| nformation Theory of Decisions and Actions

Naftali Tishby and Daniel Polani

Abstract

The perception-action cycle is often defined as “the cincildav of information
between an organism and its environmentin the course ofsmsgeguided sequence
of actions towards a goal” (Fuster 2001, 2006). The questi®address in this pa-
per is in what sense this “flow of information” can be desalibg Shannon’s mea-
sures of information introduced in his mathematical themfrgommunication. We
provide an affirmative answer to this question using andaoirig analogy between
Shannon’s classical model of communication and the Paozepiction-Cycle. In
particular, decision and action sequences turn out to leettiiranalogous to codes
in communication, and their complexity — the minimal numbégbinary) deci-
sions required for reaching a goal — directly bounded byrimfation measures,
as in communication. This analogy allows us to extend thedstad Reinforcement
Learning framework. The latter considers the future exgeeceward in the course
of a behaviour sequence towards a goal (value-to-go). Mexedditionally incor-
porate a measure of information associated with this sempighe cumulated in-
formation processing cost or bandwidth required to spdbiéfuture decision and
action sequence (information-to-go).

Using a graphical model, we derive a recursive Bellman oglitsnequation for
information measures, in analogy to Reinforcement Leanirom this, we ob-
tain new algorithms for calculating the optimal trade-oétween the value-to-go
and the required information-to-go, unifying the ideasibdtihe Bellman and the
Blahut-Arimoto iterations. This trade-off between valioego and information-to-
go provides a complete analogy with the compression-distotrade-off in source
coding. The present new formulation connects seeminglglated optimization
problems. The algorithm is demonstrated on grid world exasp
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1 Introduction

To better understand intelligent behaviour in organisnt @ndevelop such be-
haviour for artificial agents, the principles of perceptiohintelligent information
processing, as well as of actuation undergo significantys®erception, informa-
tion processing and actuation per se are often consideréwizddual, separate
input-output processes. Much effortis devoted to undedséad study each of these
processes individually. Conceptually, the treatment ehsaput-output models is
straightforward, even if its details are complex.

Compared to that, combining perception, information pssoeg and actuation
together introduces a feedback cycle that considerablpgdmthe “rule of the
game”. Since actuation changes the world, perception se¢adee passive and will,
in future states, generally depend on actions selectegedlst the organism. In
other words, the organism controls to some extent not onlghvtates it wishes to
visit, but consequently also which sensoric inputs it wilberience in the future.

The “cycle” view has intricate consequences and createsi@ua complexi-
ties. Itis, however, conceptually more satisfying. Funthere, it can help identify-
ing biases, incentives and constraints for the self-omghiormation of intelligent
processing in living organisms — it is no surprise that émebodied intelligence
perspective is adopted by many Al researchers (Pfeifer ardy&d 2007) which
is intimately related to the perception-action cycle pecspe. It has been seen as
a path towards understanding where biological intelligemey have risen from in
evolution and how intelligent dynamics may be coaxed outlagystems.

A challenge for the quantitative treatment of the perceptotion cycle is that
there are many ways of modeling it which are difficult to congp&dluch depends
on the choice of architecture, the selected representatidrother aspects of the
concrete model. To alleviate this unsatisfactory situgti@cent work has begun
to study the perception-action cycle in the context of a (Blaaian) information-
theoretic treatment (Bialek et al. 2001; Touchette and d18900, 2004; Klyubin
et al. 2004, 2007), reviving early efforts by Ashby (1956).

The information-theoretic picture is universal, genecahceptually transparent
and can be post hoc imbued with the specific constraints itpar models. On the
informational level, scenarios with differing computattéd models can be directly
compared with each other. At the same time, the informatioeatment allows one
to incorporate limits in the information processing capathat are fundamental
properties of a particular agent-environment system.

This is especially attractive in that it seems to apply tddgaally relevant sce-
narios to some extent; details of this view are increasidiggussed (Taylor et al.
2007; Polani 2009). Under this perspective, in essencecongders e.g. the infor-
mational cost of handling a given task. Vice versa, one carhas/ well one can
actually handle a task if constraints on the computationelgy are imposed (here
in the form of limited informational bandwidth).

On the other side, there is the established frameworkafkovian Decision
Problems(MDPs) which is used to study how to fiqmblicies(i.e. agent strategies)
that perform a task well, where the quality of the perforneisaneasured via some
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cumulative reward value which depends on the policy of trenadg’he MDP frame-
work is concerned with describing the task and with solvimgproblem of finding
the optimal policy. It is not, however, concerned with theuatprocessing cost that
is involved with carrying out the given (possibly optimabligies. Thus, an opti-
mal policy for the MDP may be found which maximizes the rewactieved by an
agent, but which does not heed possible computational codimits imposed on
an agent — this is in contrast to simple organisms which cealfierd a large infor-
mational bandwidth or minimal robots for which a suboptintait informationally
cheap performance would be sufficient.

It is therefore the goal of the present paper to marry the Marfhélism with
an information-theoretic treatment of the processing rastired by the agent (and
the environment) to attain a given level of performance éimmts of rewards). To
combine these disparate frameworks, we need to introduaasdrom both infor-
mation theory as well as from the theory of MDPs.

To limit the complexity of the present exposition, this payw#l concentrate only
on modelling action rewards; we will not address here itsragtnic counterpart,
namely (non-informational) costs of sensoric data actiorsiFurthermore, we will
skim only the surface of the quite intricate relation of thegent formalism with
the framework of predictive information (e.g. in Sec. 5)3.2

2 Rationale

An important remark about the present paper is that its aaention is the de-
velopment of a general and expressive framework, and nottecylarly efficient
algorithm. In adopting the principled approach of inforioattheory, we are here
not concerned with producing an algorithm which would corepaerformance-
wise with competitive state-of-the-art MDP learners (sashe.g. Engel et al. 2003;
Jung and Polani 2007); and neither are we concerned wittopiog or investigat-
ing particular flavours of the perception-action architieet Instead, the idea behind
the application of information theory to the perceptioti@t cycle is to open the
path towards a new way of looking at the perception-actiatecyith the hope that
this will lead to new concepts, new insights and, possitdyy types of questions.
In particular, because of its universality, and becausértmeework of informa-
tion theory has deep ramifications into many fields, inclggihysics and statistical
learning theory, it makes different architectures, modslgell as scenarios compa-
rable under a common language. This allows informationrghtebe applied across
various and quite disparate domains of interest (such asahgtics, language, or
speech); in addition, it opens up a natural approach to bridg gap between the
study of artificial and of biological systems. Informatidrebry gives rise to a rich
and diverse set of theorems and results, far beyond itsnaligpplication to com-
munication theory. These results include the formulatithuedamental bounds for
computational effort and/or power. Furthermore, inforim@toptimal solutions ex-
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hibit a significant array of desirable properties, amongnotbeing least biased or
committed, or being maximally stable (see Sec. 8.2).

The particular slant that the present paper takes is ealigrith consider the
issue of optimal control in the guise of MDPs and expresdilig the language of
information. This is not a mere equivalent re-expressiathefcontrol task. Rather,
it adds a rich structural and conceptual layer to it.

In recent work, the classical task of optimal control hasnban elegant re-
formulation in probabilistic and information-theoretaniguage: the control task is
formulated as a probabilistic perturbation of a system bygent, and the Bell-
man equation governing the optimal control solution canXyessed instead as a
Kullback-Leibler divergence minimization problem (Todwr2009); by identifying
optimal control problems with Bayesian inference problé8tsens 2000), the effi-
cient methods for graphical model inference become auaiffalo the computation
of the optimal policies (Kappen et al. 2009). This can be gaired to consider di-
rectly the desired distribution of outcomes of the agenttoa (Friston et al. 2006;
Friston 2009).

In fact, this interpretation invites an even more generatyse of the control
problem: instead of specifying the reward structure extiynone can consider the
intrinsic informational dynamics of an agent interactinghwits environment. On
the one hand, the study of the information flows in such a sysgiges importantin-
sights into the operation of the agent-environment sys#gnad Wennekers 2003;
Lungarellaand Sporns 2006; Ay and Polani 2008). On the ¢idued, one can obtain
natural, intrinsically driven (“self-motivated”, “rewdtless”) agent behaviours by
optimizing information flows (Lungarella and Sporns 200poB1s and Lungarella
2006), predictive information (Ay et al. 2008) or the agerternal channel capac-
ity of the perception-action cycle (“empowerment”, Klyabet al. 2005a, 2008).
Because of its cyclical character, the interplay betweemtgxternal and agent-
internal information processing has been likened to arrimétional “Carnot Cycle”
(Fry 2008), whose optimal thermal efficiency would find aroimfiational analog in
the concept oDual Matching which is essentially thpint source-channel coding
proposed in (Gastpar et al. 2003).

Here, we will revisit the earlier mentioned MDP problem, again we will em-
ploy an informational view. However, here, unlike in (Tode2009; Kappen et al.
2009), the informational picture will not be used to impletha Bayesian infer-
ence mechanism that realizes a solution to the Bellman iequat quite the oppo-
site: we will, in fact, stick with the classical decisioretiretic Bellman approach to
MDP. We will, however, combine this approach with a perspeatvhich elevates
the information used in the agent’s decision process tofthst tlass object” of our
discourse. Adopting this philosophy, we will see how theifmations of the infor-
mation approach will project into a wide array of disparaties, ranging from the
analogy between the perception-action cycle and Shaneoninunication chan-
nel to the relation between the Dual Matching condition rioered earlier (“Carnot
optimality”) and the perfectly adapted environmentin S&c3.2 and 7.2.
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3 Notation

3.1 Probabilistic Quantities

We will employ uppercase characters for random varialle§ Z. .., lowercase
characters for concrete valuesy,z... that they assume and curved characters
2, %, % for their respective domains. For simplicity we will assuthat the do-
mains are finite.

