerning this model:

1. it is formally completely symmetric with respect to an exchange of agent and
environment — the state of the environment corresponds to the memory of the
agent; the interface between environment and agent is formed by the sensors
and actuators (the only practical difference is that the arrows inside the agent
are amenable to adaptation and change, while the environmental arrows are
slow, difficult and/or expensive to modify, but this is not reflected in the model
skeleton).

2. from the agent’s point of view, the sensor variable essentially transforms the
problem into a POMDP; however, in the Bayesian Network formalism, there is
nothing special about the limited view of the agent as opposed to an all-knowing
observer. Where necessary, the eagle’s eye perspective of an all-knowing ob-
server can be assumed. In particular in conjunction with informational opti-
mization, this allows one to select the level of informational transparency in the
network between various nodes, in particular to study various forms and degrees
of access to world information that the agent could enjoy, such as e.g. in sensor
evolution scenarios (Klyubin et al. 2005b);

3. in the following, we will consider only agents which, in principle, could have
full access to the world state. In other words, we will collapseW andS into the
same variable (we postpone the discussion of the full systemto a future study);

4. we note furthermore that modeling a memory implies that one wishes to sep-
arately consider the informational bandwidth of the environment and that of
the agent; else the environment itself could be considered as part of the agent’s
memory. In this paper, we are indeed interested in the information processed
in the complete agent-environment system and not the individual components.
Here, we will therefore consider a reactive agent without a memory. However,
this is not a limitation in principle, as the approach presented is expected to
carry over naturally to models of agents with memory.
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With these comments, for the current paper, we finally end up at the following
diagram which will form the basis for the rest of the paper:

. . . St−2 //

��9
99

99
99

St−1 //

��9
99

99
99

St
//

��:
::

::
::

St+1

��9
99

99
99

. . .

At−3

BB�������
At−2

BB�������
At−1

BB�������
At

BB�������
At+1

(12)
which is essentially diagram (10), but where environmentalstate and sensor state
have been collapsed into the same random variableS.

5.2 Actions as Coding

To obtain an intuition how actions can be interpreted in the language of coding,
represent a given MDP as a graph3 with transition edges between a states and its
successor states′. In this graph, the edges are labeled by the actionsa available in
the given states (as well as the transition probabilities and rewards). Multiple edges
can connect a given states and its successor states′ as long as they differ by their
action label, in other words differing actions may lead to the same transition.

From this picture, it is easy to see that any MDP can be modifiedwithout loss of
generality in such a way that the actions have the same cardinality in every state. In
the simplest case, we can always make this cardinality 2 and all the actions/decisions
binary. To see this, consider the standard example of a grid-world, or a maze. As ex-
plained above, describe such a world by a (directed) graph with vertices of various
degrees. Replace now every junction (which could have an arbitrary number of pos-
sible action choices) by a roundabout. In a roundabout, every decision becomes
binary: continue on the roundabout or take the turn. Thereby, the decisions/actions
become binary (left/right), without changing anything else in the problem.

More generally, this can be done by transforming any complexdecision into
a binary decision tree. Thus, long decision/action sequences are encoded as long
bit sequences. It is important to note, though, that each such bit can have entirely
different semantic context, depending on its location on the graph.

Assume now for this section that our MDP is made of only binarydecisions
and/or actions, denoted bya j ∈ {0,1}, and treat decision sequences as finite binary
stringsa1a2 . . .ak ≡ a. Denote furthermore byl the standard string length function

operating on these strings:l(a) ≡ l(a1a2 . . .ak)
∆
= k.

We can now draw simple direct analogies between binary decision sequences
and binary codes in communication. We assume that there exist finite sequences of
actions (at least one) which deterministically connect anystateswith any other state
s′ (the MDP is simply connected, and deterministic). Denote byas,s′ such a (binary)

3 This is a transition graph and should not be confused with theBayesian Network Graph.
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action sequence, and byl(as,s′), its length. The following properties either follow
immediately or are easy to verify:

• Unique decoding: a binary decision sequence uniquely determine the end-state
s′, given the starting states.

• Concatenation: for any three statess1,s2,s3, the concatenation ofas1,s2 ◦ as2,s3

is a sequence that connectss1 to s3.

• Minimal length: for any two statess,s′ we can definels→s′
∆
= minas,s′

l(as,s′). We
will call this minimal length betweens ands′ the decision complexityof the
paths→ s′ in the MDP.

Now, in general, while decision/action sequences have similarities to codes as
descriptions of trajectories on a graph, there are also important differences. First, in
general it is not always the case that the goal of an MDP is reaching a particular
target state (or a set of target states), as in the case of the maze. Sometimes the
optimal solution for an MDP is distributed and more diffused, or it involves an
extended behaviour of potentially infinite duration as is required in optimal control,
wealth accumulation, or survival. In particular, the required action trajectory may
turn out not to be deterministic, or not finite, or neither. Moreover, if the MDP is
noisy (i.e.Ps′

s,a is not deterministic), a given action sequence does not necessarily
determine a unique trajectory of states, but rather a distribution of state sequences.

This poses no problem though, since, as in standard information theory, above
notion of decision complexity can be smoothly generalized to still have meaning
in the probabilistic or non-finite action sequence: for thispurpose one defines it to
be theexpectednumber of binary decisions, or bits of information, required by the
agent in the future to achieve a certain expected cumulated reward valueVπ(st )
if one starts out at a particular statest at a given timet in the MDP. The deci-
sion complexity is essentially a generalization of the notion of relevant information
(mentioned earlier in Sec. 5) from individual actions to complete action sequences
starting at the current time and extending into the future.

Furthermore, one can extend the information processed by the agent alone to
the information processed by the whole system, encompassing both agent and en-
vironment. Hereby, one moves from decision complexity toprocess information.
This quantity is computed for the whole agent-environment system, beginning with
the current state (and agent action) and extended towards the open-ended future of
the system. Strictly spoken, we only consider the process information towards the
future, not the past. In analogy to the term “cost-to-go”, wewill speak ofprocess
information-to-go, or simplyinformation-to-goℑπ(st ,at) which is computed speci-
fying a given starting statest and an initial actionat and accumulating information-
to-go into the open-ended future.

