Calculus of Variations and

Optimal Control:

 Continuous Systems (various problem conditions)- $x(0) \& t_{f}$ given
-continuous time LQR
- t_{f} given, $x(0) \& x\left(t_{f}\right)$ [partly] given
- t_{f} unconstrained, $\mathrm{x}(0), \mathrm{x}\left(t_{f}\right)$ [partly] given (example: min time)
- Integral constraint over path (Eg. fixed path length)
- Equality constraints over functions of the state/control

Continuous System $\mathrm{x}(0)$ and t_{f} are known

- Given:

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \quad \mathbf{x}\left(t_{0}\right) \text { given } \quad t \in\left[t_{0}, t_{f}\right]
$$

- Find $\mathbf{u}(\mathrm{t})$ that minimizes

$$
J=\phi\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

- Use Lagrange multiplier functions

$$
J_{A}=\phi\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), t) d t+\int_{t_{0}}^{t_{f}} \lambda^{T}(t)[\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}(t)] d t
$$

$$
J_{A}=\phi\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), t) d t+\int_{t_{0}}^{t_{f}} \lambda^{T}(t)[\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}(t)] d t
$$

- Define a Hamiltonian

$$
\mathcal{H}(\mathbf{x}(t), \mathbf{u}(t), t)=\mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), t)+\lambda^{T}(t) \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

- Plug into Lagrangian and integrate by parts $\lambda^{T}(t) \dot{\mathbf{x}}(t)$
$J=\phi\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right) \mathbf{x}\left(t_{f}\right)+\lambda^{T}\left(t_{0}\right) \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t_{f}}\left[\mathcal{H}(\mathbf{x}(t), \mathbf{u}(t), t)+\dot{\lambda}^{T} \mathbf{x}(t)\right] d t$
- Its variation (w.r.t. changes in \mathbf{x} and \mathbf{u}) is:

$$
\delta J=\left[\left(\frac{\partial \phi}{\partial \mathbf{x}}-\lambda^{T}\right) \delta \mathbf{x}\right]_{t=t_{f}}+\left[\lambda^{T} \delta \mathbf{x}\right]_{t=t_{0}}+\int_{t_{0}}^{t_{f}}\left[\left(\frac{\partial \mathcal{H}}{\partial \mathbf{x}}+\dot{\lambda}^{T}\right) \delta \mathbf{x}+\frac{\partial \mathcal{H}}{\partial \mathbf{u}} \delta \mathbf{u}\right] d t
$$

$$
\delta J=\left[\left(\frac{\partial \phi}{\partial \mathbf{x}}-\lambda^{T}\right) \delta \mathbf{x}\right]_{t=t_{f}}+\left[\lambda^{T} \delta \mathbf{x}\right]_{t=t_{0}}+\int_{t_{0}}^{t_{f}}\left[\left(\frac{\partial \mathcal{H}}{\partial \mathbf{x}}+\dot{\lambda}^{T}\right) \delta \mathbf{x}+\frac{\partial \mathcal{H}}{\partial \mathbf{u}} \delta \mathbf{u}\right] d t
$$

- Zeroing it out (+ keeping dynamics requirements) leads to the Euler Lagrange equations:

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \\
\dot{\lambda}^{T}(t) & =-\frac{\partial \mathcal{L}}{\partial \mathbf{x}}-\lambda^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \\
\lambda^{T}\left(t_{f}\right) & =\frac{\partial \phi}{\partial \mathbf{x}\left(t_{f}\right)} \\
\frac{\partial \mathcal{H}}{\partial \mathbf{u}} & =0 \\
& \mathbf{x}_{0} \text { given }
\end{aligned}
$$

- If \mathcal{L} and \mathbf{f} are not explicit functions of t (happens often) then the Hamiltonian is constant (i.e. invariant) on the system's trajectory!