The probability that a random variabfeassumes a valuee 2" is denoted by
Pr(X = x). However, to avoid unwieldy expressions, we will, by abuseatation,
write p(x) with x being the lowercase of the random variaklén question. Occa-
sionally, we will need to associate two different distribas with the same random
variable domain?"; these cases will be clearly indicated, and the correspoyais-
tributions will be denoted by the notatiquix), p(x),q(x) ... and similar. Where a
random variable is subscripted, such aXiira different index will denote different
variables.

3.2 Entropy and Information

We review some of the basic concepts of Shannon’s informatieory and nota-
tional conventions relevant for this paper. For a more ceteplliscussion see e.g.
(Cover and Thomas 1991).

Define theentropy HX) of a random variablX as

H(X) = - % p(x)logp(x) (1)

where the result is expressed in the unibit§ if the logarithm is taken with respect
to base two; we assume the identification Oleg0. Furthermore, in the follow-
ing we will drop the summation domaift” when the domain is obvious from the
context. Also, we will writeH [p(x)] instead ofH (X) if we intend to emphasize the
distributionp of X.

The entropy is a measure of uncertainty about the outconmeaséihdom variable
X before it has been measured or seen, and is a natural choit@fgShannon
1949). The entropy is always nonnegative. It vanishes fagtardinisticX (i.e. if
X is completely determined) and it is easy to see (e.g. usiedé¢insen inequality)
that H[p(x)] is a convex functional over the simplex of probability distitions
which attains its maximum lgg?”| for the uniform distribution, reflecting the state
of maximal uncertainty.

If a second random variab¥eis given which is jointly distributed witiX accord-
ing to the distributiop(x,y), then one can define the joint entragyX,Y) trivially
as the entropy of the joint random varialgle Y). Furthermore, one can now define
theconditional entropyas
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H(X]Y) = Zp HXY =y): Zp Z p(xly)log p(x]y)

The conditional entropy measures the remaining unceytaimutX if Y is known.
If X is fully determined on knowing, it vanishes. With the conditional entropy,
one obtains the basic additivity property,arain rulefor the entropy,

HOX,Y)=H(Y)+H(X|Y) =H(X)+H(Y|X). (2)

This additivity of the entropy for (conditionally) indepe@ant variables can, in
fact, be taken as the defining property of Shannon’s entrapyt, uniquely deter-
mines it under mild technical assumptions.

Instead of the uncertainty that remains in a variablence a jointly distributed
variableY is known, one can ask the converse question: how much uindgria
X is resolved ifY is observed, or stated differently, how mualformationdoesY
convey abouk. This gives rise to the highly important notionrofitual information
betweenX andY, which is expressed in the following equivalent ways,

I(X;Y)=H(X)—H(X]Y)=H(Y)—H(Y|X)=H(X)+H(Y)-H(X,Y). (3)

It is non-negative and symmetric, and vanishes if and on¥§/@ndY are indepen-
dent. The mutual information turns out to play a major rol8iannon’s source and
channel coding theorems and other important ramificatibir@rmation theory.

A closely related, technically convenient and theorelycahportant quantity is
therelative entropy or Kullback-Leibler divergenceassume two distributions over
the same domair?”, p(x) andq(x), wherep is absolutely continuous with respect
toq(i.e.q(x) = 0= p(x) = 0). Then define the relative entropy paindq as:

PO

X

Di [plla] = zp (4)

with the convention OIOQ 2 0. The relative entropy is a measure how much “com-
pression” (or prediction, both in bits) could be gained #terad of an hypothesized
distributionq of X, a concrete distributiop is utilized. It is the mean code length
difference ifg(x) is assumed for the prior distribution &f but p(x) is the actual
distribution.

We mention several important properties of the relativeaayt needed for the
rest of the paper (for details see e.g. Cover and Thomas 189%}, one has
Dk [p||g] > 0 with equality if and only ifp = g everywhere (almost everywhere
in the case of continuous domais). In other words, one can not do better than
actually assuming the “correct]: Second, the relative entropy can become infinite
if for an outcomex that can occur with nonzero probabilify(x) one assumes a
probabilityq(x) = 0. Third, the mutual information between two variabkeandY
can be expressed as

1(X;Y) = Dk [P(X,Y)|[P(X) p(Y)] (5)
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where we writep(x) p(y) for the product of the marginals by abuse of notation. Basi-
cally, this interprets mutual information as how many blieatY can be extracted
from X if X andY are not independent, but jointly distributed. If they ardead
independent, that value vanishes.

Furthermore, we would like to mention the following propedf the relative
entropy:

Proposition 1 Dg[p||q], is convex in the paifp,q).

The first important corollary form this is the strong cont¢pwf the entropy func-
tional, i.e. that there is a unique distribution with maximentropy in any (compact)
convex subset of the simplex. Since the mutual informatamlze written as

1(X;Y) = Dke [P(X,Y)|[P(X) p(Y)] = EyDkr [P(X]y)|[P(X)],

one can assert thatX;Y) is a concave function op(x) for a fixed p(y|x), and

a convex function op(y|x) given p(x). This is relevant because it guarantees the
unique solution of the two fundamental optimization prolgeof information the-
ory. The firstis mipy 1 (X;Y), givenp(x) and subject to other convex constraints,
i.e., the source coding or Rate-Distortion function. Theosel is may ) 1 (X;Y),
givenp(y|x) and possibly other concave constraints, i.e., the champeldity prob-
lem.

4 Markov Decision Processes
4.1 MDP: Definition

The second major building block for the treatment of periogpaction cycles in the
present paper is the framework of Markov Decision Proce@ddB¥s). It is a basic
model for the interaction of an organism (or an artificial myevith a stochastic
environment. We note that, as discussed in Sec. 8.2, thedMiaity of the model is
not a limitation; while our exposition of the formalism erapéd below will indeed
assume access to the full state of the system for the purpbsemputation, it will
fully retain the ability to model the agent’s subjectivewie

In the MDP definition, we follow the notation from (Sutton aBdrto 1998).
Given a state se?’, and for each statee . an action set7(s), an MDP is spec-
ified by the tuple(Pga, R;’a), defined for alls,;s' € .7 anda € </(s) WherePglal
defines the probability that performing an actemm a states will move the agent

to states’ (hence
gpi,a: 1 (6)

holds) ancRga is the expected reward for this particular transition (rtbsg Rga
depends not only on starting state@nd actiora, but also on the actually achieved
final states).
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4.2 The Value Function of an MDP and its Optimization

The MDP defined in Sec. 4.1 defines a transition structure pltesvard. Apol-
icy specifies an explicit probabilityr(als) to select actiora € </ (s) if the agent
in a states € .. The policy T has the character of a conditional distribution, i.e.

y n(als)=1.
acg/(s)

Given such a policyt, one can now consider the cumulated reward for an MDP,
starting at time at states, and selecting actions accordingri@als ). This action
gives a reward; and the agent will find itself in a new statg ;. Iterating this
forever, one obtains the total reward for the agent follgngolicy Tin the MDP by
cumulating the rewards over the future time steps:

9{t = e, (7)
tZt

wheref?; is the total reward accumulateihto the future starting at time stép

Due to the Markovian nature of the model, this cumulated rdwell depend
only on the starting statg and, of course, the policyg of the agent, but not time,
so that the resulting future expected cumulative rewardesabn be writtev "'(s)
where we dropped the indéxXrom the states.

Usually in the Reinforcement Learning literature a digdiore is made between
episodic and non-episodicMDPs. Strictly spoken, Eq. (7) applies to the non-
episodic case. For the episodic case, the sum in Eq. (7) isaminued to infinity,
but stops at reaching so-callgdal states. However, to unify the treatment, we will
stick with Eq. (7) and rather suitably ada(ﬁlia, Rga).

A central result from the theory of Dynamic Programming areinforcement
Learning is the so-called Bellman recursion. Even whileftimetionV ™ would be,
in principle, computed by averaging over all possible pagbiserated through the
policy m, it can be expressed through tBellman Equatiorwhich is a recursive
equation fov ™

Vg = Y m@s): Y Plar [REHVT(S)] €)

ac. (9) ges(s)

where the following assumptions hold:

1. asums over all actions?(s) possible ins;
2. s sums over all successor stat#gs) of s;
3. for an episodic MDFY'(s) is defined to be 0 i§ is a goal state.

In the Reinforcement Learning literature, it is also comrtweonsider the value
functionV being expanded per-action into the so-cali@dunction as to reflect

1 To simplify the derivations, we will always assume converge of the rewards and not make
use of the usual MDP discount factor; in particular, we asseither episodic tasks or nonepisodic
(continuing) tasks for which the reward converges. Forherrtdiscussion, see also the remark in
Sec. 8.2 orsoft policies
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which actiona in a states achieves which reward:

Qsa)= ¥ P [RE+VT(S)]. ©)

SE7(9)

In turn,V™(s) can be obtained fro@"(s,a) by averaging out the actiomswith
respect to the policyr.

