
1

1

Memory Management

2

Background
• Program must be brought (from disk) into memory and

placed within a process for it to be run
• Main memory and registers are only storage CPU can

access directly
• Register access in one CPU clock (or less)
• Main memory can take many cycles
• Cache sits between main memory and CPU registers
• Protection of memory required to ensure correct

operation

3

Base and Limit Registers
• A pair of base and limit registers define

the logical address space

4

Binding of Instructions and Data to
Memory

• Address binding of instructions and data to memory
addresses can happen at three different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if
starting location changes

– Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support
for address maps (e.g., base and limit registers)

5

Multistep Processing of a User Program

6

Logical vs. Physical Address Space
• The concept of a logical address space that is bound to

a separate physical address space is central to proper
memory management
– Logical address – generated by the CPU; also

referred to as virtual address
– Physical address – address seen by the memory

unit
• Logical and physical addresses are the same in

compile-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-
time address-binding scheme

2

7

Memory-Management Unit (MMU)
• Hardware device that maps virtual to physical

address

• In MMU scheme, the value in the relocation
(base) register is added to every address
generated by a user process at the time it is sent
to memory

• The user program deals with logical addresses;
it never sees the real physical addresses

8

Dynamic Relocation Using a
Relocation Register

9

Dynamic Loading
• Routine is not loaded until it is called.
• Better memory-space utilization; unused

routine is never loaded.
• Useful when large amounts of code are

needed to handle infrequently occurring cases
• No special support from the operating system

is required, implemented through program
design.

10

Swapping
• A process can be swapped temporarily out of memory

to a backing store, and then brought back into memory
for continued execution

• Backing store –disk large enough to accommodate
copies of all memory images for all users;

• Roll out, roll in – swapping variant used for priority-
based scheduling algorithms; lower-priority process is
swapped out so higher-priority process can be loaded
and executed

• System maintains a ready queue of ready-to-run
processes which have memory images on disk

11

Schematic View of Swapping

12

Contiguous Allocation

• Main memory usually divided into two partitions:
– Resident operating system, usually held in low memory.
– User processes then held in high memory.

• Relocation registers used to protect user processes from
each other, and from changing operating-system code
and data.
– Base register contains value of smallest physical address
– Limit register contains range of logical addresses – each

logical address must be less than the limit register.
– MMU maps logical address dynamically.

3

13

HW Address Protection with Base and
Limit Registers

Logical +
relocation

14

Contiguous Allocation (Cont.)
• Multiple-partition allocation

– Hole – block of available memory; holes of various size are
scattered throughout memory

– When a process arrives, it is allocated memory from a hole
large enough to accommodate it

– Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

15

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough
• Best-fit: Allocate the smallest hole that is big enough;

must search entire list
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search
entire list
– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in
terms of speed and storage utilization

16

Fragmentation
• External Fragmentation – total memory space

exists to satisfy a request, but it is not contiguous
• Internal Fragmentation – allocated memory

may be slightly larger than requested memory;
this size difference is memory internal to a
partition, but not being used

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory

together in one large block
– Compaction is possible only if relocation is dynamic, and

is done at execution time

17

Paging
• Logical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is
available.

• Divide physical memory into fixed-sized blocks called
frames (size is power of 2).

• Divide logical memory into blocks of same size called pages.
• Keep track of all free frames.
• To run a program of size n pages, need to find n free frames

and load program.
• Set up a page table to translate logical to physical addresses.
• Internal fragmentation.

18

Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

– Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

– For given logical address space of size 2m and page size is 2n

page number page offset

p d

m - n n

4

19

Paging Hardware

20

Paging Model of Logical and
Physical Memory

21

Paging Example

32-byte memory and 4-byte pages 22

Free Frames

Before allocation After allocation

23

Implementation of Page Table
• Page table is kept in main memory
• Page-table base register (PTBR) points to the page table
• Page-table length register (PRLR) indicates size of the page

table
• In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the
data/instruction.

• The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each
TLB entry – uniquely identifies each process to provide
address-space protection for that process 24

Associative Memory
• Associative memory – parallel search

Address translation (p, d)
– If p is in associative register, get frame # out
– Otherwise get frame # from page table in

memory

Page # Frame #

5

25

Paging Hardware With TLB

26

Memory Protection
• Memory protection implemented by associating

protection bit with each frame.

• Valid-invalid bit attached to each entry in the
page table:
– “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page.

– “invalid” indicates that the page is not in the
process’ logical address space.

27

Valid (v) or Invalid (i) Bit

28

Shared Pages
• Shared code

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window
systems).

– Each page table maps onto the same physical copy of
the shared code.

• Private code and data
– Each process keeps a separate copy of the code and

data.
– The pages for the private code and data can appear

anywhere in the logical address space.

29

Shared Pages Example

30

Structure of the Page Table
• As the number of processes increases, the

percentage of memory devoted to page tables
also increases.

• The following structures solved this problem:

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

6

31

Hierarchical Page Tables
• Break up the logical address space into

multiple page tables.

• A simple technique is a two-level page
table.

32

Two-Level Page-Table Scheme

33

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is

divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

p1 p2 d

12 10 10

34

Address-Translation Scheme

35

Three-level Paging Scheme

36

Hashed Page Tables
• Common in address spaces > 32 bits.
• The virtual page number is hashed into a page

table. This page table contains a chain of
elements hashing to the same location.

• Virtual page numbers are compared in this
chain searching for a match.

• If a match is found, the corresponding
physical frame is extracted.

7

37

Hashed Page Table

38

Inverted Page Table
• One entry for each real page of memory.
• Entry consists of the virtual address of the page

stored in that real memory location, with
information about the process that owns that
page.

• Decreases memory needed to store each page
table, but increases time needed to search the
table when a page reference occurs.

• Use hash table to limit the search to one — or at
most a few — page-table entries.

39

Inverted Page Table Architecture

40

Segmentation
• Memory-management scheme that supports user

view of memory
• A program is a collection of segments. A segment is

a logical unit such as:
main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

41

User’s View of a Program

42

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8

43

Segmentation Architecture
• Logical address consists of a two tuple:

<segment-number, offset>,
• Segment table – maps two-dimensional physical

addresses; each table entry has:
– base – contains the starting physical address where the

segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the
segment table’s location in memory

• Segment-table length register (STLR) indicates
number of segments used by a program;
segment number s is legal if s < STLR 44

Segmentation Architecture - Cont.
• Protection

– With each entry in segment table associate:
• validation bit = 0 ⇒ illegal segment
• read/write/execute privileges

• Protection bits associated with segments; code
sharing occurs at segment level.

• Since segments vary in length, memory allocation is
a dynamic storage-allocation problem.

45

Segmentation Hardware

46

Example of Segmentation