The information-to-go is the information needed (or missing) to specify the fu-
ture states and actions relative to some prior knowledge about the future. One com-
ponent of this information is the due to uncertainty in the decisions; the other is
the information that is “given” or “processed” by the environment in the state tran-
sitions. For discrete states and actions we can think of it asthe future state-action
entropy, conditioned on the current state-action pair. More generally, one would use
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the Kullback-Leibler divergenceDKL of the actual distribution relative to the prior
distribution. This is actually implements an “informational regret” which general-
izes the simple conditional entropy (and is better-behavedin the case of continuous
states and actions). We define the notion of information-to-go formally in Sec. 6.2,
Eq. (20).

Let us emphasize again that the philosophy of the present approach is intimately
related to the concept of relevant information (Tishby et al. 1999; Polani et al. 2001,
2006) which quantifies the minimal informational cost for individual decisions an
agent needs to take to achieve a given future expected cumulated reward (i.e. value).
A difference between relevant information and the present study is that here we
consider the information processed by whole system, not just the agent. However,
by far the most important distinction is that we generalize this concept to include
the information to be processed by the system not just for onetime step, but over the
wholeperiod of the run and thus through multiple cycles of the perception-action
cycle projected into the future.

The intimate relation between the theories of information and of coding would
suggest an interpretation of the formalism in terms of coding. However, statements
in coding theory are typically of asymptotic nature. Now, ingeneral, a run of an
agent through an MDP does not need to be of infinite length, noteven on average:
finite-length runs are perfectly possible. To reconcile this conflict, consider the fol-
lowing two interpretations which we expect to be able to recover the asymptotics
required for a coding-theoretic interpretation:

1. runs are restarted after completion, infinitely often, thereby extending the MDP
into an infinite future;

2. assume that the total available information processing power of the agent is
pooled and shared by a large number of separate decision processes; a partic-
ular decision process will utilize a certain amount of information processing
bandwidth at a given time, and the information-theoretic formalism then de-
scribes the usage averaged over all processes (weighted with their probability
of occurring). This second view introduces an ensemble interpretation of the
formalism.

We believe that both, the infinite length run and the ensembleinterpretation allow
a connection of the present formalism to coding theory and provide tight bounds
in the asymptotic case. This question will be pursued further in the future, but is
outside the remit of the present paper.

5.3 Information-To-Go

To prepare the ground for the later technical developments,in the present section,
we first give a high-level outline of the coming discussions.
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5.3.1 A Bellman Picture

The information-to-go,ℑπ(st ,at), is an information-theoretic quantity that is asso-
ciated with every state-action pair, in analogy to theQ(st ,at) function which can
be considered as thevalue- (or reward-)to-gofrom Reinforcement Learning. The
information-to-go quantifies how many bits one needs on average to specify the fu-
ture state-action sequence in an MDP (or its informational regret) relative to a prior.

In Sec. 6 we shall suggest a principled way of generatingℑπ -optimal soft-max
policies. Strikingly, these solutions obey a Bellman-typerecursion equation, analo-
gous to Reinforcement Learning; they involve a locally accumulated quantity which
can be interpreted as(local) information gain, the information provided by the en-
vironment associated with each state transition and action, in analogy to the local
reward in MDPs.

The local information gain will be shown to be composed of twonatural terms.
The first is the information measuring the environmental response to an action, i.e.
the information processed in the transition as the system moves to a new state; it
is determined by the MDP probabilitiesPs′

s,a. The second term is the information
requiredby the agent to select the valuable actions and is determinedby the policy
π(a|s).

The combination of the Value and Information Bellman equations gives a new
Bellman-like equation for the linear (Lagrangian) combination of the two, thefree
energyof the MDP, denotedFπ(st ,at ,β ), which reflects the optimal balance be-
tween the information-to-go and value-to-go achieved. Forgiven transition proba-
bilities, Ps′

s,a, and given policyπ(a|s), we can calculate the free energy for every
state/action pair by solving the Bellman equation, for any given trade-off between
information-to-go and value-to-go. This essentially implements a novel variant of
the rate-distortion formalism which applies to the value-information trade-off of
MDP sequences.

5.3.2 Perfectly Adapted Environments

This formulation gives rise to a second new insight, namely the characterization
of theperfectly adapted environmentby further minimizing the free energy with re-
spect to the MDP probabilities,Ps′

s,a. The MDP transition probabilities that minimize

the free energy are shown to be exponential in the reward,Rs′
s,a. In that particular

case all the information about the future is valuable and theoptimal policy turns out
to be also the one that minimizes statistical surprises.

Perfectly adapted environments form another family of scenarios (besides the
classical model of Kelly gambling, Kelly 1956) with the property that the maxi-
mization of information about the future is equivalent to the maximization of the
value of the expected reward. In general, this is not the case: rather, the current state
of the system will provide valuable (relevant) as well as non-valuable information
about the future. Non-valuable (irrelevant) information about the future is the infor-
mation that can be safely ignored (in a bottleneck sense) without affecting the future
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expected reward. It is the valuable (relevant) informationonly which affects the fu-
ture reward. In the special cases of both Kelly gambling as well as our case of the
perfectly adapted environment, however, all information is valuable — maximiz-
ing the future information is equivalent to maximizing the expected future reward.
When the bandwidth for future information is limited, this leads to a suboptimal
trade-off with respect to achievable future expected reward.

The interest in studying perfectly adapted environments stems from the fact that
they provide the key for linking predictive information with task-relevant informa-
tion. It has been hypothesized that living organisms maximize the predictive infor-
mation in their sensorimotor cycle and this hypothesis allows to derive a number
of universal properties of the perception-action cycle (Bialek et al. 2001; Ay et al.
2008), and, if this hypothesis has merit, this would imply aninterpretation of or-
ganismic behaviour in terms of (Kelly) gambling on the outcome of actions. On
the other hand, actual organismic rewards could in principle be structured in such
a way that much of the predictive information available in the system would turn
out to be irrelevant to select the optimal action; the distinction between relevant
and irrelevant information provides a characterization ofan organism’s niche in its
information ecology.

However, under the assumption that information acquisition and processing is
costly for an organism (Laughlin 2001; Polani 2009), one would indeed expect a
selection pressure for the formation of sensors that capture just the value-relevant
component of the predictive information, but no more. A stepfurther goes the hy-
pothesis that, over evolutionary times, selective pressure would even end up realign-
ing the reward and the informational structures towards perfectly adapted environ-
ments. Although here we are concentrating only on their theoretical implications,
it should be mentioned that all these hypotheses imply quantitative and ultimately
experimentally testable predictions.