To streamline and simplify the notation in the following, a&sume without loss
of generality that, in principle, all actions’ 2 U #(s) are available at each state

se.
sand all states” could be potential successor states. For this, we will nycthié

MDP in a suitable way: actiors € . that are not in the currently legal action set
</ (s) will be excluded from the policy, either by imposing the coamt ri(a|s) £

or, equivalently, by settingeg',a = —oo, Similarly, transition probabilitie@éa into
non-successor statsare assumed to be 0. Furthermore, for an episodic task, a goal
statesis assumed to be absorbing (iFé,a = &gy Where the latter is the Kronecker

delta) with transition rewarﬂtg', a=0.

The importance of the Bellman Equation (8) is that it progiddixed-point equa-
tion for V.. The value function which fulfils the Bellman Equation is que and
provides the cumulated reward for an agent starting at angitage and following a
given policy. Where a value functidhwhich is not a fixed point is plugged into the
right side of Eg. (8), the equation provides a contractivg mvlich converges to-
wards the fixed point of the equation and thus computes the\aV ™ for a given
policy 1. This procedure is calleghlue iteration

Finally, for an optimization of the policy — the main task otiRforcement
Learning — one then greedifies the policy, obtainimginserts it back into the
Bellman Equation, recomput®é” and continues the double iteration until conver-
gence (Sutton and Barto 1998). This two-level iteratiomf®ia standard approach
for MDP optimization. In the current paper, we will develapanalogous iteration
scheme which, however, will also cater for the informatiaest that acting out an
MDP policy entails. How to do this will be the topic of the camisections.

5 Coupling Information with Decisions and Actions

The treatment of an MDP, fully specified by the tup@a, R;’a), is usually con-
sidered complete on finding an optimal policy. However, nt@@guments concern-
ing biological plausibility indicate that any hypothedizattempt to seek optimal
behaviour by an organism needs to be balanced by the coabldarost of infor-
mation processing which increasingly emerges as a ceesalirce for organisms
(Laughlin 2001; Brenner et al. 2000; Taylor et al. 2007; RoR009). This view
has recently led to a number of investigations studying titerazation of informa-
tional quantities to model agent behaviour (Klyubin et 8l02a; Prokopenko et al.
2006; Ay et al. 2008). The latter work creates a connectiaw&enhomeokinetic
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dynamics and the formalism of predictive information (Deale 1999; Bialek et al.
2001).

In view of the biological ramifications, the consideratidan explicitreward be-
comes particularly relevant. The question then becomeadaliie optimal rewards
that an organism can accumulate under given constraints arférmational band-
width; or, more generally, the best possible trade-off leetwhow much reward the
organism can accumulate vs. how much informational bantthwicheeds for that
purpose.

In this context, it is useful to contemplate the notiomedévant informationThe
concept of relevant information stems from the informatiattleneck formalism
(Tishby et al. 1999). To do so, one interprets an agentastas the relevance in-
dicator variables of the bottleneck formalism. This pr@g@n informational treat-
ment of single-decision sequential (Markovian) decisioabfems (Polani et al.
2001, 2006), quantifying how much informational proceggpower is needed to
realize a policy that achieves a particular value/rewarell&Since we determine the
relevance of information by the value it allows the agentdoieve, we speak in this
context also ofaluable informatioA. A related, but less biologically and resource-
motivated approach is found in (Saerens et al. 2009). ThHe tdphe present paper
is a significant generalization of these considerationkedtll-fledged perception-
action cycle, and their treatment in the context of a geimdBellman-type recur-
sion.

5.1 Information and the Perception-Action Cycle

To apply the formalism of information theory, the quanstiavolved are best rep-
resented as random variables. Specifically in the contextt &DP, or more specif-
ically of an agent acting in an MDP, one can make use of thedtsm of (Causal)

Bayesian Networks (Pearl 2000; Klyubin et al. 2004, 2008re; we introduce
for completeness the general Bayesian Perception-ActymeGormalism, before

specializing it to the particular case studied in the prepaper.

5.1.1 Causal Bayesian Networks

We briefly recapitulate the definition ¢Causal) Bayesian Networkalso called
probabilistic graphical modelésee Pearl 2000). Causal Bayesian Networks provide
a way to describe compactly and transparently the jointitigion of a collection

of random variables.

2 Valuable information is not to be confused with treue of informatiorintroduced in (Howard
1966). Serving similar purposes, it is conceptually défer as it measures the value difference
attainable in a decision knowing vs. not knowing the outcarha given random variable. Stated
informally, it could be seen as “non information-theoreatimjugate” of valuable information.
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A Bayesian networkG over a set of random variable§ = {Xy,..., Xy} is a
Directed Acyclic Graph (DAGY in which each vertex is annotated by (or identified
by) names of the random variablés For each such variab}, we denote bya[X]
the set of parents of; in G andPal[x] their values. We say that a distributigi(x)
is consistentvith G, written p ~ G, if it can be factored in the form:

P(X1,-..,Xn) = ﬁ p(x | Pa[x]).

(To simplify notation, we adopt the canonical conventioatta conditional distri-
bution conditioned against an empty set of variables is Kirtipe unconditional
distribution).

5.1.2 Bayesian Network for a Reactive Agent

To see how Bayesian Networks can be applied to model an agenating in a
world, consider first a minimal model of a reactive agent. Bgent carries out
actionsA after observing the stai® of the world to which it could, in principle,
have full access (this assumption will be revisited lat&8gch an action, in turn,
transforms the old state of the world into a new world state.

In different states, typically different actions will beken, and if one wishes to
model the behaviour of the agent through time, one needsrulthe cycle over
time. This leads to the Causal Bayesian Network which is shiowEq. (10); here
the random variables are indexed by the different time steps-3,;t —2,...,t,t +
1.... Each arrow indicates a conditional dependency (which tsmtee interpreted
as causal in the sense of Pearl). For instance, at tjrttee state of the world is
W which defines the (possibly probabilistic) choice of actlgrimmediately (no
memory); this action, together with the current state ofwheld determines the
next state of the worle\, 1, etc.

W1

W2 W1 W
A3 Ao A A A1
(10)
Note that in this model there is a priori no limitation on threosv from\W to A;,

i.e. onp(a;|w ), and the agent could theoretically have full access to tite\df.

5.1.3 Bayesian Network for a General Agent

After the simplest of the cases, consider a significantly engeneral case, the
perception-action cycle of an agent with sensors and merasiin Eq. (11).
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-1 W Wi —— W ..

A

S A S An

(11)
Here,W represents again the state of the world at tim#; the actions; addi-
tionally, one has§ as the sensor and a memory variable The sensor variable
S models the limited access of the agent to the environmeatyamory variable
allows the agent to construct an internal model of the exlestate that can depend
on earlier sensoric observations.
A few notes concerning this model:

1. it is formally completely symmetric with respect to an lkeange of agent and
environment — the state of the environment correspondsetontmory of the
agent; the interface between environment and agent is fbbyehe sensors
and actuators (the only practical difference is that thevesrinside the agent
are amenable to adaptation and change, while the enviraairemows are
slow, difficult and/or expensive to modify, but this is nofleeted in the model
skeleton).

2. from the agent’s point of view, the sensor variable esaintransforms the
problem into a POMDP; however, in the Bayesian Network fdisna there is
nothing special about the limited view of the agent as opgtsan all-knowing
observer. Where necessary, the eagle’s eye perspective alf-knowing ob-
server can be assumed. In particular in conjunction witlrimitional opti-
mization, this allows one to select the level of informatibinansparency in the
network between various nodes, in particular to study veforms and degrees
of access to world information that the agent could enjoghsas e.g. in sensor
evolution scenarios (Klyubin et al. 2005b);

3. in the following, we will consider only agents which, iniqeiple, could have
full access to the world state. In other words, we will coflay/ andSinto the
same variable (we postpone the discussion of the full systeafuture study);

4. we note furthermore that modeling a memory implies tha&t wishes to sep-
arately consider the informational bandwidth of the enwnent and that of
the agent; else the environment itself could be considesquhe of the agent’s
memory. In this paper, we are indeed interested in the inddion processed
in the complete agent-environment system and not the idaaticomponents.
Here, we will therefore consider a reactive agent withoutesmory. However,
this is not a limitation in principle, as the approach presdris expected to
carry over naturally to models of agents with memory.
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With these comments, for the current paper, we finally endtupeafollowing
diagram which will form the basis for the rest of the paper:

Si1

VAVYAVAYAN

which is essentially diagram (10), but where environmestiatie and sensor state
have been collapsed into the same random variable

5.2 Actions as Coding

To obtain an intuition how actions can be interpreted in #regliage of coding,
represent a given MDP as a graphith transition edges between a statand its
successor state. In this graph, the edges are labeled by the actaagailable in
the given states (as well as the transition probabilitiesramwards). Multiple edges
can connect a given staseand its successor stageas long as they differ by their
action label, in other words differing actions may lead t® sme transition.