$$
\begin{aligned}
\frac{d \mathcal{H}}{d t}= & \frac{d}{d t}\left[\mathcal{L}(\mathbf{x}(t), \mathbf{u}(t))+\lambda^{T}(t) \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))\right] \\
& \frac{\partial L}{\partial \mathbf{x}} \mathbf{f}+\frac{\partial L}{\partial \mathbf{u}} \dot{\mathbf{u}}+\dot{\lambda}^{T} \mathbf{f}+\lambda^{T}(\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \underbrace{\dot{\mathbf{x}}}_{=\mathbf{f}}+\frac{\partial \mathbf{f}}{\partial \mathbf{u}} \dot{\mathbf{u}}) \\
= & \frac{\partial \mathcal{H}}{\partial \mathbf{u}} \dot{\mathbf{u}}+\left(\frac{\partial \mathcal{H}}{\partial \mathbf{x}}+\dot{\lambda}^{T}\right) \mathbf{f}
\end{aligned}
$$

- On the extremal path both terms zero out, meaning that $H(t)=$ constant

Continuous Time LQR

- Given $\mathbf{x}(0), t_{f}$ and a linear system:

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
$$

- Find a path that brings (some of) \mathbf{x} close to zero without allowing it to vary to much on the way and without too much control energy. I.e. find \mathbf{u} that minimizes

$$
J=\frac{1}{2}\left(\mathbf{x}^{T} \mathbf{S}_{f} \mathbf{x}\right)_{t=t_{f}}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\mathbf{x} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u}\right)
$$

where $\mathbf{S , Q}$ and \mathbf{R} are positive definite.

- Note: this can easily be generalized to time varying systems and costs.
- Solution will be very similar to the discrete case.
- The resulting \mathbf{u} turns out to be a continuous state feedback rule.

Solution:

- The Hamiltonian is

$$
\mathcal{H}=\frac{1}{2} \mathbf{x} \mathbf{Q} \mathbf{x}+\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u}+\lambda^{T}(\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{u})
$$

- The end constraint on λ is

$$
\lambda^{T}\left(t_{f}\right)=\frac{\partial \phi}{\partial \mathbf{x}\left(t_{f}\right)} \quad \longrightarrow \quad \lambda\left(t_{f}\right)=\mathbf{S}_{f} \mathbf{x}\left(t_{f}\right)
$$

- λ 's diff. eq. is

$$
\dot{\lambda}^{T}(t)=-\frac{\partial \mathcal{L}}{\partial \mathbf{x}}-\lambda^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \quad \longrightarrow \quad \dot{\lambda}=-\mathbf{Q} \mathbf{x}-\mathbf{A}^{T} \lambda
$$

- The third Euler Lagrange condition gives

$$
\begin{aligned}
& \frac{\partial \mathcal{H}}{\partial \mathbf{u}}=0 \quad \longrightarrow \quad 0=\mathbf{R u}+\mathbf{B}^{T} \lambda \\
& \text { anging }
\end{aligned}
$$

Rearranging

- This is a two point boundary value problem with \mathbf{x} known at t_{0} and λ known at t. The two linear differential equations are coupled by \mathbf{u}.
- Plugging $\mathbf{u}=-\mathbf{R}^{-1} \mathbf{B}^{T} \lambda$ into the state dynamics gives

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}-\mathbf{B R}^{-1} \mathbf{B}^{T} \lambda
$$

- One can show (see Bryson \& Ho, sec. 5.2) that there exists a time varying matrix $\mathbf{S}(\mathrm{t})$ that provides a linear relation between λ and \mathbf{x}

$$
\lambda(t)=\mathbf{S}(t) \mathbf{x}(t) \quad \mathbf{S}\left(t_{f}\right)=\mathbf{S}_{f}
$$

Plugging this into the above state dynamics gives

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}-\mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{S}(t) \mathbf{x}(t) \tag{*}
\end{equation*}
$$

i.e. $\mathbf{u}=\mathbf{B R}^{-1} \mathbf{B}^{T} \mathbf{S}(t) \mathbf{x}(t)$ is a linear state feedback. Similarly to the discrete case, to know the control rule we simply need to find $\mathbf{S}(\mathrm{t})$.