5.3.3 Predictive Information

We assume in Eq. (12) that the agent has full sensoric access to the state of the
world. This is a special case of the more general case where the information-to-go
is the information that the agent at the current time has on the future of the system
and which is extracted from past observations. One implication of this assumption is
that the future information of the organism is bounded by thepredictive information
(defined e.g. in Shalizi and Crutchfield 2002; Bialek et al. 2001) of the environment
(Bialek et al. 2007). In Fig. 3 from (Bialek et al. 2007), information about the past,
the future, adaptive value and resources are put in relationto each other, and the pre-
dictive information (i.e. the information which the past ofthe system carries about
the future) corresponds to its 3rd quadrant. Note that this is not the full predictive in-
formation, but only the valuable (relevant) component of the predictive information,
in the sense that it identifies the information necessary to achieve a given value in
a given reward structure. Its supremum is the total valuableinformation that the en-
vironment carries about the future. The organism cannot have more future valuable
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information than is present in the environment, and will, usually, have less since it
is bounded by metabolic, memory or computational resources. As was shown by
(Bialek et al. 2001), for stationary environments the predictive information grows
sub-linearly with the future horizon window (it is sub-extensive). On the other hand,
for stationary environments and ergodic MDPs the information-to-go grows linearly
with the horizon (future window size), for large enough windows.

5.3.4 Symmetry

We wish to attract attention to a further observation: we commented already in
Sec. 5.1.3 that the Bayesian Network is symmetric with respect to environment and
agent — but, in addition, the Bayesian Network is also structurally symmetric with
respect to an interchange of past and future whereby the roleof sensing and acting
is switched. This structural symmetry is reflected in the essential interchangeability
of the past and future axes in the 3rd quadrant of Fig. 3 in (Bialek et al. 2007). To
complete the symmetry, we would need to additionally introduce a sensoric cost in
analogy to the actuatoric reward which is already implemented in the present pa-
per. Of course, the symmetry is only structural; in the framework, past and future
are of course asymmetric, since we compress the past and predict the future — i.e.
we minimize the information about the past and maximize the information about
the future (and see e.g. also Ellison et al. 2009). Likewise,the symmetry between
environment and agent is only structural, but the flexibility and the characteristic
dynamics will in general differ strongly between the environment and the agent.

5.4 The Balance of Information

The relevance of the informational treatment of the perception-action cycle arises to
some degree from the fact that information, while not a conserved quantity, observes
a number of consistency and bookkeeping laws. Other such laws are incarnated as
informational lower or upper bounds. Always implicit to such considerations is of
course the fact that, in the Shannon view, the source data can— in principle —
be coded, transmitted through the channel in question and then suitably decoded to
achieve the given bounds.

We note that the multi-staged treatment of communication channels separating
source and channel coding as espoused in the classical presentation by Shannon is
not necessarily the most biologically relevant scenario. For instance, it was noticed
by Berger (2003) that biology might be using non-separable information in the sense
of using joint source-channel coding (Csiszár and Körner1986). This view is of par-
ticular interest due to the discovery of the general existence of optimally matched
channels (Gastpar et al. 2003). The simplicity and directness they afford, suggests
that such channels may have relevance in biology. Specifically, with these advan-
tages, it is conceivable that biological perception-action cycles would profit from
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co-evolving all their components towards optimally matched channels; this particu-
larly since biological channels are likely to have had sufficient time and degrees of
freedom to evolve optimally matched channels.

If this hypothesis is valid, biological channels and perception-action cycles will
not just strive to be informationally optimal, but also fulfil the additional constraints
imposed by the optimally matched channel condition. In a metaphorical way, this
hypothesis corresponds to an “impedance match” or a balancecriterion for informa-
tion flowing between the organism and the environment in the cycle.

The optimal match hypothesis, for one, contributes to the plausibility of the in-
formational treatment for the understanding of biologicalinformation processing;
in addition, it provides a foundation for predictive statements, both quantitative and
structural. It is beyond the scope of the present paper to dwell on these ramifica-
tions in detail. However, it should be kept in mind that theseare an important factor
behind the relevance of informational bookkeeping principles for the studies of the
perception-action cycle.

With these preliminaries in place, the present section willnow review some el-
ementary information-theoretical bookkeeping principles. The reader is already ac-
quainted with them is invited to only lightly skim this section for reference.

5.4.1 The Data Processing Inequality and Chain Rules for Information

Consider a simple linearMarkov Chain, a special case of a Bayesian Network, con-
sisting of three random variables:U → X →Y. Then, theData Processing Theorem
states thatY can not contain more information aboutU thanX, formally

I(X;U) ≥ I(U ;Y) .

In other words,Y can at most reflect the amount of information aboutU that it ac-
quires fromX, but no more than that. While information cannot grow, it canbe lost
in such a linear chain. However, to reacquire lost information, it would need to feed
in from another source. The insight gained by the data processing inequality can fur-
thermore be refined by not just quantifying, but actually identifying the information
from a source variable that can be extracted downstream in a Markov Chain. One
method to do so is, for instance, the Information Bottleneck(Tishby et al. 1999).

As a more general case, consider general finite sequences of random variables,
Xn ≡ (X1,X2, ...,Xn). From Eq. (2) it is easy to see that one has

H(X1,X2, ...,Xn) = H(X1)+H(X2|X1)+H(X3|X2,X1)+ ...+H(Xn|X
n−1) . (13)

In the case of finite — saym-th order — Markov chains, this simplifies drastically.
Here, a variableXk is screened by themprevious variablesXk−m, . . . ,Xk−1 from any
preceding variable, that is, a conditional entropy simplifies according to

H(Xk|X
k−1) ≡ H(Xk|X1, . . . ,Xk−1) = H(Xk|Xk−m, . . . ,Xk−1)
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(without loss of generality assumek > m, or else pad by empty random variablesXi

for i ≤ 0).
Similarly to Eq. (13) one has for the mutual information withany additional

variableY the relation

I(X1,X2, ...,Xn;Y) = I(X1;Y)+ I(X2;Y|X1)+ I(X3;Y|X2,X1)+ ...+ I(Y;Xn|X
n−1) ,

(14)
where theconditional mutual informationis naturally defined asI(X;Y|Z)≡H(X|Z)−
H(X|Y,Z) . The conditional mutual information can be interpreted as the informa-
tion shared byX andY onceZ is known.