From this picture, it is easy to see that any MDP can be modiidtbut loss of
generality in such a way that the actions have the same @ditglim every state. In
the simplest case, we can always make this cardinality 2 latiebaactions/decisions
binary. To see this, consider the standard example of awguidd, or a maze. As ex-
plained above, describe such a world by a (directed) grapihweirtices of various
degrees. Replace now every junction (which could have atramnpnumber of pos-
sible action choices) by a roundabout. In a roundabout,yetecision becomes
binary: continue on the roundabout or take the turn. Thergydecisions/actions
become binary (left/right), without changing anythingeeils the problem.

More generally, this can be done by transforming any comgksision into
a binary decision tree. Thus, long decision/action segeeiace encoded as long
bit sequences. It is important to note, though, that each bitccan have entirely
different semantic context, depending on its location @ngtaph.

Assume now for this section that our MDP is made of only bindegisions
and/or actions, denoted lay € {0, 1}, and treat decision sequences as finite binary
stringsa;ay . .. ax = a. Denote furthermore blythe standard string length function
operating on these stringga) = | (a1ay. .. a) 2k

We can now draw simple direct analogies between binary iecisequences
and binary codes in communication. We assume that therefaite sequences of
actions (at least one) which deterministically connectstates with any other state
s (the MDP is simply connected, and deterministic). Denotadaysuch a (binary)

3 This is a transition graph and should not be confused wittBtyeesian Network Graph.
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action sequence, and bfasy), its length. The following properties either follow
immediately or are easy to verify:

e Unique decoding: a binary decision sequence uniquely ohiterthe end-state
g, given the starting state

e Concatenation: for any three statssy,ss, the concatenation @i, s, o as, s,
is a sequence that connest4o s;.

e Minimal length: for any two states s’ we can definé;_,¢ 4 minass, l(asy). We

will call this minimal length betwees ands' the decision complexitpf the
paths — < in the MDP.

Now, in general, while decision/action sequences havelaiitiés to codes as
descriptions of trajectories on a graph, there are alsoiitapbdifferences. First, in
general it is not always the case that the goal of an MDP ishirga particular
target state (or a set of target states), as in the case of éze.rSometimes the
optimal solution for an MDP is distributed and more diffused it involves an
extended behaviour of potentially infinite duration as guieed in optimal control,
wealth accumulation, or survival. In particular, the reqdiaction trajectory may
turn out not to be deterministic, or not finite, or neither. fglaver, if the MDP is
noisy (i.e.Pg‘,Sl is not deterministic), a given action sequence does notssaciéy
determine a unique trajectory of states, but rather a digidn of state sequences.

This poses no problem though, since, as in standard infasm#teory, above
notion of decision complexity can be smoothly generalizedtill have meaning
in the probabilistic or non-finite action sequence: for {hispose one defines it to
be theexpectechumber of binary decisions, or bits of information, reqdite the
agent in the future to achieve a certain expected cumul@weerd valuev™(s)
if one starts out at a particular stadeat a given timet in the MDP. The deci-
sion complexity is essentially a generalization of the sotf relevant information
(mentioned earlier in Sec. 5) from individual actions to @bate action sequences
starting at the current time and extending into the future.

Furthermore, one can extend the information processed éwadient alone to
the information processed by the whole system, encompabsith agent and en-
vironment. Hereby, one moves from decision complexitptocess information
This quantity is computed for the whole agent-environmgstesn, beginning with
the current state (and agent action) and extended towagdspén-ended future of
the system. Strictly spoken, we only consider the procdssriration towards the
future, not the past. In analogy to the term “cost-to-go”, wikt speak ofprocess
information-to-ggor simplyinformation-to-gdJ™(s, &) which is computed speci-
fying a given starting statg and an initial actiora; and accumulating information-
to-go into the open-ended future.

The information-to-go is the information needed (or mig}ito specify the fu-
ture states and actions relative to some prior knowledgatahe future. One com-
ponent of this information is the due to uncertainty in theisiens; the other is
the information that is “given” or “processed” by the enviroent in the state tran-
sitions. For discrete states and actions we can think of theaduture state-action
entropy, conditioned on the current state-action pair.eviygnerally, one would use
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the Kullback-Leibler divergencBg, of the actual distribution relative to the prior
distribution. This is actually implements an “informataimegret” which general-
izes the simple conditional entropy (and is better-behavélie case of continuous
states and actions). We define the notion of informatiogadermally in Sec. 6.2,
Eq. (20).

Let us emphasize again that the philosophy of the presembapipis intimately
related to the concept of relevant information (Tishby e18P9; Polani et al. 2001,
2006) which quantifies the minimal informational cost fodividual decisions an
agent needs to take to achieve a given future expected ctedutavard (i.e. value).
A difference between relevant information and the presemtysis that here we
consider the information processed by whole system, nothigsagent. However,
by far the most important distinction is that we generaltzis toncept to include
the information to be processed by the system not just fotiorestep, but over the
whole period of the run and thus through multiple cycles of the pption-action
cycle projected into the future.

The intimate relation between the theories of informatiod af coding would
suggest an interpretation of the formalism in terms of cgditowever, statements
in coding theory are typically of asymptotic nature. Nowgeneral, a run of an
agent through an MDP does not need to be of infinite lengthewein on average:
finite-length runs are perfectly possible. To reconcils gunflict, consider the fol-
lowing two interpretations which we expect to be able to wecdhe asymptotics
required for a coding-theoretic interpretation:

1. runs are restarted after completion, infinitely ofteeyéty extending the MDP
into an infinite future;

2. assume that the total available information processmgep of the agent is
pooled and shared by a large number of separate decisiorgses; a partic-
ular decision process will utilize a certain amount of imh@tion processing
bandwidth at a given time, and the information-theoretierfalism then de-
scribes the usage averaged over all processes (weightedheit probability
of occurring). This second view introduces an ensemblepné¢ation of the
formalism.

We believe that both, the infinite length run and the ensennidgpretation allow
a connection of the present formalism to coding theory amd#ige tight bounds
in the asymptotic case. This question will be pursued furthehe future, but is
outside the remit of the present paper.

5.3 Information-To-Go

To prepare the ground for the later technical developméntie present section,
we first give a high-level outline of the coming discussions.
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5.3.1 A Bedllman Picture

The information-to-go[1™(s, & ), is an information-theoretic quantity that is asso-
ciated with every state-action pair, in analogy to @, a) function which can
be considered as thalue- (or reward-)to-gdrom Reinforcement Learning. The
information-to-go quantifies how many bits one needs onageto specify the fu-
ture state-action sequence in an MDP (or its informatioegdet) relative to a prior.

In Sec. 6 we shall suggest a principled way of generdfifigoptimal soft-max
policies. Strikingly, these solutions obey a Bellman-typeursion equation, analo-
gous to Reinforcement Learning; they involve a locally analated quantity which
can be interpreted g¥ocal) information gain the information provided by the en-
vironment associated with each state transition and adtioanalogy to the local
reward in MDPs.

The local information gain will be shown to be composed of tvabural terms.
The first is the information measuring the environmentgboese to an action, i.e.
the information processed in the transition as the systewemto a new state; it
is determined by the MDP probabilitiééa. The second term is the information
requiredby the agent to select the valuable actions and is deternbipéae policy
ni(als).

The combination of the Value and Information Bellman ecquragigives a new
Bellman-like equation for the linear (Lagrangian) combiom of the two, thefree
energyof the MDP, denotedr (s, &, 3), which reflects the optimal balance be-
tween the information-to-go and value-to-go achieved.dteen transition proba-
bilities, Pﬁa, and given policyr(als), we can calculate the free energy for every
state/action pair by solving the Bellman equation, for aivewy trade-off between
information-to-go and value-to-go. This essentially ieypkents a novel variant of
the rate-distortion formalism which applies to the valo&imation trade-off of
MDP sequences.

5.3.2 Perfectly Adapted Environments

This formulation gives rise to a second new insight, namiety ¢haracterization
of the perfectly adapted environmeby further minimizing the free energy with re-
spect to the MDP probabilitie@é',a. The MDP transition probabilities that minimize

the free energy are shown to be exponential in the re\/\@g, In that particular
case all the information about the future is valuable anaitanal policy turns out
to be also the one that minimizes statistical surprises.

Perfectly adapted environments form another family of aces (besides the
classical model of Kelly gambling, Kelly 1956) with the peaty that the maxi-
mization of information about the future is equivalent te thaximization of the
value of the expected reward. In general, this is not the: caieer, the current state
of the system will provide valuable (relevant) as well as-wafuable information
about the future. Non-valuable (irrelevant) informatidnoat the future is the infor-
mation that can be safely ignored (in a bottleneck sensépwitaffecting the future
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expected reward. It is the valuable (relevant) informataly which affects the fu-
ture reward. In the special cases of both Kelly gambling déageour case of the
perfectly adapted environment, however, all informatisivaluable — maximiz-
ing the future information is equivalent to maximizing thepected future reward.
When the bandwidth for future information is limited, theats to a suboptimal
trade-off with respect to achievable future expected rdwar

The interest in studying perfectly adapted environmeisistfrom the fact that
they provide the key for linking predictive information witask-relevant informa-
tion. It has been hypothesized that living organisms mazeéntie predictive infor-
mation in their sensorimotor cycle and this hypothesisvadioo derive a number
of universal properties of the perception-action cyclea(@ et al. 2001; Ay et al.
2008), and, if this hypothesis has merit, this would implyi@terpretation of or-
ganismic behaviour in terms of (Kelly) gambling on the oumeoof actions. On
the other hand, actual organismic rewards could in priedj@ structured in such
a way that much of the predictive information available ie #ystem would turn
out to be irrelevant to select the optimal action; the ditton between relevant
and irrelevant information provides a characterizatioambrganism’s niche in its
information ecology.