- We plug $\lambda(t)=\mathbf{S}(t) \mathbf{x}(t)$ into $\dot{\lambda}=-\mathbf{Q x}-\mathbf{A}^{T} \lambda$ and get

$$
\dot{\mathbf{S}} \mathbf{x}+\mathbf{S} \dot{\mathbf{x}}=-\mathbf{Q} \mathbf{x}-\mathbf{A} \mathbf{S} \mathbf{x}
$$

- Next we plug $(*)$ into the above equation and after a bit of rearranging get

$$
\left(\dot{\mathbf{S}}+\mathbf{S A}+\mathbf{A}^{T} \mathbf{S}-\mathbf{S B R} \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{S}+\mathbf{A}\right) \mathbf{x}=0
$$

- Since $\mathbf{x}(t) \neq 0$ (otherwise there is no need for regulation) we can drop \mathbf{x} and get...

$\cdots \quad \dot{\mathbf{S}}=-\mathbf{S A}-\mathbf{A}^{T} \mathbf{S}+\mathbf{S B R}^{-1} \mathbf{B}^{T} \mathbf{S}-\mathbf{A}$

- This is a quadratic differential equation in \mathbf{S} with a boundary condition $\mathbf{S}\left(t_{f}\right)=\mathbf{S}_{f}$
- This equation is known as a matrix Riccati equation. It can be solved (e.g. by numeric integration from S_{f} backwards) to get $\mathbf{S}(t)$.
- Usually, this dynamic system is stable and reaches a steady state \mathbf{S} as $t \rightarrow \infty$. The Matlab function care solves for S_{∞} (if a real valued solution exists).
- S_{∞} is good for regulating the system for a long duration (i.e. forever).
- Since this differential equation is quadratic, it may have more than one solution. The desired solution is PSD. Starting from $\mathbf{S}=0$ (instead of $\mathrm{S}=\mathrm{S}_{\mathrm{f}}$) and numerically integrating until convergence (i.e. till $\dot{\mathrm{S}} \rightarrow \mathbf{0}$) will give the PSD solution (see Bryson \& Ho, sec. 5.4).
- We will see (in a future lecture) that the HJB equations show that $J=\mathbf{x}^{\mathrm{T}}\left(t_{0}\right) \mathbf{S}\left(t_{0}\right) \mathbf{x}^{\mathrm{T}}\left(t_{0}\right)$. (This is also true for the discrete case, were we used the notation \mathbf{P} instead of \mathbf{S}).

t_{f} given, $\mathbf{x}(0) \& \mathbf{x}\left(t_{f}\right)$ partly or fully given

- Same variation of J holds:

$$
\delta J=\left[\left(\frac{\partial \phi}{\partial \mathbf{x}}-\lambda^{T}\right) \delta \mathbf{x}\right]_{t=t_{f}}+\left[\lambda^{T} \delta \mathbf{x}\right]_{t=t_{0}}+\int_{t_{0}}^{t_{f}}\left[\left(\frac{\partial \mathcal{H}}{\partial \mathbf{x}}+\dot{\lambda}^{T}\right) \delta \mathbf{x}+\frac{\partial \mathcal{H}}{\partial \mathbf{u}} \delta \mathbf{u}\right] d t
$$

- Suppose $\mathbf{x}_{k}\left(t_{f}\right)$ is given, then $\delta \mathbf{x}_{k}\left(t_{f}\right)=0$ and therefore we do not require

$$
\frac{\partial \phi}{\partial \mathbf{x}_{k}\left(t_{f}\right)}-\lambda_{k}^{T}=0
$$

in order to zero out the variation

- Similarly, if $\mathbf{x}_{k}\left(t_{0}\right)$ is not given, then $\delta \mathbf{x}_{k}\left(t_{0}\right) \neq 0$ and to zero out δJ we require that

$$
\lambda_{k}\left(t_{0}\right)=0
$$

- Note that if the system is not "controllable" the condition may be impossible to satisfy.
- The Euler Lagrange equations are now