We have seen in Eq. (5), mutual information can be expressed in terms of the
Kullback-Leibler divergence. Thus, the chain rule of information is, in fact, a spe-
cial case of the chain rule of the Kullback-Leibler divergence (see also Cover and
Thomas 1991):

DKL [p(x1, . . . ,xn)||q(x1, . . . ,xn)] = DKL [p(x1)||q(x1)]+DKL [p(x2|x1)||q(x2|x1)]+ . . .

+DKL [p(xn|x
n−1)||q(xn|x

n−1)]

(15)

with the conditional Kullback-Leibler divergence defined as

DKL [p(y|x)||q(y|x)]
∆
= ∑

x
p(x)∑

y
p(y|x) log

p(y|x)
q(y|x)

. (16)

5.4.2 Multi-Information and Information in Directed Acyclic Graphs

A multivariate generalization of the mutual information isthe multi-information. It
is defined as

I[p(X)] = I(X1,X2, ...,Xn) = DKL [p(x1,x2, ...,xn)||p(x1)p(x2)...p(xn)] . (17)

There are various interpretations for the multi-information. The most immediate one
derives from the Kullback-Leibler representation used above: in this view, the multi-
information measures by how much more one could compress therandom variable
(X1,X2, . . . ,Xn) if one treated it as a joint random variable as opposed to a collection
of independent random variablesX1,X2, . . . ,Xn. In other words, this is a measure
for the overall dependency of these variables that could be “squeezed out” by joint
compression. The multi-information has proven useful in a variety of fields, such as
the analysis of graphical models (see e.g. Slonim et al. 2006).

Proposition 2 LetX = {X1, . . . ,Xn}∼ p(x), and let G be a Bayesian network struc-
ture overX such that p∼ G. Then

I[p(x)] ≡ I(X) = ∑
i

I(Xi ;Pa[Xi ]) .
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That is, the total multi-information is the sum of “local” mutual information terms
between each variable and its parents (related additivity criteria can be formulated
for other informational quantities, see also Ay and Wennekers 2003; Wennekers and
Ay 2005).

An important property of the multi-information is that it isthe cross-entropy
between a model multivariate distribution and the “most agnostic”, completely in-
dependent prior over the variables; therefore, it can be used to obtain finite sam-
ple generalization bounds using the PAC-Bayesian framework (McAllester 1999;
Seldin and Tishby 2009).

6 Bellman Recursion for Sequential Information Processing

The language and the formalisms needed to formulate the central result of the
present paper are now in place. Recall that we were interested in considering an
MDP not just in terms of maximized rewards but also in terms ofinformation-to-go.

We consider complete decision sequences and compute their corresponding
information-to-go during the whole course of a sequence (asopposed to the in-
formation processed in each single decision, as in Polani etal. 2001, 2006). We will
combine the Bayesian Network formalism with the MDP pictureto derive trade-
offs between the reward achieved in the MDP and the informational effort or cost
required to achieve this reward. More precisely, unlike in the conventional picture
of MDP where one essentially seeks to maximize the reward no matter what the cost
of the decision process, we will put an informational constraint on the cost of the
decision process and ask what the best reward is which can be achieved under this
processing constraint.

It turns out that the resulting formalism resembles closelythe Bellman recursion
which is used to solve regular MDP problems, but it applies instead to informational
quantities. This is in particular interesting since informational costs are not extensive
as MDP rewards are (Bialek et al. 2001).

Before we proceed to introduce the algorithm, note that the reward is only as-
sociated with the agent’s choice of actions and the ensuing transitions. Thus, only
that information about the future is relevant here which affects the rewards. In turn,
the component of entropy of the future which is not going to affect the reward can
be ignored. Basically, this is a “rate-distortion” versionof the concept of statistical
sufficiency: we are going to ignore the variability of the world which does not affect
the reward.

6.1 Introductory Remarks

Consider now the stochastic process of state-action pairs
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St ,At ,St+1At+1,St+2At+2, ...,St+nAt+n, ...

where the state-action pairs derive from an MDP whose Bayesian Network corre-
sponds to Eq. (12), beginning with the current stateSt and actionAt . The setup is
similar to (Klyubin et al. 2004; Still 2009).

We reiterate the argument from Sec. 5.1.3, point 2 and emphasize once more that
for our purposes, it is no limitation to assume that the agenthas potentially unlimited
access to the world state and we therefore can exclusively consider MDPs instead of
POMDPs. The information/value trade-off will simply find the best possible pattern
of utilization of information.

For a finite informational constraint, this still implicitly defines a POMDP, how-
ever one that is not defined by a particular “sensor” (i.e. partial observation) struc-
ture, but rather by the quantitative limits of the informational bandwidth. The for-
malism achieves the best value for a given informational bandwidth in the sense
that no other transformation of the MDP into a POMDP utilizing the same informa-
tion processing bandwidth will exceed the optimal trade-off solution with respect
to value. In the following, we will thus consider the system from an eagle’s eye
perspective where for the purposes of the computation we have — in principle —
access to all states of the system, even if the agent itself (due to its information
bandwidth constraints) may not.

To impose an explicitly designed POMDP structure (e.g. incorporating physi-
cal, engineering or other constraints), one could resort tothe extended model from
Eq. (11) instead. The latter incorporates sensors (i.e. explicit limitations to what the
agent can access from the environment) as well as memory. Considering the latter
turns the perception-action cycle into a full formal analogy of Shannon’s communi-
cation channel. In this case, however, one typically needs to include also the agent
memory into the picture. For such a scenario, preliminary results indicate that infor-
mational optimality criteria have the potential to characterize general properties of
information-processing architectures in a principled way(van Dijk et al. 2009).

Concludingly, the formalism introduced here is not limitedto reactive agents and
in future work we will extend it to memory-equipped agents. Here, however, we
limit ourselves to reactive agents, as these already represent an important subset of
the systems of interest and provide a transparent demonstration of the central ideas
of our approach.

6.2 Decision Complexity

Assume that, at timet, the current state and action are given:St = st ,At = at . The
distribution of successor states and actions in the following time stepst +1,t +2, . . .
is given by p(st+1,at+1,st+2,at+2, ...|st ,at). We assume now a fixed prior on the
distribution of successive states and actions: ˆp(st+1,at+1,st+2,at+2, ...).