However, under the assumption that information acquisiiad processing is
costly for an organism (Laughlin 2001; Polani 2009), one Mfdndeed expect a
selection pressure for the formation of sensors that capgust the value-relevant
component of the predictive information, but no more. A dtapher goes the hy-
pothesis that, over evolutionary times, selective presaauld even end up realign-
ing the reward and the informational structures toward$epty adapted environ-
ments. Although here we are concentrating only on theirrétézal implications,
it should be mentioned that all these hypotheses imply diasimé and ultimately
experimentally testable predictions.

5.3.3 Predictive | nfor mation

We assume in Eq. (12) that the agent has full sensoric acoese® tstate of the
world. This is a special case of the more general case wheraftbrmation-to-go
is the information that the agent at the current time has erfuture of the system
and which is extracted from past observations. One imjdinatf this assumption is
that the future information of the organism is bounded bypireelictive information
(defined e.g. in Shalizi and Crutchfield 2002; Bialek et abP(®f the environment
(Bialek et al. 2007). In Fig. 3 from (Bialek et al. 2007), infieation about the past,
the future, adaptive value and resources are putin relaieach other, and the pre-
dictive information (i.e. the information which the pastthé system carries about
the future) corresponds to its 3rd quadrant. Note that $met the full predictive in-
formation, but only the valuable (relevant) component efgihedictive information,
in the sense that it identifies the information necessarygliese a given value in
a given reward structure. Its supremum is the total valuiatidemation that the en-
vironment carries about the future. The organism canna haore future valuable
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information than is present in the environment, and willjally, have less since it
is bounded by metabolic, memory or computational resourkesvas shown by
(Bialek et al. 2001), for stationary environments the peceade information grows
sub-linearly with the future horizon window (it is sub-emgive). On the other hand,
for stationary environments and ergodic MDPs the infororato-go grows linearly
with the horizon (future window size), for large enough womg.

5.3.4 Symmetry

We wish to attract attention to a further observation: we e@nted already in
Sec. 5.1.3 that the Bayesian Network is symmetric with reSjgeenvironment and
agent — but, in addition, the Bayesian Network is also stnadly symmetric with

respect to an interchange of past and future whereby thefaensing and acting
is switched. This structural symmetry is reflected in theesal interchangeability
of the past and future axes in the 3rd quadrant of Fig. 3 inl¢Riat al. 2007). To

complete the symmetry, we would need to additionally inicela sensoric cost in
analogy to the actuatoric reward which is already implemernn the present pa-
per. Of course, the symmetry is only structural; in the frevonk, past and future
are of course asymmetric, since we compress the past andittesifuture — i.e.

we minimize the information about the past and maximize ttiermation about
the future (and see e.g. also Ellison et al. 2009). Likewtlse symmetry between
environment and agent is only structural, but the flexipiind the characteristic
dynamics will in general differ strongly between the enmimeent and the agent.

5.4 The Balance of Information

The relevance of the informational treatment of the peioapaction cycle arises to
some degree from the fact that information, while not a coregbquantity, observes
a number of consistency and bookkeeping laws. Other suchdagincarnated as
informational lower or upper bounds. Always implicit to suconsiderations is of
course the fact that, in the Shannon view, the source data—e&m principle —
be coded, transmitted through the channel in question ardghitably decoded to
achieve the given bounds.

We note that the multi-staged treatment of communicatianokls separating
source and channel coding as espoused in the classicahfatse by Shannon is
not necessarily the most biologically relevant scenariw.iffstance, it was noticed
by Berger (2003) that biology might be using non-separatfteimation in the sense
of using joint source-channel coding (Csiszar and Kolr®86). This view is of par-
ticular interest due to the discovery of the general existesf optimally matched
channels (Gastpar et al. 2003). The simplicity and diresgribey afford, suggests
that such channels may have relevance in biology. Spetyfiveith these advan-
tages, it is conceivable that biological perception-actigcles would profit from
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co-evolving all their components towards optimally mattbbannels; this particu-
larly since biological channels are likely to have had sidfictime and degrees of
freedom to evolve optimally matched channels.

If this hypothesis is valid, biological channels and petmepaction cycles will
not just strive to be informationally optimal, but also fuifie additional constraints
imposed by the optimally matched channel condition. In aaptedrical way, this
hypothesis corresponds to an “impedance match” or a bataitegon for informa-
tion flowing between the organism and the environment in ylogec

The optimal match hypothesis, for one, contributes to tlaegibility of the in-
formational treatment for the understanding of biologicérmation processing;
in addition, it provides a foundation for predictive stataits, both quantitative and
structural. It is beyond the scope of the present paper tdl dnehese ramifica-
tions in detail. However, it should be kept in mind that thaszan important factor
behind the relevance of informational bookkeeping pritesigor the studies of the
perception-action cycle.

With these preliminaries in place, the present section nail review some el-
ementary information-theoretical bookkeeping principlEhe reader is already ac-
quainted with them is invited to only lightly skim this seatifor reference.

5.4.1 The Data Processing I nequality and Chain Rulesfor Information

Consider a simple lineavlarkov Chain a special case of a Bayesian Network, con-
sisting of three random variabld$:— X — Y. Then, theData Processing Theorem
states tha¥ can not contain more information abduithanX, formally

1(X;U) > 1(U;Y).

In other wordsy can at most reflect the amount of information abduhat it ac-
quires fromX, but no more than that. While information cannot grow, it barlost
in such a linear chain. However, to reacquire lost inforomatit would need to feed
in from another source. The insight gained by the data psitg#equality can fur-
thermore be refined by not just quantifying, but actuallyniifging the information
from a source variable that can be extracted downstream iar&kdv Chain. One
method to do so is, for instance, the Information Bottlen@ighby et al. 1999).

As a more general case, consider general finite sequencasadm variables,
XM= (X, Xy, ..., Xn). From Eq. (2) it is easy to see that one has

H (X1, X2, ..., Xn) = H(X1) +H (Xa|X1) +H (Xa|X2, Xg) + ... + H(X| X" 1), (13)

In the case of finite — sag-th order — Markov chains, this simplifies drastically.
Here, a variablé is screened by thea previous variableXy n, ..., Xx_1 from any
preceding variable, that is, a conditional entropy simgdifaccording to

H (XYY = H (X, - X 1) = H O Ximy -+ Xk 1)
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(without loss of generality assunke> m, or else pad by empty random variab}s
fori <0).

Similarly to Eq. (13) one has for the mutual information wihy additional
variableY the relation

(X2, X2, os Xl Y) = 1(XE5Y) 4 1(X2; Y [X0) +1(X3; Y[ X2, Xa) 4 ... A 1 (Y X0 | X1

(14)
where theconditional mutual informatiors naturally defined agX;Y|Z) =H (X|Z) —
H(X]Y,Z). The conditional mutual information can be interpretedhesihforma-
tion shared by andY onceZ is known.

We have seen in Eq. (5), mutual information can be expresséetins of the
Kullback-Leibler divergence. Thus, the chain rule of imf@tion is, in fact, a spe-
cial case of the chain rule of the Kullback-Leibler divergerfsee also Cover and
Thomas 1991):

DL [p(Xa,- -+ %) [[A(X1; - - -, %n)] = D [p(Xa)|[a(Xa)] + Dke [P(X2[X1)|[a(X2[X1)] + .
-+ Dk [P(xn X" )] [g(%a|x" )]

(15)
with the conditional Kullback-Leibler divergence defined a
X
D [Py 1)) 2 S p0) S plyix)log 2V (16)
% 7 a(ylx)

5.4.2 Multi-Information and Information in Directed Acyclic Graphs

A multivariate generalization of the mutual informatiorttie multi-information. It
is defined as

H[P(X)] = (X1, X2, ..., Xn) = DKL [P(X1, X2, ... Xn) || P(X1) P(X2)...p(Xn)] .~ (17)

There are various interpretations for the multi-inforroatiThe mostimmediate one
derives from the Kullback-Leibler representation usedvabm this view, the multi-
information measures by how much more one could compregatttmm variable
(X1, X2, ...,X%n) if one treated it as a joint random variable as opposed toledatimn

of independent random variablXs, Xy, ..., X,. In other words, this is a measure
for the overall dependency of these variables that couldsheéezed out” by joint
compression. The multi-information has proven useful imidety of fields, such as
the analysis of graphical models (see e.g. Slonim et al. 2006

Proposition 2 LetX = {Xy,...,Xn} ~ p(x), and let G be a Bayesian network struc-
ture overX such that p~ G. Then

H[p(x)] = 1(X) =3 1(X;Pa[Xi]).
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That is, the total multi-information is the sum of “local” nual information terms
between each variable and its parents (related additivittyria can be formulated
for other informational quantities, see also Ay and WenneR803; Wennekers and
Ay 2005).

An important property of the multi-information is that it ke cross-entropy
between a model multivariate distribution and the “mostaatic”, completely in-
dependent prior over the variables; therefore, it can be ts@btain finite sam-
ple generalization bounds using the PAC-Bayesian framie\iddcAllester 1999;
Seldin and Tishby 2009).