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \\
\dot{\lambda}^{T}(t) & =-\frac{\partial \mathcal{H}}{\partial x}=-\frac{\partial \mathcal{L}}{\partial \mathbf{x}}-\lambda^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{x}}
\end{aligned}
$$

$$
\lambda_{k}^{T}\left(t_{f}\right)=\frac{\partial \phi}{\partial x_{k}\left(t_{f}\right)} \quad \text { or } \quad x_{k}\left(t_{f}\right) \text { given }
$$

$$
\frac{\partial \mathcal{H}}{\partial \mathbf{u}}=0
$$

$$
\forall k \quad \lambda_{k}(0)=0 \quad \text { or } \quad x_{k}(0) \text { given }
$$

Minimum Jerk

- Find a path $\mathbf{x}(t)$, starting at rest (zero velocity \& acceleration) from \mathbf{x}_{0} at time t_{0} and ending at rest at \mathbf{x}_{f} at time t_{f} so that the squared cumulative change in acceleration (jerk) along the path is minimal.
- Define the state to be $\mathbf{x}=[x, v, a]$ (position, velocity, acceleration) and the control signal to be $\mathbf{u}(t)=\dot{a}$
- The cost is:

$$
J=\frac{1}{2} \int_{t_{0}}^{t_{f}} u^{2}(t) d t
$$

where $\mathcal{L}=\frac{1}{2} u^{2}$ and $\varphi=0$

- We solve for the one dimensional (scalar position) case but solution holds for the multidimensional case as well.
- The dynamics equations are $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$

$$
\begin{aligned}
f_{1} & =\dot{x}=v \\
f_{2} & =\dot{v}=a \\
f_{3} & =\dot{a}=u
\end{aligned}
$$

- The Jacobian is therefore

$$
\frac{\partial f}{\partial \mathbf{x}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

- and (remembering $\mathcal{L}=\frac{1}{2} u^{2}$)

$$
\frac{\partial L}{\partial \mathbf{x}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \frac{\partial f}{\partial \mathbf{u}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- so, by $\dot{\lambda}^{T}(t)=-\frac{\partial \mathcal{H}}{\partial x}=-\frac{\partial \mathcal{L}}{\partial \mathbf{x}}-\lambda^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ we get

$$
\left[\dot{\lambda}_{1}, \dot{\lambda}_{2}, \dot{\lambda}_{3}\right]^{T}=0-\left[\lambda_{1}, \lambda_{2}, \lambda_{3}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

- We can solve these differential equations:

$$
\begin{aligned}
\lambda_{1} & =c_{1} \\
\lambda_{2} & =-c_{1} t+c_{2} \\
\lambda_{3} & =\frac{1}{2} c_{1} t^{2}-c_{2} t+c_{3}
\end{aligned}
$$

- The Hamiltonian ($\left.\mathrm{H}=L+\lambda^{\mathrm{T}} \mathbf{f}\right)$ is

$$
\begin{aligned}
\mathcal{H} & =\frac{1}{2} u^{2}(t)+\lambda^{T} f \\
& =\frac{1}{2} u^{2}(t)+\lambda_{1} v+\lambda_{2} a+\lambda_{3} u
\end{aligned}
$$

- SO

$$
\begin{aligned}
\frac{\partial \mathcal{H}}{\partial \mathbf{u}} & =0 \\
0 & =u+\lambda_{3} \\
u & =-\frac{1}{2} c_{1} t^{2}+c_{2} t-c_{3}
\end{aligned}
$$

