Controllability

- Definitions
- Theorems
- Proofs
- Examples

What are Controllability / Observability

- Example:

- Input: u (current)
- State variables: x_{1}, x_{2} (voltages)
- Output:y (voltage) Are the system states observable (through y)? Are the system states controllable (through u)?
- $i_{1}=i_{2}=0$ (Kirchhoff current law)
- Current law for junc. a:
$\dot{x}_{2} C_{2}=-\frac{x_{2}}{1}=-x_{2}$
$\dot{x}_{2}=-\frac{x_{2}}{C_{2}} \quad \longleftarrow$
- Current law for junc. b:

x_{2} is not affected by u (uncontrolled)
$i_{5}=u=x_{1}+C_{1} \dot{x}_{1}$
$\dot{x}_{1}=-\frac{x_{1}}{C_{1}}+\frac{u}{C_{1}}$
- Voltage law for left (open circuit): $y=x_{2}+2 u$
y is not affected by x_{1} (since x_{2} is not), so x_{1} is unobserved.
- This system is uncontrolled and unobserved (at least in part).

Definitions

- System in controllable if for every, $\mathbf{x}_{0}, \mathbf{x}_{f}$ and t_{f} there is a control signal \mathbf{u} that brings the system from $\mathbf{x}(0)=\mathbf{x}_{0}$ to $\mathbf{x}\left(t_{f}\right)=\mathbf{x}_{f}$ at time t_{f}.
- Sometimes definition requires $\mathbf{x}_{f}=\mathbf{0}$ (makes no difference if system is linear)
- The reachable region at time t_{f} are the possible values of $\mathbf{x}\left(t_{f}\right)$ if $\mathbf{x}(0)=\mathbf{0}$ (and all possible us). Similarly, the controllable region are the possible values of $\mathbf{x}(0)$ so that there exists a control signal that takes the system to $\mathbf{x}\left(t_{f}\right)=\mathbf{0}$.
- So, if system is controllable, the controllable region is the whole state space. Otherwise the controllable region may still be non-empty.
- In LTI systems:
- The controllable region is always a linear subspace of the state space.
- Reachable region $=$ controllable region

Nonlinear System Example

- $\dot{x}=\frac{x}{\left(x^{2}-1\right)}+u$
- For $\mathbf{u}=0$

- For $u \neq 0$

Controllable? Reachable?

Reachability

consider state transfer from $x(0)=0$ to $x(t)$
we say $x(t)$ is reachable (in t seconds or epochs)
we define $\mathcal{R}_{t} \subseteq \mathbf{R}^{n}$ as the set of points reachable in t seconds or epochs for CT system $\dot{x}=A x+B u$,

$$
\mathcal{R}_{t}=\left\{\int_{0}^{t} e^{(t-\tau) A} B u(\tau) d \tau \mid u:[0, t] \rightarrow \mathbf{R}^{m}\right\}
$$

and for DT system $x(t+1)=A x(t)+B u(t)$,

$$
\mathcal{R}_{t}=\left\{\sum_{\tau=0}^{t-1} A^{t-1-\tau} B u(\tau) \mid u(t) \in \mathbf{R}^{m}\right\}
$$

- \mathcal{R}_{t} is a subspace of \mathbf{R}^{n}
- $\mathcal{R}_{t} \subseteq \mathcal{R}_{s}$ if $t \leq s$
(i.e., can reach more points given more time)
we define the reachable set \mathcal{R} as the set of points reachable for some t :

$$
\mathcal{R}=\bigcup_{t \geq 0} \mathcal{R}_{t}
$$

Theorem (controllability):

Given a system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}, \mathbf{x} \in \mathrm{R}^{n}$ the following are equivalent:

1. The (\mathbf{A}, \mathbf{B}) pair is controllable.
2. The controllability grammian matrix,

$$
\mathbf{W}_{c}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau=\int_{0}^{t} e^{A(t-\tau)} B B^{\prime} e^{A^{\prime}(t-\tau)} d \tau
$$

is non-singular (invertible) for all t.
3. The $n \times n p$ controllability matrix, $\mathbf{C}=\left[\begin{array}{lllll}\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{\mathrm{n}-1} \mathbf{B}\end{array}\right]$ has full row rank (n).
4. The matrix $\left[\begin{array}{ll}\mathbf{A}-\mathbf{I} \lambda_{i} & \mathbf{B}\end{array}\right]$ has full row rank for every eigenvalue λ_{i} of \mathbf{A}.