6 Bellman Recursion for Sequential | nformation Processing

The language and the formalisms needed to formulate theateesult of the
present paper are now in place. Recall that we were interésteonsidering an
MDP not just in terms of maximized rewards but also in termisfafrmation-to-go.

We consider complete decision sequences and compute thegsponding
information-to-go during the whole course of a sequenceofgmsed to the in-
formation processed in each single decision, as in Polati 2001, 2006). We will
combine the Bayesian Network formalism with the MDP picttoalerive trade-
offs between the reward achieved in the MDP and the infoomatieffort or cost
required to achieve this reward. More precisely, unlikehia tonventional picture
of MDP where one essentially seeks to maximize the rewardattemwhat the cost
of the decision process, we will put an informational coaisttron the cost of the
decision process and ask what the best reward is which cachievad under this
processing constraint.

It turns out that the resulting formalism resembles closiedyBellman recursion
which is used to solve regular MDP problems, but it applisgdad to informational
quantities. This is in particular interesting since infational costs are not extensive
as MDP rewards are (Bialek et al. 2001).

Before we proceed to introduce the algorithm, note that #weard is only as-
sociated with the agent’s choice of actions and the ensuargitions. Thus, only
that information about the future is relevant here whiclkeetf the rewards. In turn,
the component of entropy of the future which is not going fectfthe reward can
be ignored. Basically, this is a “rate-distortion” versiofithe concept of statistical
sufficiency: we are going to ignore the variability of the Yadowhich does not affect
the reward.

6.1 Introductory Remarks

Consider now the stochastic process of state-action pairs



22 Naftali Tishby and Daniel Polani
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where the state-action pairs derive from an MDP whose Bayesietwork corre-
sponds to Eq. (12), beginning with the current statand actionA;. The setup is
similar to (Klyubin et al. 2004; Still 2009).

We reiterate the argument from Sec. 5.1.3, point 2 and engehasce more that
for our purposes, itis no limitation to assume that the agaatpotentially unlimited
access to the world state and we therefore can exclusivakider MDPs instead of
POMDPs. The information/value trade-off will simply findethest possible pattern
of utilization of information.

For a finite informational constraint, this still impligitdefines a POMDP, how-
ever one that is not defined by a particular “sensor” (i.etiglawbservation) struc-
ture, but rather by the quantitative limits of the infornaaial bandwidth. The for-
malism achieves the best value for a given informationadbadth in the sense
that no other transformation of the MDP into a POMDP utilizthe same informa-
tion processing bandwidth will exceed the optimal tradiesofution with respect
to value. In the following, we will thus consider the systeranfii an eagle’s eye
perspective where for the purposes of the computation we kawn principle —
access to all states of the system, even if the agent itsedf (d its information
bandwidth constraints) may not.

To impose an explicitly designed POMDP structure (e.g. ipoating physi-
cal, engineering or other constraints), one could resdfteceextended model from
Eq. (11) instead. The latter incorporates sensors (i.dio#{pnitations to what the
agent can access from the environment) as well as memorgidsing the latter
turns the perception-action cycle into a full formal anglo§ Shannon’s communi-
cation channel. In this case, however, one typically needsdude also the agent
memory into the picture. For such a scenario, preliminasuits indicate that infor-
mational optimality criteria have the potential to chaeaizte general properties of
information-processing architectures in a principled \(&@n Dijk et al. 2009).

Concludingly, the formalism introduced here is not limitedeactive agents and
in future work we will extend it to memory-equipped agentgré] however, we
limit ourselves to reactive agents, as these already repres important subset of
the systems of interest and provide a transparent demdtaoastod the central ideas
of our approach.

6.2 Decision Complexity

Assume that, at timg, the current state and action are givén= ,A = &. The
distribution of successor states and actions in the foligwime steps+1,t+2, ...
is given by p(s+1,a+1,S%+2,a+2,-.-|%,8 ). We assume now a fixed prior on the
distribution of successive states and actiqu{Si1, a1, S+2, 842, ---)-

Define now the process complexity as the Kullback-Leiblgedjence between
the actual distribution of states and actions dftend the one assumed in the prior:
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P(St+1,841, 512,842, -5, &)
P(St+1,841,542,842,--)

0(s,a) = Epsiracisizacz./sa) 109 (18)

0™(s,a) measures the informational regret of a particular sequegleéve a
prior probability for the sequence. The prior encodes drimation known about
the process which can range from a state of complete ignenam¢o a full model
of the process (in which casé’(s,a) would vanish).

However, we want to consider priors which are simpler tharfai MDP model.
Of particular interest are those where the components 388 1 1A 11, S+ 2A¢ 12, -
are independent, i.e. where the prior has the form

B(St11,84 1,842 842,.-.) = P(S+1) TT(8¢11) P(St12) (@1 2) - .-

where all “hatted” distributions are the individual priays the respective random
variables (we denote the priors for the actionstipstead ofpfor reasons that will
become clearer below, see e.g. Eg. (19)). With such a choite @rior, 07 (s, a )
becomes a measure for the interaction between the diffsteps in the decision
cascadé

Selecting the priorp(&.1), f(a1), P(S+2), (a1 2),... beforehand and inde-
pendently from the MDP corresponds to the most agnosticngsson. Another
specialization is thstationarityassumption that the random variab&s;, S 2, ...
andA ;1A 2,... are i.i.d. and share the same state distributig(ss. 1), p(S+2), - - -
and action distribution&(a; 1), (a4 2), - - - -

For our purposes, it is useful to mention the criteriurcarfisistencyConsistency
can be total or partialotal consistencgneans thap(s 1), fi(a+1), B(S+2), fi(@42), - - -
result from the marginalization of thtal original distribution which itself is
consistent with the Bayesian Network Eq. (12). In the casetal consistency,
0™(s, a ) becomes the multi-information between the state/actioiabbesS 1A 11, S+2A+2, ...
throughout the sequence.

On the other handpartial consistencyneans that only parts of the relations in
the Bayesian Network are respected in forming the factboza

In the present paper, we will use close to minimal assumgptive assume sta-
tionarity with partial consistency, where the state disttionsp(s.+1), P(S+2),---
are the same for all times, and the action distributions ansistent with them via
the policyrwhich we assume constant over time fortall

a) = 5 mals) A(s)- (19)
g€

The priorp(s) is chosen as uniform distribution over the states fot.all

Stronger consistency assumptions, such as requiring(te: J, p(s42),... to
respect the transition probabilitiggs 1|, &) in the Bayesian Network (we call
this ergodic stationarityin the special case qi(§+1), P(s+2),... being identical

4 Note that, unless stated otherwise, we always imply thatligteibutionsp(s; 1), p(2), ... as
well asfi(a;11), fi(ac12), . .. can be different for differertt
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distributions) will be considered in the future, but aresidé of the remit of the
present paper.

With above comments, the information-to-go will be definedhe following as
the Kullback-Leibler divergence of the of the future sequesof states and actions,
starting froms, a;, with respect to stationary prior state distributions aber state
sequenced(5.41), P(s+2),... and policy-consistent (Eq. (19)) action distributions
ﬁ(atJrl)v ﬁ(aH»Z)a et

P(S+1,841,S+2, 842, .S, &)
B(St1) (A1) P(S+2) TT(@g42) - - -

A
0™(st,8) = Ep(s 18,158 2802.- |5.2) 109 - (20)

The interpretation of this quantity is as follows”(s,a) measures the infor-
mational cost for the system to carry out the politystarting at time into the
indefinite future with respect to the prior. In general, thisantity will grow with
the length of the future. It measures how much informatiopriscessed by the
whole agent-environment system in pursuing the given paticThis quantity can
also be interpreted as the number of bits that all the statkaetions share over the
extent of the process as opposed to the prior. One motivéfdyisg this quantity is
that it provides important insights about how minimaligtgents can solve external
tasks under limited informational resources.

The central result of the present paper is that the optioizatf V™™ under con-
strained information-to-g@(s, &), although encompassing the whole future of
the current agent, can be computed through a one-stepHealarecursion rela-
tion; moreover, this recursion relation closely mirrors Bellman recursion used in
the value iteration algorithms of conventional Reinforesrn_earning.

6.3 Recursion equation for the MDP Information-To-Go

We obtain a recursion relation for this function by sepaigathe first expectation
from the the rest. With Proposition 2 in the context of Eq.)(1s easy to see that
one has
P(S1ls. @) m(ac+1/S+1)

0%(s,a)=E log—— +log—= +0™(st41,8041) |

( ) P(St+1.8+1/820) g p(SH»l) g 7T(at+1) ( +1 +l)

(21)

with p(s+1,81(S,a) = P(S+1/s, @) m(a+1/s+1) (for more general Bayesian
graphs, more general statements can be derived).

The terms associated with the first state-action-tramsitio

A8 — jog PElsa) o TM@alSi) -
o J P(st+1) ? m(ag+1) (22)
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can be interpreted as theformation gainassociated with this transition. In this
recursion, the information gain takes on the role of the lloeaard, in complete
analogy with the quantityzg a from Reinforcement Learning.

Information gain-type quantities appear as natural Lyapduanctions for Master
Equations and in the informational formulation of explavatand learning prob-
lems (Haken 1983; Vergassola et al. 2007). Note that thetdiesnin Eq. (22)
can be both positive as well as negative (even if the priorasgnal, e.g. Lizier
et al. 2007). Only by averaging the familiar nonnegativity property ofdrma-
tional quantities is obtained.

