Lecture 14
 SVD Applications

- general pseudo-inverse
- full SVD
- image of unit ball under linear transformation
- SVD in estimation/inversion
- sensitivity of linear equations to data error
- low rank approximation via SVD

General pseudo-inverse

if A has SVD $A=U \Sigma V^{T}$,

$$
A^{\dagger}=V \Sigma^{-1} U^{T}
$$

is the pseudo-inverse or Moore-Penrose inverse of A
if A is skinny and full rank,

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

gives the least-squares solution $x_{\mathrm{ls}}=A^{\dagger} y$
if A is fat and full rank,

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

gives the least-norm solution $x_{\ln }=A^{\dagger} y$
in general case:

$$
X_{\mathrm{ls}}=\left\{z \mid\|A z-y\|=\min _{w}\|A w-y\|\right\}
$$

is set of least-squares solutions
$x_{\text {pinv }}=A^{\dagger} y \in X_{\mathrm{ls}}$ has minimum norm on X_{ls}, i.e., $x_{\text {pinv }}$ is the minimum-norm, least-squares solution

Pseudo-inverse via regularization

for $\mu>0$, let x_{μ} be (unique) minimizer of

$$
\|A x-y\|^{2}+\mu\|x\|^{2}
$$

i.e.,

$$
x_{\mu}=\left(A^{T} A+\mu I\right)^{-1} A^{T} y
$$

here, $A^{T} A+\mu I>0$ and so is invertible
then we have $\lim _{\mu \rightarrow 0} x_{\mu}=A^{\dagger} y$
in fact, we have $\lim _{\mu \rightarrow 0}\left(A^{T} A+\mu I\right)^{-1} A^{T}=A^{\dagger}$
(check this!)

Full SVD

SVD of $A \in \mathbf{R}^{m \times n}$ with $\operatorname{Rank}(A)=r$:

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \cdots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right]
$$

- find $U_{2} \in \mathbf{R}^{m \times(m-r)}, V_{2} \in \mathbf{R}^{n \times(n-r)}$ s.t. $U=\left[U_{1} U_{2}\right] \in \mathbf{R}^{m \times m}$ and $V=\left[V_{1} V_{2}\right] \in \mathbf{R}^{n \times n}$ are orthogonal
- add zero rows/cols to Σ_{1} to form $\Sigma \in \mathbf{R}^{m \times n}$:

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{1} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

then we have

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[U_{1} \mid U_{2}\right]\left[\begin{array}{c|c}
\Sigma_{1} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
\hline V_{2}^{T}
\end{array}\right]
$$

i.e.:

$$
A=U \Sigma V^{T}
$$

called full SVD of A

Image of unit ball under linear transformation

full SVD:

$$
A=U \Sigma V^{T}
$$

gives intepretation of $y=A x$:

- rotate (by V^{T})
- stretch along axes by $\sigma_{i}\left(\sigma_{i}=0\right.$ for $\left.i>r\right)$
- zero-pad (if $m>n$) or truncate (if $m<n$) to get m-vector
- rotate (by U)
application: image of unit ball under A

$\{A x \mid\|x\| \leq 1\}$ is ellipsoid with principal axes $\sigma_{i} u_{i}$.

SVD in estimation/inversion

suppose $y=A x+v$, where

- $y \in \mathbf{R}^{m}$ is measurement
- $x \in \mathbf{R}^{n}$ is vector to be estimated
- v is a measurement noise or error
'norm-bound' model of noise: we assume $\|v\| \leq \alpha$ but otherwise know nothing about v (α gives max norm of noise)
consider estimator $\hat{x}=B y$, with $B A=I$ (i.e., unbiased)
estimation or inversion error is $\tilde{x}=\hat{x}-x=B v$
set of possible estimation errors is ellipsoid

$$
\tilde{x} \in \mathcal{E}_{\text {unc }}=\{B v \mid\|v\| \leq \alpha\}
$$

so $x=\hat{x}-\tilde{x} \in \hat{x}+\mathcal{E}_{\text {unc }}$
$\mathcal{E}_{\text {unc }}$ is 'uncertainty ellipsoid' for x
'good' estimator has 'small' $\mathcal{E}_{\text {unc }}$
(with $B A=I$, of course)
semiaxes of $\mathcal{E}_{\text {unc }}$ are $\alpha \sigma_{i} u_{i}$
(singular values $\&$ vectors of B)
e.g., maximum norm of error is $\alpha\|B\|$, i.e.,

$$
\|\hat{x}-x\| \leq \alpha\|B\|
$$

optimality of least-squares: suppose $B A=I$ is any estimator, and $B_{\mathrm{ls}}=A^{\dagger}$ is the least-squares estimator
then:

- $B_{\mathrm{ls}} B_{\mathrm{ls}}^{T} \leq B B^{T}$
- $\sigma_{i}\left(B_{\mathrm{ls}}\right) \leq \sigma_{i}(B), i=1, \ldots, n$
- in particular $\left\|B_{\mathrm{ls}}\right\| \leq\|B\|$
- $\mathcal{E}_{\text {ls }} \subseteq \mathcal{E}$
i.e., the least-squares estimator gives the smallest uncertainty ellipsoid

