Calculus of Variations and
Optimal Control:

Continuous Systems
(various problem conditions)

x(0) & trgiven

continuous time LOR

tr given, X(0) & x(#) [partly] given

tr unconstrained, x(0), x(#7) [partly] given (example: min time)

Integral constraint over path (Eg. fixed path length)

Equality constraints over functions of the state/control




Continuous System
x(0) and #r are known

x(t) =f(x(t),ut),t) x(to) given t € |to,ty]

® Find u(t) that minimizes

T = (x(ty)t) + [ £ x(t)u(e).0)dt

to

® Use Lagrange multiplier functions

JA:qb(x(tf),tf)+/tf/l(x(t),u(t),t) dt+/tf)\T(t) f(x(t),u(t),t) — x(t)] dt
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JA:¢(x(tf),tf)+/tfﬁ(x(t),u(t),t) dt+/tf)\T(t) f(x(t),u(t),t) —x(t)] dt

® Define a Hamiltonian
H(x(t),u(t),t) = L (x(t),u(t),t) + XL (Of (x(t),u(t),t)

® Plug into Lagrangian and integrate by parts A\’ (¢)x(¢)

J=¢(x(ts), )= (tp)x (ts)+AT (tO)X(tO)_I_/t f [H (x(t),u(t),t) + }\Tx(t)] dt

® [ts variation (w.r.t. changes in x and u) 1s:

1% .
6J = K@ — AT) 5x] + A 6x] 4=, +/ Ka—H + )\T) 6x + 8—H5u] dt
0x bt t 0x ou




(9 1 T oOH
0J = [(8){ A >5x]ttf + [N 0] =4, —I—/to [(8){

® Zeroing it out (+ keeping dynamics requirements) leads to the Euler

Lagrange equations:

f(x(t), u(t),t)

oL .. Of
“oax Y Wax
00
Ox(ty)

0

X0 gLven

)

0x + a—H(Su] dt
ou




e If £ and fare not explicit functions of ¢ (happens often) then the
Hamiltonian is constant (1.e. invariant) on the system’s trajectory!

d'H
dt

d

1L (x(0), (1)) + AT (OF (x(1), ()]
oL, OL. p. o[ Of . Of
IH . (OH

® On the extremal path both terms zero out, meaning that H(¢) = constant




Continuous Time LQR

Given x(0), #rand a linear system:
%(t) = Ax(t) + Bu(?t)
Find a path that brings (some of) x close to zero without allowing it to

vary to much on the way and without too much control energy. I.e. find u

that minimizes

1, 1[4 T
.]:5(){ S rx) —|——/ (xQx + u’ Ru)

=ty =2 [,
where S,Q and R are positive definite.
Note: this can easily be generalized to time varying systems and costs.
Solution will be very similar to the discrete case.

The resulting u turns out to be a continuous state feedback rule.




Solution:

® The Hamiltonian is

1 1
H = §XQX + §uTRu + M\ (Ax + Bu)
® The end constraint on A is
T _ .' _
A (tf) o aX(tf) —> )\(tf) T SfX(tf)
e )’s diff. eq. is
- oL of .
M) = —— M (t)— — A=-Qx—- A"\
(1) = T ()5 Q
® The third Euler Lagrange condition gives
9’ _ — 0=Ru+B”)\
ou
— 1T
Rearranging u=-R"7"B"A

® This is a two point boundary value problem with x known at # and A
known at #. The two linear differential equations are coupled by u. 7




r

e Plugging u = —R'B’\ into the state dynamics gives

x=Ax - BR BT\

® One can show (see Bryson & Ho, sec. 5.2) that there exists a time

varying matrix S(t) that provides a linear relation between A and x
At)=S(O)x(t)  S(t;) =S
Plugging this into the above state dynamics gives
x = Ax - BR7!B'S(t)x(t) %

i.e. u = BR™'B?S(#)x(t) is a linear state feedback. Similarly to the
discrete case, to know the control rule we simply need to find S(t).

We plug \(t) = S(t)x(t)into A = —Qx — AT )\ and get
Sx + Sx = —Qx — ASx

e Next we plug (°%) into the above equation and after a bit of rearranging

t .
= (S L SA + ATS _ SBR-!B’S A) X = 0

Since x(7)#0 (otherwise there 1s no need for regulation) we can drop x
and get...




S=_-SA-ATS+SBR 'BIS—- A

This 1s a quadratic differential equation in S with a boundary condition
S(ty) =Sy

This equation is known as a matrix Riccati equation. It can be solved
(e.g. by numeric integration from Sr backwards) to get S(7).