Reachability for discrete-time LDS

DT system $x(t+1)=A x(t)+B u(t), x(t) \in \mathbf{R}^{n}$

$$
x(t)=\mathcal{C}_{t}\left[\begin{array}{c}
u(t-1) \\
\vdots \\
u(0)
\end{array}\right]
$$

where $\mathcal{C}_{t}=\left[\begin{array}{llll}B & A B & \cdots & A^{t-1} B\end{array}\right]$
so reachable set at t is $\mathcal{R}_{t}=\operatorname{range}\left(\mathcal{C}_{t}\right)$
by C-H theorem, we can express each A^{k} for $k \geq n$ as linear combination of A^{0}, \ldots, A^{n-1}
hence for $t \geq n$, $\operatorname{range}\left(\mathcal{C}_{t}\right)=\operatorname{range}\left(\mathcal{C}_{n}\right)$
thus we have

$$
\mathcal{R}_{t}= \begin{cases}\operatorname{range}\left(\mathcal{C}_{t}\right) & t<n \\ \operatorname{range}(\mathcal{C}) & t \geq n\end{cases}
$$

where $\mathcal{C}=\mathcal{C}_{n}$ is called the controllability matrix

- any state that can be reached can be reached by $t=n$
- the reachable set is $\mathcal{R}=\operatorname{range}(\mathcal{C})$

Controllable system

system is called reachable or controllable if all states are reachable (i.e., $\mathcal{R}=\mathbf{R}^{n}$)
system is reachable if and only if $\operatorname{Rank}(\mathcal{C})=n$
example: $x(t+1)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] x(t)+\left[\begin{array}{l}1 \\ 1\end{array}\right] u(t)$
controllability matrix is $\mathcal{C}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
hence system is not controllable; reachable set is

$$
\mathcal{R}=\operatorname{range}(\mathcal{C})=\left\{x \mid x_{1}=x_{2}\right\}
$$

General state transfer

with $t_{f}>t_{i}$,

$$
x\left(t_{f}\right)=A^{t_{f}-t_{i}} x\left(t_{i}\right)+\mathcal{C}_{t_{f}-t_{i}}\left[\begin{array}{c}
u\left(t_{f}-1\right) \\
\vdots \\
u\left(t_{i}\right)
\end{array}\right]
$$

hence can transfer $x\left(t_{i}\right)$ to $x\left(t_{f}\right)=x_{\text {des }}$

$$
\Leftrightarrow \quad x_{\mathrm{des}}-A^{t_{f}-t_{i}} x\left(t_{i}\right) \in \mathcal{R}_{t_{f}-t_{i}}
$$

- general state transfer reduces to reachability problem
- if system is controllable any state transfer can be achieved in $\leq n$ steps
- important special case: driving state to zero (sometimes called regulating or controlling state)

Least-norm input for reachability

assume system is reachable, $\boldsymbol{\operatorname { R a n k }}\left(\mathcal{C}_{t}\right)=n$
to steer $x(0)=0$ to $x(t)=x_{\text {des }}$, inputs $u(0), \ldots, u(t-1)$ must satisfy

$$
x_{\mathrm{des}}=\mathcal{C}_{t}\left[\begin{array}{c}
u(t-1) \\
\vdots \\
u(0)
\end{array}\right]
$$

among all u that steer $x(0)=0$ to $x(t)=x_{\text {des }}$, the one that minimizes

$$
\sum_{\tau=0}^{t-1}\|u(\tau)\|^{2}
$$

is given by

$$
\left[\begin{array}{c}
u_{\ln }(t-1) \\
\vdots \\
u_{\ln }(0)
\end{array}\right]=\mathcal{C}_{t}^{T}\left(\mathcal{C}_{t} \mathcal{C}_{t}^{T}\right)^{-1} x_{\mathrm{des}}
$$

