Particle Filtering

* Monte Carlo methods (& Importance Sampling)
* Particle Filtering




Particle Filter Movies

State: Location
(+ direction, speed)

Observations:
Camera, Sonar , Lazer,
Wheel speed.

Task: track position (while
performing policy)

Goal: put out fires.




Sonar Navigation
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Using ring of 24 sonar sensors. Initial estimated position is wrong 3
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Smithsonian Tour Guide

Navigates
using

camera
pointed at
celling.
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Thrun
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Object Tracking

® “Condensation” Alg.

® Also uses shape primitives.

Michal Issard & Andrew Blake




~ Aibo Tracking (RoboCup) \

e Both Aibo and Ball are tracked
using particle filtering.

Dieter Fox




Particle Filtering

Monte Carlo methods use a sample (particle cloud) to represent a
distribution.

In noisy dynamic systems we wish to know the distribution of state
values as they evolve in time

When the 1nitial distributions are not Gaussian or the transitions are not
linear the state distributions are not Gaussian.

Particle filtering uses Monte Carlo methods to represent distributions
and Dynamic Programming to propagate them in time.
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Intro to Monte Carlo Methods

® Monte Carlo methods deal with the following two problems:
e Find an 1.1.d sample, {x™} from a probability distribution, p(x).

e Estimate expected function values under a probability:
® = E,lf(x)) = [ Fexp(xix
Solving problem 1 gives a solution to problem 2:
==Y fx)
e (Obviously, E((f)) — & and the Va;iance of the estimate 1s

var(®) = " = 2 (760 - @200

e More examples lower the variance (linearly).

® Variance does not grow with /, the dimension of x. A small number of
samples may be sufficient even 1f N 1s large. But, sampling from p(x)
may be difficult (“‘curse of dimensionality”)




Importance Sampling

® Being able to calculate p(x) does not mean you can sample from p(x).

® Basic idea: create a random sample and weigh the particles according to
their probabilities:

® [f you can calculate p(x) and can sample from some other distribution,
q(x) and ¢ 1s such that supp(p)Ssupp(q) (1.€. if p(x)>0 then g(x)>0) then:

[f("‘ }qu] / Jx p(x a0 X / f)p(x)dx = Ep[f (x)]

® So, given a sample from dlstrlbutlon g above, we can estimate E£,[/(X)]:

b,(f) = = Zlf(xm)‘zg:;

® Again, E(é) =




The variance 1s

i = 5 (s ()] - s o] )
L (E (f(m)%) - (E, [f(x)]f)
For f{x)=1

. p(x)
var(®) = i wvar (—)
M q(x)
So the variance diminishes as g—p.

Suppose ¢g is simply uniform over the whole (finite) space, if p 1s
concentrated, then p/g—o0 as the space expands (exponentially in N).




® (Quite often, p 1s known up to a normalization constant, 1.e. T(X) = op(X)
and a is not known. We can still do importance sampling!

Define w(x) = —=

note that E,lw(x)] = /—q(x)dx = /w(x)dx =«

therefore & = E,(f(x) = /f(x)p(x)dx

~N




E,[f(x)w(x)]
Eq [w (X)}

We can estimate ® with a sample by:

6 — L S w(E™)

2%21 w(z™)

Note that this estimate 1s biased. For M=1

w(z!)

Eq(‘i‘) — Eq [f(tu():v )

] — B, [f(<)] # Bylf (<))

but for M—0 it converges to &
Importance sampling is problematic when g 1s very different from p.

Other methods (e.g. rejection sampling and the Metropolis method) try
to sample from p by sampling from ¢ and throwing away examples. If ¢
and p are very different many particles get thrown away (and sampling
takes a long time).




Particle Filtering

A Monte Carlo method for sequences (a.k.a Sequential Monte Carlo).
The particles are sequences that get propagated.
Given a general (Markov) dynamical system,

x, = f(xp_1,v5-1)

ye = h(xg,p)

Where v and u are 1.1.d process and observation noises. The initial state,
f,h and the noise distributions define the following probabilities:

p(XO) ’ p(xk‘xk—l) ) p(Yk|Xk)
We wish to know p(Xi|yi:x). In general, this distribution does not belong
to a simple parametric family.