Define now the process complexity as the Kullback-Leibler divergence between
the actual distribution of states and actions aftert and the one assumed in the prior:
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ℑπ(st ,at)
∆
= Ep(st+1,at+1,st+2,at+2,...|st ,at) log

p(st+1,at+1,st+2,at+2, ...|st ,at)

p̂(st+1,at+1,st+2,at+2, ...)
. (18)

ℑπ(st ,at) measures the informational regret of a particular sequencerelative a
prior probability for the sequence. The prior encodes all information known about
the process which can range from a state of complete ignorance up to a full model
of the process (in which caseℑπ(st ,at) would vanish).

However, we want to consider priors which are simpler than the full MDP model.
Of particular interest are those where the components of processSt+1At+1,St+2At+2, ...
are independent, i.e. where the prior has the form

p̂(st+1,at+1,st+2,at+2, ...) = p̂(st+1)π̂(at+1)p̂(st+2)π̂(at+2) . . .

where all “hatted” distributions are the individual priorson the respective random
variables (we denote the priors for the actions byπ̂ instead of ˆp for reasons that will
become clearer below, see e.g. Eq. (19)). With such a choice of the prior,ℑπ(st ,at)
becomes a measure for the interaction between the differentsteps in the decision
cascade4.

Selecting the priors ˆp(st+1), π̂(at+1), p̂(st+2), π̂(at+2), . . . beforehand and inde-
pendently from the MDP corresponds to the most agnostic assumption. Another
specialization is thestationarityassumption that the random variablesSt+1,St+2, ...
andAt+1At+2, ... are i.i.d. and share the same state distributions ˆp(st+1), p̂(st+2), . . .
and action distributionŝπ(at+1), π̂(at+2), . . . .

For our purposes, it is useful to mention the criterium ofconsistency. Consistency
can be total or partial.Total consistencymeans that ˆp(st+1), π̂(at+1), p̂(st+2), π̂(at+2), . . .
result from the marginalization of thetotal original distribution which itself is
consistent with the Bayesian Network Eq. (12). In the case oftotal consistency,
ℑπ(st ,at) becomes the multi-information between the state/action variablesSt+1At+1,St+2At+2, ...
throughout the sequence.

On the other hand,partial consistencymeans that only parts of the relations in
the Bayesian Network are respected in forming the factorization.

In the present paper, we will use close to minimal assumptions: we assume sta-
tionarity with partial consistency, where the state distributionsp̂(st+1), p̂(st+2), . . .
are the same for all times, and the action distributions are consistent with them via
the policyπ which we assume constant over time for allt:

π̂(at) = ∑
st∈S

π(at |st) · p̂(st ) . (19)

The priorp̂(st) is chosen as uniform distribution over the states for allt.
Stronger consistency assumptions, such as requiring the ˆp(st+1), p̂(st+2), . . . to

respect the transition probabilitiesp(st+1|st ,at) in the Bayesian Network (we call
this ergodic stationarityin the special case of ˆp(st+1), p̂(st+2), . . . being identical

4 Note that, unless stated otherwise, we always imply that thedistributions ˆp(st+1), p̂(st+2), . . . as
well asπ̂(at+1), π̂(at+2), . . . can be different for differentt
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distributions) will be considered in the future, but are outside of the remit of the
present paper.

With above comments, the information-to-go will be defined in the following as
the Kullback-Leibler divergence of the of the future sequence of states and actions,
starting fromst ,at , with respect to stationary prior state distributions overthe state
sequence ˆp(st+1), p̂(st+2), . . . and policy-consistent (Eq. (19)) action distributions
π̂(at+1), π̂(at+2), . . . :

ℑπ(st ,at)
∆
= Ep(st+1,at+1,st+2,at+2,...|st ,at) log

p(st+1,at+1,st+2,at+2, ...|st ,at)

p̂(st+1)π̂(at+1)p̂(st+2)π̂(at+2) . . .
. (20)

The interpretation of this quantity is as follows:ℑπ(st ,at) measures the infor-
mational cost for the system to carry out the policyπ , starting at timet into the
indefinite future with respect to the prior. In general, thisquantity will grow with
the length of the future. It measures how much information isprocessed by the
whole agent-environment system in pursuing the given policy π . This quantity can
also be interpreted as the number of bits that all the states and actions share over the
extent of the process as opposed to the prior. One motive for studying this quantity is
that it provides important insights about how minimalisticagents can solve external
tasks under limited informational resources.

The central result of the present paper is that the optimization of Vπ under con-
strained information-to-goℑπ(st ,at), although encompassing the whole future of
the current agent, can be computed through a one-step-lookahead recursion rela-
tion; moreover, this recursion relation closely mirrors the Bellman recursion used in
the value iteration algorithms of conventional Reinforcement Learning.

6.3 Recursion equation for the MDP Information-To-Go

We obtain a recursion relation for this function by separating the first expectation
from the the rest. With Proposition 2 in the context of Eq. (12), it is easy to see that
one has

ℑπ(st ,at)= Ep(st+1,at+1|st ,at)

[

log
p(st+1|st ,at)

p̂(st+1)
+ log

π(at+1|st+1)

π̂(at+1)
+ ℑπ(st+1,at+1)

]

,

(21)
with p(st+1,at+1|st ,at) = p(st+1|st ,at)π(at+1|st+1) (for more general Bayesian
graphs, more general statements can be derived).

The terms associated with the first state-action-transition,

∆ Ist+1
st ,at = log

p(st+1|st ,at)

p̂(st+1)
+ log

π(at+1|st+1)

π̂(at+1)
(22)
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can be interpreted as theinformation gainassociated with this transition. In this
recursion, the information gain takes on the role of the local reward, in complete
analogy with the quantityRs′

s,a from Reinforcement Learning.
Information gain-type quantities appear as natural Lyapunov functions for Master

Equations and in the informational formulation of exploration and learning prob-
lems (Haken 1983; Vergassola et al. 2007). Note that the quantities in Eq. (22)
can be both positive as well as negative (even if the prior is marginal, e.g. Lizier
et al. 2007)5. Only by averaging the familiar nonnegativity property of informa-
tional quantities is obtained.