$u_{\text {ln }}$ is called least-norm or minimum energy input that effects state transfer
can express as

$$
u_{\ln }(\tau)=B^{T}\left(A^{T}\right)^{(t-1-\tau)}\left(\sum_{s=0}^{t-1} A^{s} B B^{T}\left(A^{T}\right)^{s}\right)^{-1} x_{\mathrm{des}}
$$

for $\tau=0, \ldots, t-1$
$\mathcal{E}_{\text {min }}$, the minimum value of $\sum_{\tau=0}^{t-1}\|u(\tau)\|^{2}$ required to reach $x(t)=x_{\text {des }}$, is sometimes called minimum energy required to reach $x(t)=x_{\text {des }}$

$$
\begin{aligned}
\mathcal{E}_{\min } & =\sum_{\tau=0}^{t-1}\left\|u_{\ln }(\tau)\right\|^{2} \\
& =\left(\mathcal{C}_{t}^{T}\left(\mathcal{C}_{t} \mathcal{C}_{t}^{T}\right)^{-1} x_{\mathrm{des}}\right)^{T} \mathcal{C}_{t}^{T}\left(\mathcal{C}_{t} \mathcal{C}_{t}^{T}\right)^{-1} x_{\mathrm{des}} \\
& =x_{\mathrm{des}}^{T}\left(\mathcal{C}_{t} \mathcal{C}_{t}^{T}\right)^{-1} x_{\mathrm{des}} \\
& =x_{\mathrm{des}}^{T}\left(\sum_{\tau=0}^{t-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau}\right)^{-1} x_{\mathrm{des}}
\end{aligned}
$$

- $\mathcal{E}_{\text {min }}\left(x_{\text {des }}, t\right)$ gives measure of how hard it is to reach $x(t)=x_{\text {des }}$ from $x(0)=0$ (i.e., how large a u is required)
- $\mathcal{E}_{\text {min }}\left(x_{\text {des }}, t\right)$ gives practical measure of controllability/reachability (as function of $x_{\text {des }}, t$)
- ellipsoid $\left\{z \mid \mathcal{E}_{\min }(z, t) \leq 1\right\}$ shows points in state space reachable at t with one unit of energy
(shows directions that can be reached with small inputs, and directions that can be reached only with large inputs)
$\mathcal{E}_{\text {min }}$ as function of t :
if $t \geq s$ then

$$
\sum_{\tau=0}^{t-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau} \geq \sum_{\tau=0}^{s-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau}
$$

hence

$$
\left(\sum_{\tau=0}^{t-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau}\right)^{-1} \leq\left(\sum_{\tau=0}^{s-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau}\right)^{-1}
$$

so $\mathcal{E}_{\min }\left(x_{\mathrm{des}}, t\right) \leq \mathcal{E}_{\text {min }}\left(x_{\mathrm{des}}, s\right)$
i.e.: takes less energy to get somewhere more leisurely
example: $x(t+1)=\left[\begin{array}{cc}1.75 & 0.8 \\ -0.95 & 0\end{array}\right] x(t)+\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$
$\mathcal{E}_{\text {min }}(z, t)$ for $z=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}:$

ellipsoids $\mathcal{E}_{\min } \leq 1$ for $t=3$ and $t=10$:

Minimum energy over infinite horizon

the matrix

$$
P=\lim _{t \rightarrow \infty}\left(\sum_{\tau=0}^{t-1} A^{\tau} B B^{T}\left(A^{T}\right)^{\tau}\right)^{-1}
$$

always exists, and gives the minimum energy required to reach a point $x_{\text {des }}$ (with no limit on t):

$$
\min \left\{\sum_{\tau=0}^{t-1}\|u(\tau)\|^{2} \mid x(0)=0, x(t)=x_{\mathrm{des}}\right\}=x_{\mathrm{des}}^{T} P x_{\mathrm{des}}
$$

if A is stable, $P>0$ (i.e., can't get anywhere for free)
if A is not stable, then P can have nonzero nullspace