Example: navigation using range measurements (lect. 4)
we have $y_{i}=-k_{i}^{T} x+v_{i}$ for $i=1, \ldots, 4$; assume

$$
A_{1}=-\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]^{T}, \quad A_{2}=-\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array} k_{4}\right]^{T}
$$

using first two measurements and inverting:

$$
\hat{x}=A_{1}^{-1}\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]^{T}
$$

using all four measurements and least-squares:

$$
\hat{x}=A_{2}^{\dagger}\left[\begin{array}{llll}
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right]^{T}
$$

uncertainty regions (with $\alpha=1$):

proof of optimality property:

suppose $A \in \mathbf{R}^{m \times n}, m>n$, is full rank

SVD: $A=U \Sigma V^{T}$, with V orthogonal
$B_{\mathrm{ls}}=A^{\dagger}=V \Sigma^{-1} U^{T}$, and B satisfies $B A=I$
define $Z=B-B_{\mathrm{ls}}$, so $B=B_{\mathrm{ls}}+Z$
then $Z A=Z U \Sigma V^{T}=0$, so $Z U=0$
(multiply by $V \Sigma^{-1}$ on right)
therefore

$$
\begin{aligned}
B B^{T} & =\left(B_{\mathrm{ls}}+Z\right)\left(B_{\mathrm{ls}}+Z\right)^{T} \\
& =B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}+B_{\mathrm{ls}} Z^{T}+Z B_{\mathrm{ls}}^{T}+Z Z^{T} \\
& =B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}+Z Z^{T} \\
& \geq B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}
\end{aligned}
$$

using $Z B_{\mathrm{ls}}^{T}=(Z U) \Sigma^{-1} V^{T}=0$

Sensitivity of linear equations to data error

consider $y=A x, A \in \mathbf{R}^{n \times n}$ invertible of course $x=A^{-1} y$
suppose we have an error or noise in y, i.e., y becomes $y+\delta y$
then x becomes $x+\delta x$ with $\delta x=A^{-1} \delta y$
hence we have

$$
\|\delta x\|=\left\|A^{-1} \delta y\right\| \leq\left\|A^{-1}\right\|\|\delta y\|
$$

if $\left\|A^{-1}\right\|$ is large,

- small errors in y can lead to large errors in x
- can't solve for x given y (with small errors)
- hence, A can be considered singular in practice
a more refined analysis uses relative instead of absolute errors in x and y
since $y=A x$, we also have $\|y\| \leq\|A\|\|x\|$, hence

$$
\frac{\|\delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\delta y\|}{\|y\|}
$$

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{\max }(A) / \sigma_{\min }(A)
$$

is called the condition number of A
we have:

$$
\text { relative error in solution } x
$$

\leq condition number • relative error in data y
or, in terms of \# bits of guaranteed accuracy:
$\#$ bits in solution $\approx \#$ bits in data $-\log _{2} \kappa$
we say

- A is well conditioned if κ is small
- A is poorly conditioned if κ is large
(definition of 'small' and 'large' depend on application)
same analysis holds for least-squares solutions with A nonsquare, $\kappa=\sigma_{\max }(A) / \sigma_{\min }(A)$

Low rank approximations

suppose $A \in \mathbf{R}^{m \times n}, \operatorname{Rank}(A)=r$, with SVD

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

we seek matrix $\hat{A}, \operatorname{Rank}(\hat{A}) \leq p<r$, s.t. $\hat{A} \approx A$ in the sense that

$$
\|A-\hat{A}\|
$$

is minimized
solution: the optimal rank p approximator is

$$
\hat{A}=\sum_{i=1}^{p} \sigma_{i} u_{i} v_{i}^{T}
$$

- hence $\|A-\hat{A}\|=\left\|\Sigma_{i=p+1}^{r} \sigma_{i} u_{i} v_{i}^{T}\right\|=\sigma_{p+1}$
- interpretation: SVD dyads $u_{i} v_{i}^{T}$ are ranked in order of 'importance'; take p to get rank p approximant

proof: suppose $\operatorname{Rank}(B) \leq p$

then $\operatorname{dim} \mathcal{N}(B) \geq n-p$
also, $\operatorname{dim} \operatorname{span}\left\{v_{1}, \ldots, v_{p+1}\right\}=p+1$
hence, the two subspaces intersect, i.e., there is a unit vector $z \in \mathbf{R}^{n}$ s.t.

$$
B z=0, \quad z \in \operatorname{span}\left\{v_{1}, \ldots, v_{p+1}\right\}
$$

$$
(A-B) z=A z=\sum_{i=1}^{p+1} \sigma_{i} u_{i} v_{i}^{T} z
$$

$$
\|(A-B) z\|^{2}=\sum_{i=1}^{p+1} \sigma_{i}^{2}\left(v_{i}^{T} z\right)^{2} \geq \sigma_{p+1}^{2}\|z\|^{2}
$$

hence $\|A-B\| \geq \sigma_{p+1}=\|A-\hat{A}\|$

Distance to singularity

another interpretation of σ_{i} :

$$
\sigma_{i}=\min \{\|A-B\| \mid \operatorname{Rank}(B) \leq i-1\}
$$

i.e., the distance (measured by matrix norm) to the nearest rank $i-1$ matrix
for example, if $A \in \mathbf{R}^{n \times n}, \sigma_{\min }$ is distance to nearest singular matrix
hence, small $\sigma_{\min }$ means A is near to a singular matrix

application: model simplification

suppose $y=A x+v$, where

- $A \in \mathbf{R}^{100 \times 30}$ has SVs

$$
10,7,2,0.5,0.01, \ldots, 0.0001
$$

- $\|x\|$ is on the order of 1
- unknown error or noise v has norm on the order of 0.1
then the terms $\sigma_{i} u_{i} v_{i}^{T} x$, for $i=5, \ldots, 100$, are substantially smaller than the noise term v
simplified model:

$$
y=\sum_{i=1}^{4} \sigma_{i} u_{i} v_{i}^{T} x+v
$$