6.3.1 The Environmental Response Term

The information gain Eq. (22) consists of two terms which we discuss in turn. The
first term quantifies the statistical surprise in the transition due to our action (relative
to the prior). It can be seen as theenvironmental response informationas it measures
the response of the world to the agent’s control action. It isalso interpretable as the
information gained if one canobservethe next state (in a fully observed MDP), or as
the informationprocessedby the environment in this state transition. In Sec. 7.2 this
term combined together with the MDP reward will give rise to the concept of the
perfectly adapted environment which reflects the perception-action cycle version of
the notion of optimally matched channels by Gastpar et al. (2003).

The environmental response information can be considered an information-
theoretic generalization or a soft version of the control-theoretic concept ofcon-
trollability (in this context, see also Ashby 1956; Touchette and Lloyd 2000, 2004;
Klyubin et al. 2005b; Todorov 2009). As here we do not limit the agent’s access to
the world state and also do not model the sensoric cost, the information gain term
does not contain an analogous information-theoretic term corresponding to observ-
ability, but this is only a restriction of the current scenario, not of the model in
general.

Strictly spoken, when we talk above about controllability/observability, we refer
only to the actual level of control (and observation) exerted, not about controllability
(and observability) in the sense of the maximally achievable control/observation.
For an information-theoretic treatment ofcombinedcontrollability and observability
in the latter (i.e. maximality) sense, see e.g. (Klyubin et al. 2008).

5 The interpretation of a negative information gain is that under the presence/observation of a
particular condition the subsequent distributions are blurred. One caricature example would be
that, to solve a crime, one would have a probability distribution sharply concentrated on a particular
crime suspect. If now additional evidence would exclude that suspect from consideration and reset
the distribution to cover all suspects equally, this would be an example for negative information
gain.
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6.3.2 The Decision Complexity Term

We now turn briefly to the second term in Eq. (22); the second term reflects the
decision complexity, i.e. the informational effort that the agent has to invest in the
subsequent decision at timet + 1. The average of this term according to Eq. (21)
measures the information required for the selection of the agent’s action at time
t + 1. Importantly, note that this value for the decision complexity at time t + 1 as
calculated from the recursive Eq. (21) and Eq. (22) is alwaysconditional on the state
st and the actionat at the current timet.

These two components make clear that the information processing exhibited by
the agent-environment system decomposes into two parts, one that captures the en-
vironmental information processing, and one that reflects the agent’s decision. This
decomposition is related to that known from compositional Markov chains (Wen-
nekers and Ay 2005) and provides an elegant and transparent way of distinguishing
which part of a system is responsible for which aspect of information processing.

7 Trading Information and Value

We can now calculate the minimal information-to-go (i.e., environmental informa-
tion processing cost plus decision complexity) that is required to achieve a given
level of value-to-go.

7.1 The “Free-Energy” functional

At this point, we remind the reader of Eq. (9) which is used in the Reinforcement
Learning literature to characterize the value- or reward-to-go in terms of state-action
pairs instead of states only:

Qπ(st ,at) = ∑
st+1

Pst+1
st ,at ·

[

Rst+1
st ,at +Vπ(st+1)

]

. (23)

AsVπ quantifies the future expected cumulative reward when starting in statest and
then following the policyπ , the functionQπ separates out also the initial actionat ,
in addition to the initial statest .

The constrained optimization problem of finding the minimalinformation-to-go
at a given level of value-to-go can be turned into an unconstrained one using the
Lagrange method; for this the quantity to minimize (the information-to-go) is com-
plemented by the constraint (the value-to-go) multiplied by a Langrange multiplier
β :

Fπ(st ,at ,β )
∆
= ℑπ(st ,at)−βQπ(st ,at); . (24)
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This Lagrangian builds a link to the Free Energy formalism known from statisti-
cal physics: the Langrange multiplierβ corresponds to the inverse temperature, the
information-to-goℑπ corresponds to the physical entropy. The value-to-go (hereex-
pressed asQπ ) corresponds to the energy of a system, andFπ/β corresponds to the
free energy from statistical physics. However, for simplicity we will apply the notion
of free energyto Fπ itself. The analogy with the free energy from statistical physics
provides an additional justification for the minimization of the information-to-go
under value-to-go constraints: the minimization ofFπ identifies the least committed
policy in the sense that the future is the least informative,i.e. the least constrained
and thus the most robust.

This philosophy is closely related to the minimum information principle (Glober-
son et al. 2009): if one has an input-output relationship, one selects a model that
processes the least information that is consistent with theobservations. This corre-
sponds again to the least committed solution that covers theobservations (and is, in
general, not identical to the maximum entropy solution withwhich it coincides only
in certain cases, see Globerson et al. 2009).

For the later purposes, it is useful to expand the free energyas follows :

ℑπ(st ,at)−βQπ(st ,at) =

= Ep(st+1|st ,at)π(at+1|st+1)

[

log
p(st+1|st ,at)

p̂(st+1)
+ log

π(at+1|st+1)

π̂(at+1)

−β Rst+1
stat + ℑπ(st+1,at+1)− βVπ(st+1)

]

= Ep(st+1|st ,at)

[

log
p(st+1|st ,at)

p̂(st+1)
−β Rst+1

stat

+Eπ(at+1|st+1)

[

log
π(at+1|st+1)

π̂(at+1)
+ ℑπ(st+1,at+1)

− βQπ(st+1,at+1)

]]

(25)

where the last equality follows from

Vπ(st+1) = Eπ(at+1|st+1)[Q
π(st+1,at+1)] .

This leads to the following recursive relation for the free energy:

Fπ(st ,at ,β ) = Ep(st+1|st ,at)

[

log
p(st+1|st ,at)

p̂(st+1)
−β Rst+1

stat

+Eπ(at+1|st+1)

[

log
π(at+1|st+1)

π̂(at+1)
+Fπ(st+1,at+1,β )

]]

.

(26)
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The task of finding the optimal policy, i.e. the one minimizing its information-
to-go under a constraint on the attained value-to-go is solved by the unconstrained
minimization of the corresponding Lagrangian, i.e. the free energy functionalFπ :

argmin
π

Fπ(st ,at ,β ) = argmin
π

[ℑπ(st ,at)−βQπ(st ,at)]

where the minimization ranges over all policies. A particular constraint on the value-
to-go is imposed by selecting the respective “inverse temperature” Lagrange multi-
plier β .