- $P z=0, z \neq 0$ means can get to z using u 's with energy as small as you like
(u just gives a little kick to the state; the instability carries it out to z efficiently)
- basis of highly maneuverable, unstable aircraft

Continuous-time reachability

consider now $\dot{x}=A x+B u$ with $x(t) \in \mathbf{R}^{n}$
reachable set at time t is

$$
\mathcal{R}_{t}=\left\{\int_{0}^{t} e^{(t-\tau) A} B u(\tau) d \tau \mid u:[0, t] \rightarrow \mathbf{R}^{m}\right\}
$$

fact: for $t>0, \mathcal{R}_{t}=\mathcal{R}=\operatorname{range}(\mathcal{C})$, where

$$
\mathcal{C}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

is the controllability matrix of (A, B)

- same \mathcal{R} as discrete-time system
- for continuous-time system, any reachable point can be reached as fast as you like (with large enough u)
first let's show for any $u($ and $x(0)=0)$ we have $x(t) \in \operatorname{range}(\mathcal{C})$ write $e^{t A}$ as power series:

$$
e^{t A}=I+\frac{t}{1!} A+\frac{t^{2}}{2!} A^{2}+\cdots
$$

by C-H, express A^{n}, A^{n+1}, \ldots in terms of A^{0}, \ldots, A^{n-1} and collect powers of A :

$$
e^{t A}=\alpha_{0}(t) I+\alpha_{1}(t) A+\cdots+\alpha_{n-1}(t) A^{n-1}
$$

therefore

$$
\begin{aligned}
x(t) & =\int_{0}^{t} e^{\tau A} B u(t-\tau) d \tau \\
& =\int_{0}^{t}\left(\sum_{i=0}^{n-1} \alpha_{i}(\tau) A^{i}\right) B u(t-\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{n-1} A^{i} B \int_{0}^{t} \alpha_{i}(\tau) u(t-\tau) d \tau \\
& =\mathcal{C} z
\end{aligned}
$$

where $z_{i}=\int_{0}^{t} \alpha_{i}(\tau) u(t-\tau) d \tau$
hence, $x(t)$ is always in range (\mathcal{C})
need to show converse: every point in range (\mathcal{C}) can be reached

Impulsive inputs

suppose $x\left(0_{-}\right)=0$ and we apply input $u(t)=\delta^{(k)}(t) f$, where $\delta^{(k)}$ denotes k th derivative of δ and $f \in \mathbf{R}^{m}$
then $U(s)=s^{k} f$, so

$$
\begin{aligned}
X(s) & =(s I-A)^{-1} B s^{k} f \\
& =\left(s^{-1} I+s^{-2} A+\cdots\right) B s^{k} f \\
& =(\underbrace{s^{k-1}+\cdots+s A^{k-2}+A^{k-1}}_{\text {impulsive terms }}+s^{-1} A^{k}+\cdots) B f
\end{aligned}
$$

hence

$$
x(t)=\text { impulsive terms }+A^{k} B f+A^{k+1} B f \frac{t}{1!}+A^{k+2} B f \frac{t^{2}}{2!}+\cdots
$$

in particular, $x\left(0_{+}\right)=A^{k} B f$
thus, input $u=\delta^{(k)} f$ transfers state from $x\left(0_{-}\right)=0$ to $x\left(0_{+}\right)=A^{k} B f$ now consider input of form

$$
u(t)=\delta(t) f_{0}+\cdots+\delta^{(n-1)}(t) f_{n-1}
$$

where $f_{i} \in \mathbf{R}^{m}$
by linearity we have

$$
x\left(0_{+}\right)=B f_{0}+\cdots+A^{n-1} B f_{n-1}=\mathcal{C}\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{n-1}
\end{array}\right]
$$

hence we can reach any point in range (\mathcal{C})
(at least, using impulse inputs)
can also be shown that any point in range (\mathcal{C}) can be reached for any $t>0$ using nonimpulsive inputs
fact: if $x(0) \in \mathcal{R}$, then $x(t) \in \mathcal{R}$ for all t (no matter what u is) to show this, need to show $e^{t A} x(0) \in \mathcal{R}$ if $x(0) \in \mathcal{R} \ldots$

