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Lecture 14

SVD Applications

EE263 Autumn 2004

• general pseudo-inverse

• full SVD

• image of unit ball under linear transformation

• SVD in estimation/inversion

• sensitivity of linear equations to data error

• low rank approximation via SVD
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General pseudo-inverse

if A has SVD A = UΣV T ,

A† = V Σ−1UT

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,

A† = (ATA)−1AT

gives the least-squares solution xls = A†y

if A is fat and full rank,

A† = AT (AAT )−1

gives the least-norm solution xln = A†y

in general case:

Xls = { z | ‖Az − y‖ = min
w
‖Aw − y‖ }

is set of least-squares solutions

xpinv = A†y ∈ Xls has minimum norm on Xls, i.e., xpinv
is the minimum-norm, least-squares solution
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Pseudo-inverse via regularization

for µ > 0, let xµ be (unique) minimizer of

‖Ax− y‖2 + µ‖x‖2

i.e.,
xµ =

(

ATA + µI
)−1

ATy

here, ATA + µI > 0 and so is invertible

then we have lim
µ→0

xµ = A†y

in fact, we have lim
µ→0

(

ATA + µI
)−1

AT = A†

(check this!)
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Full SVD

SVD of A ∈ R
m×n with Rank(A) = r:

A = U1Σ1V
T
1 =

[

u1 · · · ur
]
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• find U2 ∈ R
m×(m−r), V2 ∈ R

n×(n−r) s.t.
U = [U1 U2] ∈ R

m×m and V = [V1 V2] ∈ R
n×n are

orthogonal

• add zero rows/cols to Σ1 to form Σ ∈ R
m×n:

Σ =









Σ1 0r×(n− r)

0(m− r)×r 0(m− r)×(n− r)









then we have

A = U1Σ1V
T
1 =

[

U1 U2
]
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i.e.:
A = UΣV T

called full SVD of A
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Image of unit ball under linear
transformation

full SVD:
A = UΣV T

gives intepretation of y = Ax:

• rotate (by V T )

• stretch along axes by σi (σi = 0 for i > r)

• zero-pad (if m > n) or truncate (if m < n) to get
m-vector

• rotate (by U)

application: image of unit ball under A

PSfrag replacements
rotate by V T

stretch, Σ = diag(2, 0.5)

u1u2 rotate by U
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{Ax | ‖x‖ ≤ 1} is ellipsoid with principal axes σiui.
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SVD in estimation/inversion

suppose y = Ax + v, where

• y ∈ R
m is measurement

• x ∈ R
n is vector to be estimated

• v is a measurement noise or error

‘norm-bound’ model of noise: we assume ‖v‖ ≤ α
but otherwise know nothing about v
(α gives max norm of noise)

consider estimator x̂ = By, with BA = I (i.e., unbiased)

estimation or inversion error is x̃ = x̂− x = Bv

set of possible estimation errors is ellipsoid

x̃ ∈ Eunc = { Bv | ‖v‖ ≤ α }

so x = x̂− x̃ ∈ x̂ + Eunc

Eunc is ‘uncertainty ellipsoid’ for x
‘good’ estimator has ‘small’ Eunc
(with BA = I , of course)
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semiaxes of Eunc are ασiui
(singular values & vectors of B)

e.g., maximum norm of error is α‖B‖, i.e.,

‖x̂− x‖ ≤ α‖B‖

optimality of least-squares: suppose BA = I is any
estimator, and Bls = A† is the least-squares estimator

then:

• BlsB
T
ls ≤ BBT

• σi(Bls) ≤ σi(B), i = 1, . . . , n

• in particular ‖Bls‖ ≤ ‖B‖

• Els ⊆ E

i.e., the least-squares estimator gives the smallest

uncertainty ellipsoid
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Example: navigation using range measurements (lect. 4)

we have yi = −k
T
i x + vi for i = 1, . . . , 4; assume

A1 = −[k1 k2]
T , A2 = −[k1 k2 k3 k4]

