
Particle Filtering  

• Monte Carlo methods (& Importance Sampling)

• Particle Filtering
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Particle Filter Movies

• State: Location
(+ direction, speed)

• Observations:
Camera, Sonar , Lazer,
Wheel speed.

• Task: track position (while
performing policy)

• Goal: put out fires.
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Sonar Navigation

3Using ring of 24 sonar sensors. Initial estimated position is wrong 

D
ieter Fox



Smithsonian Tour Guide
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Navigates 
using 
camera 
pointed at 
ceiling.

Sebastian 
Thrun



Object Tracking

• “Condensation” Alg.

• Also uses shape primitives.
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Aibo Tracking (RoboCup)

• Both Aibo and Ball are tracked 
using particle filtering.
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Particle Filtering 

• Monte Carlo  methods use a sample (particle cloud) to represent a 
distribution.

• In noisy dynamic systems we wish to know the distribution of state 
values as they evolve in time

• When the initial distributions are not Gaussian or the transitions are not 
linear the state distributions are not Gaussian.

• Particle filtering uses Monte Carlo methods to represent distributions  
and Dynamic Programming to propagate them in time.
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Intro to Monte Carlo Methods 
• Monte Carlo methods deal with the following two problems:

•  Find an i.i.d sample, {xm} from a probability distribution, p(x).

• Estimate expected function values under a probability:

Solving problem 1 gives a solution to problem 2:

• Obviously,                     and the variance of the estimate is

• More examples lower the variance (linearly). 

• Variance does not grow with N, the dimension of x. A small number of 
samples may be sufficient even if N is large. But, sampling from p(x) 
may be difficult (“curse of dimensionality”)
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Particle Filtering

Monte Carlo •

Particle Filtering •

Monte Carlo

Particle Filtering
Dynamic Monte Carlo

Programming

Dynamic Programming Kalman Filter
Kalman Filter

Monte Carlo

Mone Carlo
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Importance Sampling

• Being able to calculate p(x) does not mean you can sample from p(x).

• Basic idea: create a random sample and weigh the particles according to 
their probabilities:

• If you can calculate p(x) and can sample from some other distribution, 
q(x) and q is such that supp(p)⊆supp(q) (i.e. if p(x)>0 then q(x)>0) then:

• So, given a sample from distribution q above, we can estimate Ep[f(x)]:

• Again, 
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• The variance is

• For f(x)=1

• So the variance diminishes as q→p.

• Suppose q is simply uniform over the whole (finite) space, if p is 
concentrated, then p/q→∞ as the space expands (exponentially in N).
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• Quite often, p is known up to a normalization constant, i.e. π(x) = αp(x) 
and α is not known. We can still do importance sampling! 

Define

note that

therefore
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• We can estimate    with a sample by:

• Note that this estimate is biased. For M=1

but for M→∞ it converges to

• Importance sampling is problematic when q is very different from p.

• Other methods (e.g. rejection sampling and the Metropolis method) try 
to sample from p by sampling from q and throwing away examples. If q 
and p are very different many particles get thrown away (and sampling 
takes a long time). 
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• A Monte Carlo method for sequences (a.k.a Sequential Monte Carlo).

• The particles are sequences that get propagated.

• Given a general (Markov) dynamical system,

Where υ and µ are i.i.d process and observation noises. The initial state, 
f,h and the noise distributions define the following probabilities:

• We wish to know p(xk|y1:k). In general, this distribution does not belong 
to a simple parametric family.

• We therefore represent it with a sample of particles and propagate it in 
time using the Markov assumptions.
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Developing a Recursion Eq
• We develop an equation for p(x1:k|y1:k).

• Suppose we know p(x0:k-1|y1:k-1) then from Bayes and Markovity:

•

•
 

• i.e. we know the distributions that make up p(x0:k-1|y1:k-1)  up to a 
constant factor (i.e we have π(x) but can’t sample from it)

• We will therefore use importance sampling 14

Bayes

Markov

“known” (as particles)



• We choose a sampling distribution, q that factors: 

• Define:

• Plugging in q and p

and

• So, taking the particles                  sampled from q and weighing them by 
wi gives the required estimate p(x1:k|y1:k). 15

particles
filtering dynamic programming
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• Given a sample, how do you choose the predicted state? The mean is 
easy to approximate but the MAP estimate is more difficult. The 
probability of a specific value of x is

• To find the approximate MAP value one could replace δ with a Gaussian 
and search for the maximum value of the mixture..

• As mentioned earlier, q should be close to p. If p is Markov then so can 
q. I.e. we can limit q to the form q(xk|xk-1,yk). A popular choice is 
q=p(xk|xk-1) if it can be sampled from. In this case,

• As the sequence advances wi go to 0 or 1. This happens quickly if q 
differs greatly from p. To avoid this, resampling is applied, splitting 
particles with large w and eliminating particles with small w. 
This method is knows as Sequential Importance Resampling (SIR)
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Problems



Algorithm
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Resampling
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Example

• Dynamic system:

• Choose                        =  
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True Values
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• at 42nd step:
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