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Lecture 14
SVD Applications

EE263 Autumn 2004

e general pseudo-inverse

o full SVD

e image of unit ball under linear transformation
e SVD in estimation /inversion

e sensitivity of linear equations to data error

e low rank approximation via SVD
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General pseudo-inverse

if AhasSVD A=UXVT,
Al =yy-1lgT

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,
Al = (AT A)~t AT

gives the least-squares solution 71, = ATy

if A is fat and full rank,
Al = AT (A4

gives the least-norm solution x1, = A'y

in general case:
Xis={z|[Az =yl =min [[Aw —y] }
is set of least-squares solutions

Tpiny = ATy € X5 has minimum norm on X, i.e., Tpiny
is the minimum-norm, least-squares solution
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Pseudo-inverse via regularization

for ;o > 0, let z,, be (unique) minimizer of
|Az — ylI* + pll=|*

i.e.,
.= (ATA+ pul) " ATy
here, AT A+ I > 0 and so is invertible

then we have }}LI(I) T, = Aly

in fact, we have hr% (ATA + u[)_l AT = A
=

(check this!)
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Full SVD

SVD of A € R"™" with Rank(A) = r-

01

A:Ulzl\/lT:[ul UT}

e find Uy € R™"") 1, e R gt
U=[U U] e R and V = [V} V5] € R"™" are

orthogonal

e add zero rows/cols to X1 to form ¥ € R"™*™:

21 Orx(n—r) ]
O(m—r)xr

|

O(m—r)x(n—r)

then we have

A= Ulzl‘/lT _ { (]1 ‘ UQ} { 21 Orx(n—r) ]

O(m—r)xr

O(m—r)x(n—r)

1.€.:

A=UxvV"!

called full SVD of A
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Image of unit ball under linear
transformation

full SVD:
A=Uxv"!

gives intepretation of y = Ax:
e rotate (by V1)
e stretch along axes by o, (o; = 0 for i > r)

e zero-pad (if m > n) or truncate (if m < n) to get
m-vector

e rotate (by U)
application: image of unit ball under A
1 1
an a0
\Jl rotate by V7T \Jl

stretch, ¥ = diag(2,0.5)

(2 rotate by U

0.5
el N

& —

{Az | ||z|| < 1} is ellipsoid with principal axes o;u;.

N
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SVD in estimation/inversion

suppose y = Ax + v, where
e y € R" is measurement
e r € R" is vector to be estimated

® U IS a measurement noise or error

‘norm-bound’ model of noise: we assume ||v|| < «
but otherwise know nothing about v
(v gives max norm of noise)

consider estimator & = By, with BA = I (i.e., unbiased)
estimation or inversion erroris t = 1 — x = Bv

set of possible estimation errors is ellipsoid
Z€&Eme={DBv||v]| <}
sor=2—2 €T+ Eune

Eune is ‘uncertainty ellipsoid’ for x

‘good’ estimator has ‘small’ &£,
(with BA = I, of course)
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semiaxes of &, are ao;u;
(singular values & vectors of B)

e.g., maximum norm of error is a|| B||, i.e.,

T —z| < o B

optimality of least-squares: suppose BA = [ is any
estimator, and Bj; = AT is the least-squares estimator

then:
e BBl < BB
e 0,(Bi) <o0iB),i=1,....n
e in particular || By|| < ||B||
0, C &

i.e., the least-squares estimator gives the smallest
uncertainty ellipsoid
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Example: navigation using range measurements (lect. 4)

we have y; = —klx +v; for i = 1,..., 4; assume
Al = —Tk k)", As = —[ki ko ks k)"
using first two measurements and inverting:
T = A/ 1 yz]T
using all four measurements and least-squares:
g=Ay vo ys ]

uncertainty regions (with a = 1):

2 _uncertainty region for x using inversion

)
3 &

20

151 1

)
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proof of optimality property:

suppose A € R"™™", m > n, is full rank

SVD: A =UXV?, with V orthogonal

B, = Al = VX"IWUT and B satisfies BA = [
define Z = B — B, so B =B+ Z

then ZA = ZUXV! =0, s0 ZU =0
(multiply by VX1 on right)

therefore
BB = (By+ Z)(B + Z)"
= BBL + Bz +ZB. + 727"
= BBL +27"
2 BISBljs1

using ZBl = (ZU)X VT =0

14 -9
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Sensitivity of linear equations to data
error

consider y = Ax, A € R"™" invertible
of course z = A1y

suppose we have an error or noise in y, i.e., Yy becomes
y+ 0oy

then = becomes x + dx with 6z = A~y

hence we have

|0z = [[A™ oyl < [IA[[[|6y]

if [|A7L| is large,
e small errors in y can lead to large errors in x
e can't solve for = given y (with small errors)

e hence, A can be considered singular in practice

a more refined analysis uses relative instead of absolute
errors in x and y
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since y = Ax, we also have ||y|| < ||A||l|x||, hence
1oz |
]

0y
< JAlA" 1\\”H |

K(A) = [[ANAT = Owmax(A)/Tumin(A)

is called the condition number of A

we have:

relative error in solution x
< condition number - relative error in data y

or, in terms of # bits of guaranteed accuracy:

# bits in solution ~ # bits in data —log, Kk

we say
e A is well conditioned if k is small

e A is poorly conditioned if k is large

14 - 11

(definition of ‘small’ and ‘large’” depend on application)

same analysis holds for least-squares solutions with A

nonsquare, kK = Tpax(A)/omin(A)
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Low rank approximations

suppose A € R™*", Rank(A) = r, with SVD
A=UsVT = il vl

we seek matrix A, Rank(A) < p <7, st. A~ A in the
sense that

A A

IS minimized

solution: the optimal rank p approximator is

AN

p
A= > O'Z'UZ'UZT
1=1

e hence ||A — Al = S oiu] | = opi

e interpretation: SVD dyads u;v} are ranked in order of

‘importance’; take p to get rank p approximant
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proof: suppose Rank(B) < p
then dimN'(B) > n —p
also, dimspan{vy,..., v} =p+1

hence, the two subspaces intersect, 7.e., there is a unit
vector 2z € R" s.t.

Bz =0, zespan{vy,...,vp41}

+1
(A—B)z= Az = ]?Zl o] 2

p+1
[(A=B)zlP =" 7] 2)" 2 0} 211

hence ||A — B|| > 0,1 = ||A — A
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Distance to singularity

another interpretation of o;:
o = min{ |A— B|| | Rank(B) <i—1}

i.e., the distance (measured by matrix norm) to the
nearest rank ¢ — 1 matrix

for example, if A € R"™", o1, is distance to nearest
singular matrix

hence, small 0,,;, means A is near to a singular matrix
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application: model simplification

suppose y = Az + v, where

o A c R0 has SVs
10, 7, 2, 0.5, 0.01, ....0.0001

e ||z|| is on the order of 1

e unknown error or noise v has norm on the order of 0.1

then the terms o;uv! x, for i =5, ..., 100, are
substantially smaller than the noise term v

simplified model:

4 T
Yy = '21 O UV; T + U
1=