Continuous time system is controllable if the controllability grampian

$$
\mathbf{W}_{c}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau=\int_{0}^{t} e^{A(t-\tau)} B B^{\prime} e^{A^{\prime}(t-\tau)} d \tau
$$

is non-singular (invertible) for all t.
i.e. for every $\mathbf{x}_{0}, \mathbf{x}_{f}$ and t_{f} we construct the appropriate \mathbf{u}

- Choose $\mathbf{u}(t)=-\mathbf{B}^{\prime} e^{\mathbf{A}^{\prime}\left(t_{f}-t\right)} \mathbf{W}_{c}^{-1}\left(t_{f}\right)\left[e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\mathbf{x}_{f}\right]$
- Plug into dynamic system solution:

$$
\mathbf{x}\left(t_{f}\right)=e^{\mathbf{A} t_{f}} \mathbf{x}_{0}+\int_{0}^{t_{f}} e^{\mathbf{A}\left(t_{f}-\tau\right)} \mathbf{B u}(\tau) d \tau
$$

and get

$$
\begin{aligned}
& \mathbf{x}\left(t_{f}\right)=e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\int_{0}^{\int_{f}^{t_{f}}} e^{\mathbf{A}\left(t_{f}-\tau\right)} \mathbf{B B}^{\prime} e^{\mathbf{A}^{\prime}\left(t_{f}-\tau\right)} d \tau \mathbf{W}_{c}^{-1}\left(t_{f}\right)\left[e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\mathbf{x}_{f}\right] \\
& \longleftrightarrow \mathbf{W}(\mathrm{t}) \\
&=e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\mathbf{W}_{c} \mathbf{W}_{c}^{-1}\left(t_{f}\right)\left[e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\mathbf{x}_{f}\right] \\
&=\mathbf{x}_{f}
\end{aligned}
$$

Will see: above \mathbf{u} is minimal energy solution

- One control signal, divided evenly to two shock absorbers.
- Spring constant, $k=1$
- Damper constants are d_{1}, d_{2}
- Shock absorbers' heights, x_{1} and x_{2} are the states
- Can we bring the states to zero from any starting heights at finite time using the same force on both absorbers? (i.e. is system controllable?)
- Force equations: $u=x_{i}+d_{i} \dot{x}_{i}$
 (no mass...)

In standard form:

$$
\dot{\mathbf{x}}=\left[\begin{array}{cc}
-\frac{1}{d_{1}} & 0 \\
0 & -\frac{1}{d_{2}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
\frac{1}{d_{1}} \\
\frac{1}{d_{2}}
\end{array}\right] u
$$

- Easy to see that system must be stable (negative eigenvalues) but will take forever to reach $(0,0)$ with no control..
- Suppose $d 1=2$ and $d_{2}=1$ we get system:

$$
\mathbf{A}=\left[\begin{array}{cc}
-1 / 2 & 0 \\
0 & -1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]
$$

- Controllability matrix is

$$
\mathcal{C}=[\mathbf{b} \mathbf{A} \mathbf{b}]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{4} \\
1 & -1
\end{array}\right]
$$

Obviously of rank $2 \xrightarrow{\prime \prime} \rightarrow$ controllable

- Lets find $\mathbf{W}_{c}(2)$, i.e. at $\mathrm{t}=2$

$$
\begin{aligned}
\mathbf{W}_{c}(2) & =\int_{0}^{2}\left(\left[\begin{array}{cc}
e^{-\frac{1}{2} \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-\frac{1}{2} \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right]\right) d \tau \\
& =\int_{0}^{2}\left(\left[\begin{array}{cc}
\frac{1}{4} e^{-\tau} & \frac{1}{2} e^{-\frac{3}{2} \tau} \\
\frac{1}{2} e^{-\frac{3}{2} \tau} & e^{-3 \tau}
\end{array}\right]\right) d \tau \\
& =\left[\begin{array}{ll}
0.2162 & 0.3167 \\
0.3167 & 0.4908
\end{array}\right]
\end{aligned}
$$