6.3.1 The Environmental Response Term

The information gain Eq. (22) consists of two terms which wgedss in turn. The
first term quantifies the statistical surprise in the traoisitiue to our action (relative
to the prior). It can be seen as thevironmental response informatias it measures
the response of the world to the agent’s control action.dtss interpretable as the
information gained if one capbservehe next state (in a fully observed MDP), or as
the informatiomprocessedby the environmentin this state transition. In Sec. 7.2 this
term combined together with the MDP reward will give rise lte toncept of the
perfectly adapted environment which reflects the percegiction cycle version of
the notion of optimally matched channels by Gastpar et G082

The environmental response information can be considenethfarmation-
theoretic generalization or a soft version of the conth@etrretic concept ofon-
trollability (in this context, see also Ashby 1956; Touchette and Lloy@D2@004;
Klyubin et al. 2005b; Todorov 2009). As here we do not limi¢ Bgent’s access to
the world state and also do not model the sensoric cost, themation gain term
does not contain an analogous information-theoretic temmesponding to observ-
ability, but this is only a restriction of the current scapanot of the model in
general.

Strictly spoken, when we talk above about controllabitibgervability, we refer
only to the actual level of control (and observation) exgrtet about controllability
(and observability) in the sense of the maximally achiesatantrol/observation.
For an information-theoretic treatmentafmbinectontrollability and observability
in the latter (i.e. maximality) sense, see e.g. (Klyubinle2@08).

5 The interpretation of a negative information gain is thatlemthe presence/observation of a
particular condition the subsequent distributions arerbtlh One caricature example would be
that, to solve a crime, one would have a probability distidousharply concentrated on a particular
crime suspect. If now additional evidence would excludé shiapect from consideration and reset
the distribution to cover all suspects equally, this woutdadm example for negative information

gain.
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6.3.2 The Decision Complexity Term

We now turn briefly to the second term in Eq. (22); the seconah teflects the
decision complexity, i.e. the informational effort thaetagent has to invest in the
subsequent decision at tine- 1. The average of this term according to Eq. (21)
measures the information required for the selection of tients action at time
t+ 1. Importantly, note that this value for the decision corrjileat timet+ 1 as
calculated from the recursive Eq. (21) and Eq. (22) is alveayslitional on the state
s and the actiom; at the current timé.

These two components make clear that the information psawgexhibited by
the agent-environment system decomposes into two paeghancaptures the en-
vironmental information processing, and one that refléesagent’s decision. This
decomposition is related to that known from compositionarkbv chains (Wen-
nekers and Ay 2005) and provides an elegant and transpaagmafvdistinguishing
which part of a system is responsible for which aspect ofrm#ttion processing.

7 Trading Information and Value

We can now calculate the minimal information-to-go (i.ewvieonmental informa-
tion processing cost plus decision complexity) that is nelto achieve a given
level of value-to-go.

7.1 The “Free-Energy” functional

At this point, we remind the reader of Eq. (9) which is usedhia Reinforcement
Learning literature to characterize the value- or rewards in terms of state-action
pairs instead of states only:

Q(s.a) = ¥ PIA- [RIZ+V(5:1)] (23)

S+1

As VT quantifies the future expected cumulative reward whenistpirt states and
then following the policyrm, the functionQ™ separates out also the initial actien
in addition to the initial stats.

The constrained optimization problem of finding the mininmébrmation-to-go
at a given level of value-to-go can be turned into an uncairstd one using the
Lagrange method,; for this the quantity to minimize (the infation-to-go) is com-
plemented by the constraint (the value-to-go) multipligcalangrange multiplier
B:

F(s,a.8) 2 O0(si,a) — BQY(s,a);. (24)
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This Lagrangian builds a link to the Free Energy formalisnown from statisti-
cal physics: the Langrange multiplifrcorresponds to the inverse temperature, the
information-to-gdJ™ corresponds to the physical entropy. The value-to-go (&ere
pressed aQ™) corresponds to the energy of a system, BAdS corresponds to the
free energy from statistical physics. However, for simiplisve will apply the notion
of free energyo F itself. The analogy with the free energy from statisticaygibs
provides an additional justification for the minimizatiohtbe information-to-go
under value-to-go constraints: the minimizatiorFdfidentifies the least committed
policy in the sense that the future is the least informatfiee the least constrained
and thus the most robust.

This philosophy is closely related to the minimum informatprinciple (Glober-
son et al. 2009): if one has an input-output relationshigg selects a model that
processes the least information that is consistent wittobiservations. This corre-
sponds again to the least committed solution that coverslibervations (and is, in
general, not identical to the maximum entropy solution wittich it coincides only
in certain cases, see Globerson et al. 2009).

For the later purposes, it is useful to expand the free eresdgllows :

0"(s,a) — BQ" (s, &) =

_E { g PElSa) oo M@alS )
p(stralsae) mm(agalst1) P(Ss1) fi(a1)

— BRIG + 0™(st41,8041) — BV”(Sm)}

P(S+1ls,a) Si1
=E log—————2 — BRa%
p(sﬂs,at)[ g Blsse) BR&4

(g 1]St+1)

K + 0™(s41, 8
Aagy) A

+En(als,0) {'09
— BQ(st+1, at+1)} }
(25)
where the last equality follows from
V(st41) = Engag, 1js0.0) [Q (841, 841)]
This leads to the following recursive relation for the freeryy:

p(s+1ls, @)
F'(s,a,B)=E log———7—

+ Ena /st 1) {'09

— BR3&!

T(ag41]S+1)

Ala1) *F"@H,am,mﬂ.

(26)
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The task of finding the optimal policy, i.e. the one minimiiits information-
to-go under a constraint on the attained value-to-go isesbby the unconstrained
minimization of the corresponding Lagrangian, i.e. the feeergy functionaf ™

argnminF T(g,a,B) = argnmin[D"(St,at) —BQ (s, a)]

where the minimization ranges over all policies. A par@cwonstraint on the value-
to-go is imposed by selecting the respective “inverse teatpee” Lagrange multi-
plier 3.

Extending Eq. (26) by the Lagrange term for the normalizatibrr and taking
the gradient with respect @, and then setting the gradient®f to 0 (both for the
entire term as well as inside the brackets) provides us witélinan-type recursion
for the free energy functional as follows: an optimal policgatisfies the recursive
Eqg. (26) as well as the relations

n(als) = % exp(—F"(s,a,B)) 27)
Z"(s,B) = 3 f(a)exp(—F"(s,a,B)) (28)
(@) = 3 m(als)p(s). (29)

in a self-consistent fashion. In turn, iterating the systhself-consistent Equa-
tions (26) to (29) till convergence for every state will pus@ an optimal policy.
This system of equations essentially unifies the Bellmanaiqo and the Blahut-
Arimoto algorithm from rate-distortion theory.

Notice that as result of the algorithm, we obtain a non-&tigdft-max policy for
every finite value of3. Furthermore, if the optimal policy is unique, the equagion
will recover it as a deterministic policy for the linf& — co. The compound iterations
converged to a unique policy for any finite value f While we believe that a
convergence proof (possibly without uniqueness guarahteauld be developed
along the lines of the usual convergence proofs for the Blaunoto algorithm,
we defer this to a future paper.

It should be mentioned at this point that the reward strectigtermining the
form of Q is an externally defined part of the system description. lnghesent
paper, the reward can be of any type. However, the rewardddoellrealized as
a more specific quantity, e.g. an informational measureh sis; for example, a
predictive information gain in which case the formalism Wbieduce to a particular
form.
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7.2 Perfectly adapted environments

An intriguing aspect of the free-energy formalism that we cansider the optimal-
ity not only of the agent’s policy but also that of the envinoent. This is particularly
relevant for the characterization of a “best match” betwnorganism'’s action
space and the responses of the environment, which realizedectly adapted en-
vironment We already commented earlier on the close conceptual gnaktween
the concept of the perfectly adapted environment and whaswggest to be its
information-theoretic counterpart: the environment gedonsidered as the chan-
nel, and the agent’s actions as the source in an optimallghedtchannel (Gastpar
et al. 2003).

In the following paragraphs we characterize the optimal (erfectly adapted)
environment in the language our formalism as the the MDPrthiaimizes the free
energy. Define the notation

_ s A _PS) s
Ip(s[s.2) = ca 2 5 5 S exp(BRY, ) (30)
Then, with the free energy functiongl"(s,a,3) = 0 (s,a) — BQ"(s, &), the
Bellman equation can be rewritten as:

P(S+1ls,a)

————= —10gZ(B, s, &
Op(S+1ls,a) 9z(P )

F(s,a,8) = Epg,qjs.a) [Iog

(3 1/S41)
T(a1)

Note that in this form the first term averages to the Kullb&elbler divergence be-
tween the actual probabilify(s;+1/,a) and the “optimal distributiontig (s +1/s, &)
of the next state , 1, for fixed current statg and actiorg;.

The first term irF is minimized with respect to the environment transition prob-
abilities precisely when the MDP is fully adapted to the redyamamely, when

+En(at+1‘st+l) |:|Og + Fn(&+laat+laﬁ):|:| .