- Plugging u into the dynamics equations:

$$
\begin{aligned}
\dot{a} & =u \\
a & =-\frac{1}{6} c_{1} t^{3}+\frac{1}{2} c_{2} t^{2}-c_{3} t+c_{4} \\
\dot{v} & =a \\
v & =-\frac{1}{24} c_{1} t^{4}+\frac{1}{6} c_{2} t^{3}-\frac{1}{2} c_{3} t^{2}+c_{4} t+c_{5} \\
\dot{x} & =v \\
x & =-\frac{1}{120} c_{1} t^{5}+\frac{1}{24} c_{2} t^{4}-\frac{1}{6} c_{3} t^{3}+\frac{1}{2} c_{4} t^{2}+c_{5} t+c_{6}
\end{aligned}
$$

- Using the initial conditions $x(0)=x_{0}$ and $v(0)=a(0)=0$ we see that $\mathrm{c}_{4}=\mathrm{c}_{5}=0$ and $\mathrm{c}_{6}=\mathrm{x}_{0}$ leaving us with

$$
\begin{aligned}
a & =-\frac{1}{6} c_{1} t^{3}+\frac{1}{2} c_{2} t^{2}-c_{3} t \\
v & =-\frac{1}{24} c_{1} t^{4}+\frac{1}{6} c_{2} t^{3}-\frac{1}{2} c_{3} t^{2} \\
x & =-\frac{1}{120} c_{1} t^{5}+\frac{1}{24} c_{2} t^{4}-\frac{1}{6} c_{3} t^{3}+x_{0}
\end{aligned}
$$

- Using the final conditions, $x\left(t_{f}\right)=\mathrm{x}_{\mathrm{f}}$ and $v\left(t_{f}\right)=a\left(t_{f}\right)=0$ we get 3 equations in 3 unknowns (with t_{f} as a parameter):

$$
\left[\begin{array}{c}
0 \\
0 \\
x_{f}-x_{0}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{6} t_{f}^{3} & \frac{1}{2} t_{f}^{2} & -t_{f} \\
-\frac{1}{24} t_{f}^{4} & \frac{1}{6} t_{f}^{3} & -\frac{1}{2} t_{f}^{2} \\
-\frac{1}{120} t_{f}^{5} & -\frac{1}{24} t_{f}^{4} & -\frac{1}{6} t_{f}^{3}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

- The solutions of above equations yields:

$$
\left.c_{3}=\left(x_{f}-x_{0}\right) \frac{60}{t_{f}^{3}}\right\urcorner c_{2}=\left(x_{f}-x_{0}\right) \frac{360}{t_{f}^{4}}, c_{1}=\left(x_{f}-x_{0}\right) \frac{720}{t_{f}^{5}}
$$

- Resulting in

$$
x(t)=x_{0}+\left(x_{f}-x_{0}\right)\left(6 \tau^{5}-15 \tau^{4}+10 \tau^{3}\right)
$$

where $\tau=\frac{t}{t_{f}}$

What If t_{f} Is Not Given?

- When t_{f} is not constrained it becomes a parameter of the variation problem and affects the cost of the solution. All the previous optimality conditions still apply and an extra condition is added:

$$
\left(\frac{\partial \phi}{\partial t}+\mathcal{H}\right)_{t=t_{f}}=\left(\frac{\partial \phi}{\partial t}+\mathcal{L}+\lambda^{T} \mathbf{f}\right)_{t=t_{f}}=0
$$

Proof sketch (see Bryson \& Ho, sec 2.7 for real proof):

- The Lagrange multipliers augmented cost is, as before

$$
J_{A}=\phi\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t), t) d t+\int_{t_{0}}^{t_{f}^{\prime}} \lambda^{T}(t)[\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}(t)] d t
$$