We therefore represent 1t with a sample of particles and propagate it in
time using the Markov assumptions.




Developing a Recursion Eq

e We develop an equation for p(Xi:4|y1:x).

® Suppose we know p(Xo:k-1|y1:4-7) then from Bayes and Markovity:

p(yk |X0:k1 Y1:k—1)p(X0:k |}’1:k—1)

p(XO:k|y1:k) —
/’ P(Yk|y1:k—1)
Bayes —_— p(yk|X0:ku yl:k—l)p(xk|xﬂzk—la Y1:k—1)p(X0:k_1 |.Y1:k,—1)
P(Yk|Y1:k—1)
Markov— = p(yk|xk)p(xk|xk—1)p(x(]:k:—l|y1:k—1)
P(Yk|Y1:k-1)

< p(¥e!|Xk)P(Xk|Xk—1)P(X0k—1[y1:5—1)
“known” (as particles)

® i.c. we know the distributions that make up p(Xo:t-1|y1:x-7) up to a
constant factor (1. we have n(x) but can’t sample from it)

e We will therefore use importance sampling




We choose a sampling distribution, g that factors:
q(X0:k|y¥1:k) = ¢(Xk|X0:k—1, Y1:1)q(X0:k—1|Y1:5-1)

Define: W — p(XE};k‘YLk)
Q(XB:H.‘)’M)
Plugging in g and p | o |
i PORIX)P(XG X1 )P (X1 [Y1:k-1)

Q(Xk !Xo:k—h Y1:k)CI(XO:k—1 \Y1:k—1)
p(Yk‘X%c)p(X}Lc’X}Lg_1)

p— Wi,
C](Xk\XO:k—LYLk) kel
and |
’u;t — Zb: =

So, taking the particles {x{.x}; sampled from g and weighing them by
w; gives the required estimate p(Xi:4|y1:x).

s,




Problems

Given a sample, how do you choose the predicted state? The mean 1s
casy to approximate but the MAP estimate 1s more difficult. The

probability of a specific value of x 1s
M

p(Xk|y1:x) = lim Zu*ko (xp — Xk)

M — oo

To find the approximate MAP Value one could replace 6 with a Gaussian
and search for the maximum value of the mixture..

As mentioned earlier, g should be close to p. If p 1s Markov then so can
g. I.e. we can limit g to the form q(x«|X«-1,yx). A popular choice 1s
q=p(Xk|xx-1) if it can be sampled from. In this case, W' = p(y ‘Xh “’A 1

As the sequence advances w' go to 0 or 1. This happens quickly if ¢
differs greatly from p. To avoid this, resampling 1s applied, splitting
particles with large w and eliminating particles with small w.

This method 1s knows as Sequential Importance Resampling (SIR)




Algorithm

Algorithm 1 Particle filter (SIR)

{x, wi il = PF({x} 1, wj_1}iL1. yr)
e for 1=1:M

— draw X}L ~ q(Xﬂg\Xi_pYU

p(yi|x)p(x %, _1)
q(Xk|X0:k—1.y1:£) k=17

— assign w;, =

_ , o~
e for each 7, W' = =¥ —

e optionally, [{X", @’ f‘iﬂ — RESAMPLE ({X’i,w’i}f‘il)

7




Resampling

Algorithm 2 Resample

{x', 0w}, ] = RESAMPLE({x*, w*})

e for each 7 in {0,..., M}, ¢; = Z“"—'{_l -
e for each 7 in {1,...,M}

— u; = uni formrandom in |0, 1]

— x" = x’ such that ¢;_; < wu; <¢

—1?, l

JII o in‘[




Example
® Dynamic system:
Th—1 250 1

e = | - 8cos(1.2k) + v
Lk 5 1 —~—£1’I%C_1 COS( ) kE—1
1 = ﬁ —+

Ye — 90 295

v~ N(0,10)

fo N(Oa 1)

® Choose q(x}|x}_;)= N(x}_y.10)




True Values
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® at 42nd step:

State x

Sequential state estimate
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State estimate

True state
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