P(s+1ls,a) = p(Si+als, @) - (31)

In this case, the Kullback-Leibler divergence vanishesg®ing in the optimal pol-
icy 1 (satisfying Equations (26) to (29)), and using the speeialtionship between
the state transitions and the rewards (Eqgs. (30) and (3)ad¢cumulated term re-
ducesto the sum logZ(B,s,a) —10gZ™(s1,3), i.e. the local free energy purely
of the current step which itself consists of the environrakand the agent compo-
nent.

6 Alternatively, one could minimiz& by setting the gradient d¥” with respect top(s 1%, &)
to O similar to the derivation of Egs. (27) to (29) under theumsption thatr is already opti-
mized. This implements the assumption that the adaptafitre@nvironmental channel is “slow”
corresponding to the adaptation of the agent policy.
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In the particular case of perfectly adapted environmetitthe future informa-
tion is indeed valuable. In other words, minimizing theistatal surprise or maxi-
mizing the predictive information is equivalent to maximig the reward. This can
be interpreted as a generalization of the classical Keliplgag scenario (Kelly
1956). Note that this is not the case for general reward lstrelsta. In view of
the hypothesized central role of information for biolodisgstems, it will be of sig-
nificant interest for future research to establish to whidert the environments of
living organisms are indeed perfectly adapted.

8 Experiments and Discussion

8.1 Information-Value Trade-Off in a Maze

The recursion developed in Sec. 7.1 can be applied to vasoersarios, of which
we study one specific, but instructive case. We consider alsimaze (inset of
Fig. 1) where an agent starts out at the bright spot in therdefecorner of the
grid world and needs to reach the target in the right uppenexpmarked by the
red dot. The task is modeled through a usual Reinforcememtnlirey reward, by
giving each step a “reward” (i.e. a penalty) -efl until the target is reached. The
target cell is an absorbing state, and once the agent redchag subsequent step
receives a 0 reward, realizing an episodic task in the nasedjr framework of the
Bellman-recursion from Sec. 6.

=]
=]
T

Value (credits)

-200

-250

I (bits)

Fig. 1 Trade-off curve between value-to-go and information-to-ghis is in full analogy to
the rate-distortion plots, if we consider (negative) digtm replaced by value-to-go and rate by
information-to-go.

Figure 1 shows how as one permits increasing amounts ofirétion-to-go, the
future expected cumulated reward achieved also incredsethe negative value of
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the length of the route — i.e. as one is ready to invest morin&tion bandwidth,
one can shorten the route). Note that whwanishes, this attempts to save on
information-to-go while being indifferent to the achievemt of a high value-to-go.
As opposed to that, lettin§ — o aims for a policy that is indeed optimal in its
value-to-go.

Now, in the case g — oo, similar to (Polani et al. 2006), the informational Bell-
man recursion will find a policy which is optimal for the Reinéement Learning
task. However, unlike the conventional policy or valueatamn algorithms, the algo-
rithm will not be “satisfied” with a value-optimal solutiobyt select a policy among
the optimal policies which at the same time minimizes therimfation-to-go.

8.2 Soft vs. Sharp Policies

p=0.05

Fig. 2 Policies resulting from the trade-off between value-toagd information-to-go

Figure 2 shows actual policies resulting for various vakig8. For smaliB, the
policy is almost a random walk. Such a walk will ultimatelydeup in the (absorb-
ing) goal state, at little informational cost, but at quiegative reward values, since
it takes a long time to find the goal.

As one increaseB and thus increases the available information capacitypsina
more refined and accurate policies emerge. Note that, irrgkitee policies we ob-
tain by the informational trade-off algorithm from Secs@l& will be soft policies
for finite B and an agent following them will produce state trajectovidsch in-
creasingly expand and branch out over time which will tyfyceeduce the future
expected cumulated reward. This may allow additional stesto those mentioned
in Footnote 1 (Sec. 4.2) to exhibit converging rewards withimaving to use the
usual discount factor, as long Bss finite. In these cases, if the cumulated rewards
diverge for3 — oo (zero temperature, i.e. optimal policy), this would onlysttute
a “pathological” boundary case.

Under the PAC-Bayes perspective (McAllester 1999), oue feaergy is com-
posed of the cumulated Kullback-Leibler distances betvweeterior and prior dis-
tribution of S 1 andA, 1 (see Egs. (21) and (22)). This gives rise to another interest
ing interpretation of the soft policies obtained by the abfarmalism: namely, the
policies minimizing the respective Kullback-Leibler egpsions in these equations
provide a bound on the variation of the accumulated rewaed different episodes
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of the agent’s run; in fact, those policies provitableresults in the sense that the
bound on variations from run to run is the tightest (Rubinle2@10).

The soft policies we obtained above are similar to the “saftepaths” suggested
in (Saerens et al. 2009), derived from entropic quantitgeglas regularization term
for the Reinforcement Learning task. In the present papsueker, as in (Polani
et al. 2006), we use Shannon information not just as a regatan quantity, but
with a specific interpretation as an information processiogf: the minimal infor-
mational cost of the decision process that the agent (ohenptesent paper, the
agent-environment) system has to undergo in order to aglai@articular reward.

In the light of this interpretation, the study of informatibas immediate reper-
cussions for the biological picture of information prodegsi.e. the “information
metabolism” of organisms. If one adopts the view that orgausitend to implement
an information parsimony principle (Laughlin 2001; Pol28D9), then this implies
that biological systems will exhibit a tendency to achievgiveen level of perfor-
mance at the lowest informational cost possible (or perfasmwell as possible
under a given informational bandwidth). In our formalisimistwould correspond
to operating close to the optimal reward/information ¢$lyispoken, decision com-
plexity) trade-off curve, always assuming that a suitalel@ard function can be
formulated (Taylor et al. 2007; Bialek et al. 2007).

In the present paper, we demonstrated how the trade-oféhetween value-to-
go and information-to-go can be computed for the agentrenmient system over
whole sequence histories using a Bellman-type recursigleugarule. In the future,
we will apply these techniques introduced here to otheawdsiof the problem. One
is the calculation of the decision complexity (i.e. the valat information) only, the
minimal amount of information that needs to acquired anc@seed by the agent
itself, but not by the environment, to achieve a certain rewia (Polani et al. 2006),
the relevant information was computed only for a singlg-sietion sequence. With
the Information-Bellman backup rule introduced here, witlvg able in the future
to generalize the relevant information calculation to iirstiép action sequences. To
quantify parsimonious information acquisition in the nmiglep case, we will use
Massey’s concept afirected informatior{(Massey 1990).

At this point, some comments are in place concerning the Macky of the
world state in our models. The Markovicity condition seeatdirst sight, a compar-
atively strong assumption which might seem limit the agiitty of the formalism
for modeling the subjective knowledge of an organism or adéowever, note that,
while we compute various quantities from a “eagle’s eyepectve” under knowl-
edge of the full state, in the model the agent itself is notiaexd to have full access
to the state. Rather, the information bandwidth but notriégise form is constrained
in the present paper. Finally, using the full formalism fr&op (11), more complex
structural constraints on the information acquisition easily be incorporated in
the form of sensors.

Let us here emphasize another final point: the presenteem@rn-action cycle
formalism implements an information-theoretic analogytfee classical treatment
of optimal control problems. However, as we propose to aersnformation not
merely as an auxiliary quantity, but in fact as a “first clagsantity in its own right,
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the present treatment aims to go beyond just an equivalstateenent of stochastic
optimal control: rather, to provide a conceptually enrittimmework, in which
the informational view gives rise to a refined set of notiansjghts, tools, and,
ultimately, research questions.

9 Conclusions

In the paper, we have treated the reward-driven decisiooggsoin the perception-
action cycle of an agent in a consistently information-tie¢io framework. This
was motivated by increasing biological evidence for theangnce of (Shannon)
information as resource and by the universality that thguaige of information is
able to provide.

We consider a particular incarnation of this problem, ngmelagent situated in
an MDP defining a concrete task; this task is encoded as a etmauleward which
the agent needs to maximize. The information-theoretiw ¥iansforms this prob-
lem into a trade-off between the reward achieved at a givienrimational cost. This
extends classic rate-distortion theory into the contexd &ill-fledged perception-
action cycle. At the same time, the methodology gives a peegiantitative mean-
ing to J.M. Fuster’s above quoted intuition about the petioapaction cycle being
the “circular flow of information between an organism anceitsironment”.

The paper shows that not only it is possible and natural taneé the treatment
of perception-action cycles in this way, but that MDP forisials such as the Bell-
man recursion can be readily extended to provide a unifieduBlArimoto/Value
Iteration hybrid that computes the quantities of inter&stthe current paper, we
illustrated this idea in a simple setting. More comprehansettings which are of
significant interest for both biology as well as for artifidgigelligence can be read-
ily incorporated due to the flexibility of the formalism andlivioe treated in future
work.

We hypothesize that the ability to trade off the value anditifiemational cost
of whole behaviours lies at the core of any understandinggdmismic behaviours.
The hypothesis is that organisms attempt to realize vaduadthaviours at the lowest
possible informational cost, and that they will seek sligtiboptimal solutions if
these solutions can be afforded at a significantly lowerinftional cost. Thus, the
informational treatment of the perception-action cyclerpises to open a quantita-
tive and predictive path to understand the structure of iehes and information
processing in living organisms. At the same time it can pied systematic handle
on how to develop Al systems according to principles whidahtzath biologically
plausible and relevant.
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