- The variation is now also in t_{f}. To simplify the proof we assume that $\mathbf{x}\left(t_{f}\right)$ is unchanged by the variation in t_{f}, that is $\mathbf{x}(t)=\mathbf{x}\left(t_{f}\right)$ for $t \in\left[t_{f}, t_{f}+\delta t\right]$.
- The resulting variation is

$$
\begin{aligned}
\delta J^{\prime} & =\delta J+\left.\frac{\partial \phi}{\partial t}\right|_{t_{f}} \delta t_{f}+\mathcal{L}\left(t_{f}\right) \delta t_{f}+\lambda^{T}\left(t_{f}\right) \mathbf{f}\left(t_{f}\right) \delta t_{f} \\
& =\delta J+\underbrace{\left(\left.\frac{\partial \phi}{\partial t}\right|_{t_{f}}+\mathcal{L}\left(t_{f}\right)+\lambda^{T}\left(t_{f}\right) \mathbf{f}\left(t_{f}\right)\right)}_{\text {require }=0} \delta t_{f}
\end{aligned}
$$

where δJ is the variation given t_{f}

- Note that the same result is reached without the assumption on \mathbf{x} not varying.

Minimum Time Problems

- This is an example of a common case where t_{f} is not given.
- problem setting: given dynamical system

$$
\mathbf{u} \in \mathrm{R}^{m}, \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, t) \in \mathrm{R}^{n}
$$

and some of the start/end state values $x_{k}\left(t_{0}\right)$ and $x_{k}\left(t_{\mathrm{f}}\right)$ find the control that minimizes the following simple cost

$$
J=t_{f}-t_{0}
$$

- That is $\phi=0 \quad, \quad \mathcal{L}=1$
- The Euler Lagrange equations are

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{f}(\mathbf{x}, \mathbf{u}, t) \\
\dot{\lambda}^{T} & =-\lambda^{T} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \\
\lambda_{k}\left(t_{f}\right)=0 & \text { or } x_{k}\left(t_{f}\right) \text { given, } \quad k=\{1 \ldots n\} \\
\lambda^{T} \frac{\partial \mathbf{f}}{\partial \mathbf{u}} & =\mathbf{0} \quad \text { mequations } \\
\lambda_{k}\left(t_{0}\right)=0 & \text { or } x_{k}\left(t_{0}\right) \text { given, } \quad k=\{1 \ldots n\} \\
\lambda^{T}\left(t_{f}\right) \mathbf{f}\left(t_{f}\right) & =-1
\end{aligned}
$$

- We have $2 n$ boundary constraints for $2 n$ differential equations, m optimality constraints for m control variables and one constraint for t.

Integral Constraint On Path

- Suppose we have an extra requirement from the optimal trajectory:

$$
c=\int_{t_{0}}^{t_{f}} N(\mathbf{x}, \mathbf{u}, t) d t
$$

- E.g. given fixed amount of fuel, reach the destination with an empty tank (while obeying some optimality criterions) . $N(\mathbf{x}, \mathbf{u}, \mathrm{t})$ would be the fuel consumption and c the given fuel amount.
- Solution: (by reduction to a regular problem with an extra state variable that has given boundary values)
Add a new state variable, x_{n+1} with the following dynamics function f

$$
\dot{x}_{n+1}=N(\mathbf{x}, \mathbf{u}, t)
$$

- It is clear that

$$
x_{n+1}\left(t^{\prime}\right)=\int_{t_{0}}^{t^{\prime}} N(\mathbf{x}, \mathbf{u}, t) d t
$$

- Now require that

$$
x_{n+1}\left(t_{f}\right)=c \quad, \quad x_{n+1}\left(t_{0}\right)=0
$$

- Obviously, the augmented system obeys the integral constraint
- (see Bryson \& Ho Sec 3.1)

Integral Constraint Eg.