T

using first two measurements and inverting:

x̂ = A−11
[

y1 y2
]T

using all four measurements and least-squares:

x̂ = A†2
[

y1 y2 y3 y4
]T

uncertainty regions (with α = 1):
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uncertainty region for x using inversion

uncertainty region for x using least-squares

α = 1
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proof of optimality property:

suppose A ∈ R
m×n, m > n, is full rank

SVD: A = UΣV T , with V orthogonal

Bls = A† = V Σ−1UT , and B satisfies BA = I

define Z = B −Bls, so B = Bls + Z

then ZA = ZUΣV T = 0, so ZU = 0
(multiply by V Σ−1 on right)

therefore

BBT = (Bls + Z)(Bls + Z)T

= BlsB
T
ls +BlsZ

T + ZBT
ls + ZZT

= BlsB
T
ls + ZZT

≥ BlsB
T
ls

using ZBT
ls = (ZU)Σ

−1V T = 0
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Sensitivity of linear equations to data
error

consider y = Ax, A ∈ R
n×n invertible

of course x = A−1y

suppose we have an error or noise in y, i.e., y becomes
y + δy

then x becomes x + δx with δx = A−1δy

hence we have

‖δx‖ = ‖A−1δy‖ ≤ ‖A−1‖‖δy‖

if ‖A−1‖ is large,

• small errors in y can lead to large errors in x

• can’t solve for x given y (with small errors)

• hence, A can be considered singular in practice

a more refined analysis uses relative instead of absolute

errors in x and y
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since y = Ax, we also have ‖y‖ ≤ ‖A‖‖x‖, hence

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δy‖

‖y‖

κ(A) = ‖A‖‖A−1‖ = σmax(A)/σmin(A)

is called the condition number of A

we have:

relative error in solution x
≤ condition number · relative error in data y

or, in terms of # bits of guaranteed accuracy:

# bits in solution ≈ # bits in data − log2 κ

we say

• A is well conditioned if κ is small

• A is poorly conditioned if κ is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares solutions with A
nonsquare, κ = σmax(A)/σmin(A)
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Low rank approximations

suppose A ∈ R
m×n, Rank(A) = r, with SVD

A = UΣV T =
r
∑

i=1
σiuiv

T
i

we seek matrix Â, Rank(Â) ≤ p < r, s.t. Â ≈ A in the
sense that

‖A− Â‖

is minimized

solution: the optimal rank p approximator is

Â =
p
∑

i=1
σiuiv

T
i

• hence ‖A− Â‖ =
∥

∥

∥

∥

∑r
i=p+1 σiuiv

T
i

∥

∥

∥

∥
= σp+1

• interpretation: SVD dyads uiv
T
i are ranked in order of

‘importance’; take p to get rank p approximant



SVD Applications 14 – 13

proof: suppose Rank(B) ≤ p

then dimN (B) ≥ n− p

also, dim span{v1, . . . , vp+1} = p + 1

hence, the two subspaces intersect, i.e., there is a unit
vector z ∈ R

n s.t.

Bz = 0, z ∈ span{v1, . . . , vp+1}

(A−B)z = Az =
p+1
∑

i=1
σiuiv

T
i z

‖(A−B)z‖2 =
p+1
∑

i=1
σ2i (v

T
i z)

2 ≥ σ2p+1‖z‖
2

hence ‖A−B‖ ≥ σp+1 = ‖A− Â‖
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Distance to singularity

another interpretation of σi:

σi = min{ ‖A−B‖ | Rank(B) ≤ i− 1 }

i.e., the distance (measured by matrix norm) to the
nearest rank i− 1 matrix

for example, if A ∈ R
n×n, σmin is distance to nearest

singular matrix

hence, small σmin means A is near to a singular matrix
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application: model simplification

suppose y = Ax + v, where

• A ∈ R
100×30 has SVs

10, 7, 2, 0.5, 0.01, . . . , 0.0001

• ‖x‖ is on the order of 1

• unknown error or noise v has norm on the order of 0.1

then the terms σiuiv
T
i x, for i = 5, . . . , 100, are

substantially smaller than the noise term v

simplified model:

y =
4
∑

i=1
σiuiv

T
i x + v