Usually, this dynamic system 1s stable and reaches a steady state S as
t—o0. The Matlab function care solves for S« (if a real valued solution

exists).
S« 1s good for regulating the system for a long duration (i.e. forever).

Since this differential equation 1s quadratic, it may have more than one
solution. The desired solution 1s PSD. Starting from S=0 (instead of
S=S¢) and numerically integrating until convergence (i.e. till S — 0)
will give the PSD solution (see Bryson & Ho, sec. 5.4).

We will see (in a future lecture) that the HIB equations show that
J=x1(10)S(t0)x"(¢0). (This is also true for the discrete case, were we used
the notation P instead of S).




ir given , X(0) & x(#) partly or
fully given

® Same variation of J holds:

§J = K(% )\T> 5x] + [N 6x]4—y, + / KaH AT> ox + a—H(su] dt
0x t—t, t 0x ou

® Suppose Xk() is given, then 0x«(¢/) = 0 and therefore we do not require
0
> _ A =0
Oxp(tr)
in order to zero out the variation

e Similarly, if x«(#9) is not given, then 0xi(f9) # 0 and to zero out 0J we
require that

Ae(to) = 0

® Note that if the system 1s not “controllable” the condition may be
impossible to satisfy. 10

\_




® The Euler Lagrange equations are now

x(t)
(L)

f(x(t), u(t),t)

[A%:(tf) -

or

o
ou

( Vk A, (0)=0

or




Minimum Jerk

Find a path x(¢), starting at rest (zero velocity & acceleration) from xo at
time 7o and ending at rest at xr at time #rso that the squared cumulative
change 1n acceleration (jerk) along the path 1s minimal.

Define the state to be x = [x, v, a] (position, velocity, acceleration) and
the control signal to be u(t) = a

The cost 1s:

Ly
J = —/ w? (t)dt
2 /i

where £ = %uz and =0

We solve for the one dimensional (scalar position) case but solution
holds for the multidimensional case as well.




The dynamics equations are ~ x(t)

o=
Jo =
f3 =
The Jacobian is therefore
of |V
a— — O
* 1o
and (remembering £ = 1u?)
or, | Y
6_ — O
X ] O |
: OH oL
so, b T . _Jr_ Y=
y A ) ox 0x




. . . [>.\17/'\27/.\3}T — [07_)\1; —AQ}
® We can solve these differential equations:
M=
Ao = —cit+co
1
Az = §C1t2 — cot + c3

® The Hamiltonian ( H = L+A'f) is
1

1
— 5“2@) + AMv + A2a + Asu

® SO
OH
— =0
ou
0 = u—|—>\3
U = —§clt2—|—02t—03




X X : . U = ——cit2 ot —c
® Pluggmg u 1nto the dynamlcs equations: 2 R J
a = U
L t3 + ! £2 t+
a — ——C —C — C C
6 1 9 2 3 4
vo= a
L tt + ! £3 L t? 4+ cat +
v = ——c¢C —Cot” — =cC C c
24 1 6 2 9 3 4 5
r = v
r = —Lclt5 + i02754 — —03753 + 104752 + c5t + ¢
120 24 6 2

® Using the 1nitial conditions x(0) = xo and v(0) = a(0) = 0 we see that
c4 = ¢5 =0 and c6 = X0 leaving us with

! t3+1 t2 t
a = —=c —cot” — ¢
]‘ 4 1 3 1 2
= ——ctt+ Zet? — Zcst
(% 2401 —|—662 263
1 1 1
X 12061 —|—2462 6C3 + o




Using the final conditions, x(#) = xr and v(¢y) = a(¢y) = 0 we get
3 equations in 3 unknowns (with #ras a parameter):

0 i _%t?“ %t?” —ty 1 [ a1 |
0 = | —55t7 3 —itf c
214 Jg 61f4 % § °
LTy —%o | L —1eoly —aaty —elr 1 L3

The solutions of above equations yields:
cs = (25 — 370)%‘ 2 = (x5 — xo)% 1 = (xf —x0) 5
Resulting in

z(t) = w0 + (x5 — 20)(67° — 157% 4 107°)
where 7= L
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What If ¢/ Is Not Given!?

® When #1s not constrained it becomes a parameter of the variation
problem and affects the cost of the solution. All the previous optimality
conditions still apply and an extra condition 1s added:

(), - (5 oers) =
ot e, \ Ot -

Proof sketch (see Bryson & Ho, sec 2.7 for real proof):

e The Lagrange multipliers augmented cost 1s, as before

Ja = o (x(tf),tr) +ft f L(x(t),u(t),t)dt +/ f A (#) [F(x(t), u(t). t) — x(¢)] dt

to

® The variation 1s now also 1n #. To simplify the proof we assume that x(#y)
is unchanged by the variation in #, that is x(¢)=x(¢y) for 1€[¢;, tr+ Of].