- Maximum area under curve of given length:

- We formulate it as a control problem: A particle moves with constant velocity (1) along the horizontal axis, starting at time 0 and ending at time a. The position along the x_{1} axis changes as a function of the angle θ which is the control signal. The particle's path (in the $x_{1}-t$ plane) must be p and the area under the particle is maximized.
- We assume that $-\pi / 2<\theta<\pi / 2$ (true if $\mathrm{p}<\pi \mathrm{a}$)
- The corresponding equations are

$$
\begin{aligned}
\mathcal{L}=-x_{1} & , \quad \phi=0 \\
u & =\theta \\
f_{1} & =\dot{x}_{1}=\tan \theta \\
x_{1}(0)=0 & , \quad x_{1}(a)=0 \\
t_{f} & =a \\
p & =\int_{0}^{a} \frac{1}{\cos \theta} d t
\end{aligned}
$$

- The cost is

$$
J=-\int_{0}^{a} x_{1} d t
$$

- Solution:
- Add another state variable, x_{2}, and replace the integral constraint with

$$
f_{2}=\quad \dot{x}_{2}=\frac{1}{\cos \theta} \quad, \quad x_{2}(0)=0, x_{2}(a)=p
$$

- The Hamiltonian is

$$
\mathcal{H}=\mathcal{L}+\lambda^{T} \mathbf{f}=-x_{1}+\lambda_{1} \tan \theta+\frac{\lambda_{2}}{\cos \theta}
$$

we know that it is a constant because L and \mathbf{f} are not explicit functions of time (see previous slide).

- The Lagrange multipliers obay

$$
\begin{aligned}
& \dot{\lambda}_{1}=-\frac{\partial \mathcal{H}}{\partial x_{1}}=1 \\
& \dot{\lambda}_{2}=-\frac{\partial \mathcal{H}}{\partial x_{2}}=0
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \lambda_{1}=t+c_{1} \\
& \lambda_{2}=c_{2}
\end{aligned}
$$

- The Lagrange equation for \mathbf{u} gives

$$
\frac{\partial \mathcal{H}}{\partial \mathbf{u}}=\frac{\partial \mathcal{H}}{\partial \theta}=\frac{\lambda_{1}}{\cos ^{2} \theta}+\lambda_{2} \frac{\sin \theta}{\cos ^{2} \theta}=0
$$

so

$$
\lambda_{1}=-\lambda_{2} \sin \theta=-c_{2} \sin \theta
$$

i.e

$$
\sin \theta(t)=\frac{-t-c_{1}}{c_{2}}
$$

- This means that under this control scheme the sine of $\theta(\mathrm{t})$ is linear.
- One can then use the given boundary conditions to find H, c_{1}, c_{2}, solve x_{1} and show that the optimal path is an ark of a circle whose center is at $\left(\frac{a}{2},-\frac{p \cos \alpha}{2 \alpha}\right)$, its radius is $p / 2$ and α obeys $\frac{\sin \alpha}{\alpha}=\frac{a}{p}$

Equality Constraints Over Functions of the State/Control

- Suppose we wish to find a trajectory that obeys an extra set of equality constraints, $\mathbf{c}(\mathbf{x}, \mathbf{u}, \mathbf{t})=\mathbf{0}$.
- This is no different than requiring that $\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}(t)=0$.
- We therefore treat the new constraint in a similar manner. We rewrite the Hamiltonian to be:

$$
\mathcal{H}=\lambda^{T} \mathbf{f}+\mathcal{L}+\nu^{T} \mathbf{c}
$$

where v is an extra vector of Lagrange multipliers that gets the exact same treatment as λ.

- The rest of the Euler Lagrange constraint derivation is unchanged.
- (see Bryson \& Ho, sec. 3.3)

Some Other Variation Variants

- functions of the state variables given at t_{0} and/or given or unconstrained terminal time t_{f}. (Eg. manipulate a robotic hand from one curved wall to another along the shortest path).
- via point problems (trajectory is constrained to obey some rule at a certain time or position along its path).
- problems where the Lagrange equations do not produce a constraint on the control signal (although it is obviously constrained). Eg. bang-bang control.