Extending Eq. (26) by the Lagrange term for the normalization of π and taking
the gradient with respect toπ , and then setting the gradient ofFπ to 0 (both for the
entire term as well as inside the brackets) provides us with aBellman-type recursion
for the free energy functional as follows: an optimal policyπ satisfies the recursive
Eq. (26) as well as the relations

π(a|s) =
π̂(a)

Zπ(s,β )
exp(−Fπ(s,a,β )) (27)

Zπ (s,β ) = ∑
a

π̂(a)exp(−Fπ(s,a,β )) (28)

π̂(a) = ∑
s

π(a|s)p̂(s) . (29)

in a self-consistent fashion. In turn, iterating the systemof self-consistent Equa-
tions (26) to (29) till convergence for every state will produce an optimal policy.
This system of equations essentially unifies the Bellman Equation and the Blahut-
Arimoto algorithm from rate-distortion theory.

Notice that as result of the algorithm, we obtain a non-trivial soft-max policy for
every finite value ofβ . Furthermore, if the optimal policy is unique, the equations
will recover it as a deterministic policy for the limitβ →∞. The compound iterations
converged to a unique policy for any finite value ofβ . While we believe that a
convergence proof (possibly without uniqueness guarantees) could be developed
along the lines of the usual convergence proofs for the Blahut-Arimoto algorithm,
we defer this to a future paper.

It should be mentioned at this point that the reward structure determining the
form of Q is an externally defined part of the system description. In the present
paper, the reward can be of any type. However, the reward could be realized as
a more specific quantity, e.g. an informational measure, such as, for example, a
predictive information gain in which case the formalism would reduce to a particular
form.
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7.2 Perfectly adapted environments

An intriguing aspect of the free-energy formalism that we can consider the optimal-
ity not only of the agent’s policy but also that of the environment. This is particularly
relevant for the characterization of a “best match” betweenthe organism’s action
space and the responses of the environment, which realizes aperfectly adapted en-
vironment. We already commented earlier on the close conceptual analogy between
the concept of the perfectly adapted environment and what wesuggest to be its
information-theoretic counterpart: the environment being considered as the chan-
nel, and the agent’s actions as the source in an optimally matched channel (Gastpar
et al. 2003).

In the following paragraphs we characterize the optimal (i.e. perfectly adapted)
environment in the language our formalism as the the MDP thatminimizes the free
energy. Define the notation

qβ (s′|s,a) = qs′
s,a

∆
=

p(s′)
Z(β ,s,a)

exp
(

β Rs′

s,a

)

. (30)

Then, with the free energy functionalFπ(st ,at ,β ) = ℑπ(st ,at)− βQπ(st ,at), the
Bellman equation can be rewritten as:

Fπ(st ,at ,β ) = Ep(st+1|st ,at)

[

log
p(st+1|st ,at)

qβ (st+1|st ,at)
− logZ(β ,st ,at)

+Eπ(at+1|st+1)

[

log
π(at+1|st+1)

π̂(at+1)
+Fπ(st+1,at+1,β )

]]

.

Note that in this form the first term averages to the Kullback-Leibler divergence be-
tween the actual probabilityp(st+1|st ,at) and the “optimal distribution”qβ (st+1|st ,at)
of the next statest+1, for fixed current statest and actionat .

The first term inF is minimized6 with respect to the environment transition prob-
abilities precisely when the MDP is fully adapted to the reward, namely, when

p(st+1|st ,at) = qβ (st+1|st ,at) . (31)

In this case, the Kullback-Leibler divergence vanishes. Plugging in the optimal pol-
icy π (satisfying Equations (26) to (29)), and using the special relationship between
the state transitions and the rewards (Eqs. (30) and (31)), the accumulated term re-
duces to the sum− logZ(β ,st ,at)− logZπ(st+1,β ), i.e. the local free energy purely
of the current step which itself consists of the environmental and the agent compo-
nent.

6 Alternatively, one could minimizeFπ by setting the gradient ofFπ with respect top(st+1|st ,at)
to 0 similar to the derivation of Eqs. (27) to (29) under the assumption thatπ is already opti-
mized. This implements the assumption that the adaptation of the environmental channel is “slow”
corresponding to the adaptation of the agent policy.
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In the particular case of perfectly adapted environments, all the future informa-
tion is indeed valuable. In other words, minimizing the statistical surprise or maxi-
mizing the predictive information is equivalent to maximizing the reward. This can
be interpreted as a generalization of the classical Kelly gambling scenario (Kelly
1956). Note that this is not the case for general reward structuresRs′

s,a
. In view of

the hypothesized central role of information for biological systems, it will be of sig-
nificant interest for future research to establish to which extent the environments of
living organisms are indeed perfectly adapted.

8 Experiments and Discussion

8.1 Information-Value Trade-Off in a Maze

The recursion developed in Sec. 7.1 can be applied to variousscenarios, of which
we study one specific, but instructive case. We consider a simple maze (inset of
Fig. 1) where an agent starts out at the bright spot in the lower left corner of the
grid world and needs to reach the target in the right upper corner, marked by the
red dot. The task is modeled through a usual Reinforcement Learning reward, by
giving each step a “reward” (i.e. a penalty) of−1 until the target is reached. The
target cell is an absorbing state, and once the agent reachesit, any subsequent step
receives a 0 reward, realizing an episodic task in the non-episodic framework of the
Bellman-recursion from Sec. 6.

Fig. 1 Trade-off curve between value-to-go and information-to-go. This is in full analogy to
the rate-distortion plots, if we consider (negative) distortion replaced by value-to-go and rate by
information-to-go.

Figure 1 shows how as one permits increasing amounts of information-to-go, the
future expected cumulated reward achieved also increases (it is the negative value of
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the length of the route — i.e. as one is ready to invest more information bandwidth,
one can shorten the route). Note that whenβ vanishes, this attempts to save on
information-to-go while being indifferent to the achievement of a high value-to-go.
As opposed to that, lettingβ → ∞ aims for a policy that is indeed optimal in its
value-to-go.

Now, in the case ofβ → ∞, similar to (Polani et al. 2006), the informational Bell-
man recursion will find a policy which is optimal for the Reinforcement Learning
task. However, unlike the conventional policy or value iteration algorithms, the algo-
rithm will not be “satisfied” with a value-optimal solution,but select a policy among
the optimal policies which at the same time minimizes the information-to-go.