® The resulting variation 1s

0J" = 5J+a—¢

a7 | Otr +L(Es)oty + M (tp)E (L)t

by

= §J+ 9 + L(te) + X (tp)f(ty) | 6t

= ot |, f I f
N — ———e

require =0

where 0. is the variation given #r

e Note that the same result 1s reached without the assumption on x not
varying.




Minimum Time Problems

This 1s an example of a common case where #r1s not given.

problem setting: given dynamical system
uc R" x=f(x,u,t) e R"

and some of the start/end state values xi(#) and x«(¢r) find the control that
minimizes the following simple cost

J =1t;— 1o
Thatis ¢ =0 , L =1




e The Euler Lagrange equations are

x = f(x,u,t)
- of
A= N —

0):
Ae(tr) =0 or xp(ty) given, k={1...n}
Of
M — = 0 mequations

ou

Ae(to) =0 or xi(tg) given, k=4{1...n}
N(tpfty) = -1

® We have 2n boundary constraints for 2z differential equations, m

optimality constraints for m control variables and one constraint for #«.

21




Integral Constraint On Path

® Suppose we have an extra requirement from the optimal trajectory:

1y
c:/ N(x,u,t)dt
t

] ‘ 0

e E.g. given fixed amount of fuel, reach the destination with an empty tank
(while obeying some optimality criterions) . N(x,u,t) would be the fuel
consumption and c the given fuel amount.

® Solution: (by reduction to a regular problem with an extra state variable
that has given boundary values)
Add a new state variable, x,+1 with the following dynamics function f

Trpi1 = N(x,u,t)




It 1s clear that

t.f
:rﬂﬂ(t’):/ N(x,u,t)dt
to

Now require that
Lnil (tf) — C 33¢1_+1(t0) — ()

Obviously, the augmented system obeys the integral constraint

(see Bryson & Ho Sec 3.1)




Integral Constraint Eg.

e Maximum area under curve of given length:
X

0 a :
e We formulate 1t as a control problem: A particle moves with constant
velocity (1) along the horizontal axis, starting at time 0 and ending at
time a. The position along the x; axis changes as a function of the angle

O which 1s the control signal. The particle’s path (in the xi-¢ plane) must

be p and the area under the particle 1s maximized.

® We assume that -7t/2<0<7v/2 (true if p< ma)




® The corresponding equations are

L=—x ,~.
u = 60
f1 = a1 =tanf
r1(0) = , x1(a) =20
ty = a
|
b= /0 cos@dt

® The costis




Solution:

Add another state variable, x>, and replace the integral constraint with

, 1
fg — X2 = — , 3?2(0) — ( , .1‘-2((1-) — P
cos 6
The Hamiltonian 1s
T A2
H=L+XNf=—21+ A\ tanf +
cos 6

we know that it 1s a constant because L and f are not explicit functions
of time (see previous slide).

The Lagrange multipliers obay

- OH

A= g A o= tte

5\2 = _‘0_7‘[:0 Ay =0
d.ﬁt?g




(

The Lagrange equation for u gives

OH OH N\ sin 6

— = — = -\ — =0
ou 06 cos? 6 % cos2 0
SO
A = —Aosinf = —cosin b
1.€
. —t—
sin f(t) =
C2

This means that under this control scheme the sine of O (t) 1s linear.

One can then use the given boundary conditions to find H,c1,c2, solve xi
and show that the optimal path 1s an ark of a circle whose center 1s at
a D COS sino __ a

27 2c¢ ), its radius is p/2 and o. obeys o P




Equality Constraints Over
Functions of the State/Control

® Suppose we wish to find a trajectory that obeys an extra set of equality
constraints, ¢(x,u,t)=0.

e This is no different than requiring that f(x (), u(),t) — x(t)=0.

® We therefore treat the new constraint in a similar manner. We rewrite the

Hamiltonian to be:
H=Mf+L+17¢

where v 1s an extra vector of Lagrange multipliers that gets the exact
same treatment as A.

® The rest of the Euler Lagrange constraint derivation is unchanged.

® (see Bryson & Ho, sec. 3.3)
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Some Other Variation Variants

® functions of the state variables given at #p and/or given or unconstrained
terminal time 7z (Eg. manipulate a robotic hand from one curved wall to
another along the shortest path).

® via point problems (trajectory 1s constrained to obey some rule at a
certain time or position along its path).

® problems where the Lagrange equations do not produce a constraint on
the control signal (although it 1s obviously constrained). Eg. bang-bang
control.