- Now, its inverse:

$$
\mathbf{W}_{c}^{-1}(2)=\left[\begin{array}{cc}
84.91 & -54.79 \\
-54.79 & 37.39
\end{array}\right]
$$

- Suppose starting position is $\mathbf{x}(0)=\left[\begin{array}{c}10 \\ -1\end{array}\right]$

$$
\begin{aligned}
\mathbf{u}(t) & =-\mathbf{B}^{\prime} e^{\mathbf{A}^{\prime}\left(t_{f}-t\right)} \mathbf{W}_{c}^{-1}\left(t_{f}\right)\left[e^{\mathbf{A} t_{f}} \mathbf{x}_{0}-\mathbf{x}_{f}\right] \\
& =-\left[\begin{array}{ll}
\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-\frac{1}{2}(2-t)} & 0 \\
0 & e^{-(2-t)}
\end{array}\right]\left[\begin{array}{cc}
84.91 & -54.79 \\
-54.79 & 37.39
\end{array}\right]\left[\begin{array}{cc}
e^{-1} & 0 \\
0 & e^{-2}
\end{array}\right]\left[\begin{array}{c}
10 \\
-1
\end{array}\right] \\
& =-58.82 e^{\frac{1}{2} t}+27.96 e^{t}
\end{aligned}
$$

- As t gets short the control signal and state path become more extreme:

control signal

- As $d_{1} \rightarrow d_{2}$ the controllability matrix becomes more singular: When $d_{1}=\{1.25,1.1,1\}$ the controllability matrices are:

$$
\left\{\left[\begin{array}{cc}
1.25 & -1.237 \\
1.00 & -1.00
\end{array}\right],\left[\begin{array}{cc}
1.10 & -1.089 \\
1.00 & 1.00
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right]\right\}
$$

So rank goes from 2 to 1.

- For same t_{f}, the control paths (of state and control signal) become more extreme:

control signal

Linear Time Varying (LTV)

- We define controllability in terms of time interval $\left[t_{0}, t_{f}\right]$
- Let $\boldsymbol{\Phi}\left(t_{f}, t_{0}\right)$ be the system's transfer matrix, (for LTI system $\left.\boldsymbol{\Phi}\left(t_{f}, t_{0}\right)=\operatorname{expm}\left(\mathrm{A}\left(\mathrm{t}_{f}-t_{0}\right)\right)\right)$ then the system's state is

$$
\mathbf{x}\left(t_{f}\right)=\mathbf{\Phi}\left(t_{f}, t_{0}\right) \mathbf{x}_{0}+\int_{t_{0}}^{t_{f}} \mathbf{\Phi}\left(t_{f}, \tau\right) \mathbf{B}(\tau) \mathbf{u}(t) d \tau
$$

- Define the controllability grammian:

$$
\mathbf{W}_{c}\left(t_{0}, t_{f}\right)=\int_{t_{0}}^{t_{f}} \mathbf{\Phi}\left(t_{f}, \tau\right) \mathbf{B}(\tau) \mathbf{B}^{\prime}(\tau) \boldsymbol{\Phi}^{\prime}\left(t_{f}, \tau\right) d \tau
$$

- As for LTI systems, the following control will work:

$$
\mathbf{u}(t)=-\mathbf{B}^{\prime}(t) \boldsymbol{\Phi}^{\prime}\left(t_{f}, t\right) \mathbf{W}_{c}^{-1}\left(t_{0}, t_{f}\right)\left[\boldsymbol{\Phi}^{\prime}\left(t_{f}, t_{0}\right) \mathbf{x}_{0}-\mathbf{x}_{f}\right]
$$