8.2 Soft vs. Sharp Policies

Fig. 2 Policies resulting from the trade-off between value-to-goand information-to-go

Figure 2 shows actual policies resulting for various valuesof β . For smallβ , the
policy is almost a random walk. Such a walk will ultimately end up in the (absorb-
ing) goal state, at little informational cost, but at quite negative reward values, since
it takes a long time to find the goal.

As one increasesβ and thus increases the available information capacity, sharper,
more refined and accurate policies emerge. Note that, in general, the policies we ob-
tain by the informational trade-off algorithm from Secs. 6 and 7 will be soft policies
for finite β and an agent following them will produce state trajectorieswhich in-
creasingly expand and branch out over time which will typically reduce the future
expected cumulated reward. This may allow additional scenarios to those mentioned
in Footnote 1 (Sec. 4.2) to exhibit converging rewards without having to use the
usual discount factor, as long asβ is finite. In these cases, if the cumulated rewards
diverge forβ → ∞ (zero temperature, i.e. optimal policy), this would only constitute
a “pathological” boundary case.

Under the PAC-Bayes perspective (McAllester 1999), our free energy is com-
posed of the cumulated Kullback-Leibler distances betweenposterior and prior dis-
tribution ofSt+1 andAt+1 (see Eqs. (21) and (22)). This gives rise to another interest-
ing interpretation of the soft policies obtained by the above formalism: namely, the
policies minimizing the respective Kullback-Leibler expressions in these equations
provide a bound on the variation of the accumulated reward over different episodes
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of the agent’s run; in fact, those policies providestableresults in the sense that the
bound on variations from run to run is the tightest (Rubin et al. 2010).

The soft policies we obtained above are similar to the “softened paths” suggested
in (Saerens et al. 2009), derived from entropic quantities used as regularization term
for the Reinforcement Learning task. In the present paper, however, as in (Polani
et al. 2006), we use Shannon information not just as a regularization quantity, but
with a specific interpretation as an information processingcost: the minimal infor-
mational cost of the decision process that the agent (or, in the present paper, the
agent-environment) system has to undergo in order to achieve a particular reward.

In the light of this interpretation, the study of information has immediate reper-
cussions for the biological picture of information processing, i.e. the “information
metabolism” of organisms. If one adopts the view that organisms tend to implement
an information parsimony principle (Laughlin 2001; Polani2009), then this implies
that biological systems will exhibit a tendency to achieve agiven level of perfor-
mance at the lowest informational cost possible (or performas well as possible
under a given informational bandwidth). In our formalism, this would correspond
to operating close to the optimal reward/information (strictly spoken, decision com-
plexity) trade-off curve, always assuming that a suitable reward function can be
formulated (Taylor et al. 2007; Bialek et al. 2007).

In the present paper, we demonstrated how the trade-off curve between value-to-
go and information-to-go can be computed for the agent-environment system over
whole sequence histories using a Bellman-type recursive backup rule. In the future,
we will apply these techniques introduced here to other variants of the problem. One
is the calculation of the decision complexity (i.e. the relevant information) only, the
minimal amount of information that needs to acquired and processed by the agent
itself, but not by the environment, to achieve a certain reward. In (Polani et al. 2006),
the relevant information was computed only for a single-step action sequence. With
the Information-Bellman backup rule introduced here, we will be able in the future
to generalize the relevant information calculation to multi-step action sequences. To
quantify parsimonious information acquisition in the multi-step case, we will use
Massey’s concept ofdirected information(Massey 1990).

At this point, some comments are in place concerning the Markovicity of the
world state in our models. The Markovicity condition seems,at first sight, a compar-
atively strong assumption which might seem limit the applicability of the formalism
for modeling the subjective knowledge of an organism or agent. However, note that,
while we compute various quantities from a “eagle’s eye perspective” under knowl-
edge of the full state, in the model the agent itself is not assumed to have full access
to the state. Rather, the information bandwidth but not its precise form is constrained
in the present paper. Finally, using the full formalism fromEq. (11), more complex
structural constraints on the information acquisition caneasily be incorporated in
the form of sensors.

Let us here emphasize another final point: the presented perception-action cycle
formalism implements an information-theoretic analogy for the classical treatment
of optimal control problems. However, as we propose to consider information not
merely as an auxiliary quantity, but in fact as a “first class”quantity in its own right,
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the present treatment aims to go beyond just an equivalent restatement of stochastic
optimal control: rather, to provide a conceptually enriched framework, in which
the informational view gives rise to a refined set of notions,insights, tools, and,
ultimately, research questions.

9 Conclusions

In the paper, we have treated the reward-driven decision process in the perception-
action cycle of an agent in a consistently information-theoretic framework. This
was motivated by increasing biological evidence for the importance of (Shannon)
information as resource and by the universality that the language of information is
able to provide.

We consider a particular incarnation of this problem, namely an agent situated in
an MDP defining a concrete task; this task is encoded as a cumulated reward which
the agent needs to maximize. The information-theoretic view transforms this prob-
lem into a trade-off between the reward achieved at a given informational cost. This
extends classic rate-distortion theory into the context ofa full-fledged perception-
action cycle. At the same time, the methodology gives a precise quantitative mean-
ing to J.M. Fuster’s above quoted intuition about the perception-action cycle being
the “circular flow of information between an organism and itsenvironment”.

The paper shows that not only it is possible and natural to reframe the treatment
of perception-action cycles in this way, but that MDP formalisms such as the Bell-
man recursion can be readily extended to provide a unified Blahut-Arimoto/Value
Iteration hybrid that computes the quantities of interest.In the current paper, we
illustrated this idea in a simple setting. More comprehensive settings which are of
significant interest for both biology as well as for artificial intelligence can be read-
ily incorporated due to the flexibility of the formalism and will be treated in future
work.

We hypothesize that the ability to trade off the value and theinformational cost
of whole behaviours lies at the core of any understanding of organismic behaviours.
The hypothesis is that organisms attempt to realize valuable behaviours at the lowest
possible informational cost, and that they will seek slightly suboptimal solutions if
these solutions can be afforded at a significantly lower informational cost. Thus, the
informational treatment of the perception-action cycle promises to open a quantita-
tive and predictive path to understand the structure of behaviours and information
processing in living organisms. At the same time it can provide a systematic handle
on how to develop AI systems according to principles which are both biologically
plausible and relevant.
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